## LAB 5: Tensile strength

#### 1. Preparation:

- tensile strength:  $\mathbf{R}_{t} = \frac{\mathbf{F}_{max}}{\mathbf{S}}$
- ductility percentage elongation after fracture (δ) permanent elongation of the original length after fracture, expressed as the percentage of the original length L<sub>0</sub>:

$$\boldsymbol{\delta} = \frac{\mathsf{L}_{\mathsf{u}} - \mathsf{L}_{\mathsf{0}}}{\mathsf{L}_{\mathsf{0}}} \qquad [\%]$$

 percentage reduction of area (Z) - maximum change of cross sectional area, which was occurred during the test, expressed as a percentage of the original cross-sectional area S<sub>0</sub>.

$$\mathbf{Z} = \frac{\mathbf{S}_0 - \mathbf{S}_u}{\mathbf{S}_0} \qquad [\%]$$

where

 $S_0$  is original cross-sectional area before testing  $[m^2]$  $S_u$  minimum cross-sectional area after fracture  $[m^2]$ 

### 2. Procedure

- weigh and measure prepared test samples *m* [g], *L* [mm]. For the samples with smooth surface measure their diameter *D* [mm] (in two perpendicular directions).
- carry out the test according the teachers instructions on the machine FP 100
- write down the values of the maximal force *F<sub>max</sub>* [kN] and elongation *L<sub>u</sub>* [mm] of each sample from test machine
- measure the diameter of the steel bar in the place of fracture in two perpendicular directions *d*<sub>1</sub>, *d*<sub>2</sub> [mm]

## 3. Protocol

There is one joint protocol for LAB 5 and LAB 6

• count the original cross-section area  $S_0$  [mm<sup>2</sup>] of steel bar from the mass m of a known length L and its density (7850 kg/m<sup>3</sup>) according the formula :

$$\mathbf{\rho} = \frac{\mathsf{m}}{\mathsf{V}} = \frac{\mathsf{m}}{\mathsf{S}_0 \times \mathsf{L}}$$

- count bulk density of each material  $\rho_v$  [kg.m<sup>-3</sup>], if not given
- for each material count tensile strength  $R_t$  [MPa] and percentage elongation  $\delta$
- count the minimum cross-sectional area  $S_u$  [mm<sup>2</sup>] of steel bar after fracture from the arithmetic mean of diameters  $d_1$  and  $d_2$  and count the percentage reduction of area Z

## LAB 6: Thermal conductivity

## 1. Preparation:

- thermal conductivity (chapter16 p. 87)
- factors, affected the thermal conductivity
- thermal conductivity of building materials (chap..16 p. 87)
- thermal conductivity measuring methods (p.87)

## 2. Procedure

- weigh and measure prepared test samples
- the measuring will be carried out on the apparatus ISOMET according the instructions
- write down the values of the coefficient of thermal conductivity  $\lambda$  [W.m.K<sup>-1</sup>] from the display

## 3. Protocol

- count the bulk density  $\rho_v$  [kg.m<sup>-3</sup>] of measured materials
- fill in the values of the coefficient of thermal conductivity

For protocol you can use the form attached. If you use the hand made form, it has to be similar to this form.

# LAB 5+6: Tensile strenght, thermal conductivity

| Name:      |                                                       |
|------------|-------------------------------------------------------|
| Signature: | Study group:                                          |
| Date:      | Number of annexes :<br>(all calculations, given data) |

| Results:                                      |                       |       |  |  |  |
|-----------------------------------------------|-----------------------|-------|--|--|--|
| Tensile strength                              |                       |       |  |  |  |
| Material                                      |                       | Steel |  |  |  |
| Bulk density $\rho_V$                         | [kg.m <sup>-3</sup> ] | 7850  |  |  |  |
| Tensile strenght R <sub>t</sub>               | [MPa]                 |       |  |  |  |
| Ductility $\delta$                            | [%]                   |       |  |  |  |
| Reduction of area Z                           | [%]                   |       |  |  |  |
| Thermal conductivity                          |                       |       |  |  |  |
| Material                                      |                       |       |  |  |  |
| Bulk density $\rho_V$                         | [kg.m <sup>-3</sup> ] |       |  |  |  |
| Coefficient of thermal conductivity $\lambda$ | [W/m.K]               |       |  |  |  |