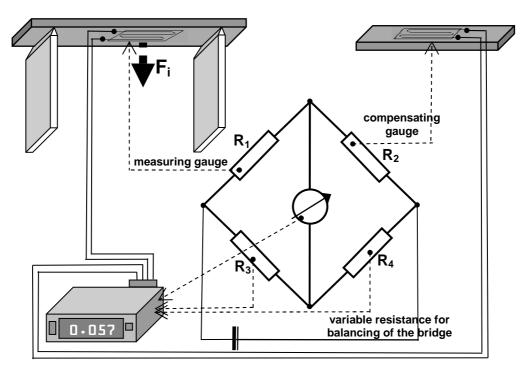
LAB 4: Modulus of elasticity


1. Preparation:

- modulus of elasticity (chapter15, p.79)
- Hook's law
- graphical determination of modulus of elasticity (p.80)
- determination of modulus of elasticity in tension and flexural stress
- mechanical strain gauges, electrical resistant gauges
- basic strain at basic loading ((chapter 15.2.3, p.84)

2. Procedure

The students will be divided into 3 groups, each will measure the modulus of elasticity in the flexural stress of the different materials The strain will be measured by the electrical resistance gauge with the help of apparatus TSA. The principal of the measuring is described in the chapter 15.2.2.

Scheme of measuring:

Measuring:

Material will be loaded gradually and after each loading step the load goes back to the basic load F_{0} . Scheme of the loading will be given at the lesson.

- 1. Switch on the apparatus
- 2. Zero the apparatus by the button 0
- 3. Apply load F_1 on the material.

- 4. After the stabilization read the value of deformation in promiles from the display and write it into the table as a 1^{st} set of reading at the load F_1 [‰].
- 5. Unload to the load F_0 and write the value on the display as a 1^{st} set at the load F_0 [‰].
- 6. Repeat the procedure from points 3 to 5 for the loading F_2 and F_3 .
- 7. After each loading to F_i there is necessary to unload to F_0 and write down the value of the deformation
- 8. During the one loading set the material shouldn't be fully unloaded.
- 9. After one complete loading set switch off the apparatus.
- 10. Measure the cross-sectional dimensions **b**, **h** [mm] at the place of measuring (*be careful not to touch glued gauge!*), each dimension minimally twice.
- 11. Measure the distance between supports *I* [mm]
- 12. Repeat the measuring according points 1 to 9 and the results write down as a **2nd set of reading**

3. Protocol

<u>Modulus of elasticity in flexural stress (form LAB 4:a)</u> Modulus of elasticity in flexural stress)

- determine relative elastic deformations (elastic strain) $\boldsymbol{\epsilon}_i$ [‰] as a differences between readings at loading stages F_i and subsequent reading at basic load F_0 for both sets and count their mean value $\boldsymbol{\epsilon}_i$ [‰]
- count the basic strain ϵ_0 [‰] between zero and basic loading F₀ from similarity of triangles (Fig. 44 p.84) and count the total strain (ϵ_i + ϵ_0) [‰] for each loading step
- count the strain σ_i [MPa] at each loading step according the type of loading flexural stress, tension)
- count the modulus of elasticity E_i [MPa] from Hook's law
- count mean value of the modulus of elasticity *E* [MPa] from all loading stages

Modulus of elasticity in tension (form LAB 4:a) Modulus of elasticity in flexural stress)

- the data, measured on the steel, will be given
- the mechanical gauges (Fig. 40 p. 81) were used for measuring
- determine the real deformation $\varDelta I$ [mm] as a differences between readings at loading stages F_i and at basic load F_0
- count the relative strains (relative deformations) ϵ_i [‰] from the real deformations and the original gauge length (I_{01} , I_{02})
- the rest of the determination is the same as a determination of modulus of elasticity in flexural stress

For protocol you can use the form attached. If you use the hand made form, it has to be similar to this form.

LAB 4: Modulus of elasticity

Name:	PIN:			
Signature:	Study group:			
Date:	Number of annexes : (all calculations, given data)			

Results:							
Tested material :							
Modulus of elasticity in flexural stress	MPa						
Steel							
Modulus of elasticity in tension	GPa						

Material :			Cross se [mm]	ctional siz	ze:		Loading scheme :			
Source of	loading :		Section modulus : [mm ³] Basic strain (between 0 and F ₀): $\varepsilon_0 = \varepsilon'_1 \cdot \frac{F_0}{F_1 - F_0} =$				$\frac{F}{2}$			
Measuring	g apparatus :						$I = [mm] \qquad M_i = \frac{F_i * l}{4}$			
Loading	Reading of apparatus		Relative strain during unloading from F_i to F_0			Total strain	Bending moment	Stress	Modulus of elasticity	
F _i	1 st set	2 nd set	1.	2.	Mean.ɛi´	$(\varepsilon_i + \varepsilon_0)$	Mi	$\sigma_i = \frac{M_i}{W}$	$E = \frac{\sigma_{i}}{\left(\varepsilon_{i}^{\prime} + \varepsilon_{0}\right) * 10^{-3}}$	
[N]	[9	60]		[‰]		[‰]	[N. mm]	[MPa]	[MPa]	
F ₁ =					1					
F ₀ =										
F ₂ =										
F ₀ =										
F ₃ =									1	
$F_0 =$									<u> </u>	
–									-	

LAB 4:	b) MODI	ULUS OF	ELAS	ΤΙΟΙΤΥ Ι	N TENS	ION				
Material : Source of	STEEL		Diameter [mm] d1 =		2= ea:	Loading scheme : original gauge lengths:: [mm] I ₀₁ =				
	g apparatus anical strair		Basic strain (between 0 and F_{t0}): $\varepsilon_0 = \varepsilon'_1 \cdot \frac{F_{t0}}{F_{t1} - F_{t0}} =$						l ₀₂ = ↓F _t	
Loading F _{ti}	Reading of the gauges			lin during II ΔI		loading from F_{ti} to F_{t0} relative $\epsilon_i = \frac{\Delta I_i}{I_{0i}}$			Stress $\sigma_i = \frac{F_{ti}}{\Lambda}$	Modulus of elasticity
	1 st gauge	2 nd gauge	1.	2.	1.	2.	mean ϵ_i	$(\varepsilon_i' + \varepsilon_0)$		$E_{i} = \frac{\sigma_{i}}{\left(\varepsilon_{i}^{/} + \varepsilon_{0}\right)}$
[N]	[m	m]	[mm]		[-]		[-]	[MPa]	[MPa]	
F _{t1} =										
$F_{t0} =$										
F _{t2} =										
$F_{t0} =$										
F _{t3} =										
F _{t0} =										
				Mea	n value	of the r	nodulu	s of elasti	city of steel:	