Department of Materials Engineering Ind Chemistry

aculty of Civil Engineering

Building materials

Building Materials

Lecture 5

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Diffusion properties

Diffusion

gases, vapor

- spread of particles through random motion from regions of higher concentration to regions of lower concentration
- Important for:
 - vapor barriers
 - radon barriers
 - rehabilitation renders
 - paints
 - passive houses

Civil Engineering

aculty of

Important properties:

- the water vapor diffusion coefficient $\boldsymbol{\delta}$
- the resistance to water vapor diffusion factor µ
- the water vapor diffusion equivalent air layer thickness S_d

Bu

and Chemistry Faculty of Civil Engineering

Materials

0

Water vapor permeability test

dry cup method wet cup method

mass increase

mass decrease

bepartment of Materials Engineer Ind Chemistry

aculty of Civil Engineering

Water vapor diffusion -- coefficient δ

- the amount of water vapor [kg] which diffuses through a layer of material which is 1 m thick and has an area of 1 m² at a partial water vapor pressure difference of 1 Pa in 1 hour
- units: [kg/m.h.Pa]

Resistance to water vapor diffusion - factor µ

- the ratio of the water vapor diffusion coefficient of the air δ_L to the value δ_{mat} of the material
- a measure for the vapor tightness of a material (how many times greater the resistance to transmission of a layer of the material is compared to a static layer of air of the same thickness)

Civil Engineering

aculty

erials

mat

ding

µ -value of some materials

Material	μ -value
Reinforced concrete	90
AAC (autoclaved aerated concrete)	6
Masonry of full bricks	7
Steel (plate)	600 000
Window glass	10 000
Gypsum board	12
Gypsum fibre board	10 -15
Wooden fiber plates	10
Hydrophobic plywood	60 - 100
Mineral wool	2
OSB (oriented strand board)	30
EPS (expanded polystyrene)	40
XPS (extruded polystyrene foam)	170 - 200

⁻aculty of Civil Engineering

Equivalent air layer thickness S_d

$S_d = \mu \cdot s [m]$

the thickness of a static layer of air in meters, which displays the same resistance to water vapor transmission as the building material in the thickness s with the resistance to water vapor transmission value μ

Mineral wool µ≈3; s = 100 mm	S _d = 0.3 m
Polyurethane μ≈100; s = 100 mm	S _d = 10 m

- Sd ≤ 0.5 m => diffusionopen materials
- 0.5 m < Sd => diffusionblocking materials
- Sd ≥ 1500 m ≥ 1500 m => diffusion-proof materials

Künzel's facade protection theory:

• protection and breathability of coating are influenced by water absorption capacity ${\bf w}$ and the water vapor permeability ${\bf S}_d$

Department of Materials Engineering and Chemistry

⁻aculty of Civil Engineering

Soil permeability

- ability of soil to transmit water and air
- important in the areas with radon risk

Department of Materials Engineering and Chemistry

aculty of Civil Engineering

lding

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Thermal properties

Interaction heat - material

If the surroundings of the material has different temperature than the material, the thermal energy is transferred

Types of interaction:

- 1. The properties of material influence the transmission of heat
- 2. Thermal energy influences the properties of material

Heat transport

conduction – solids, gases, liquids

- the transfer of heat within a substance, molecule by molecule

convection - gases, liquids

- heat transfer by the mass movement of a fluid in

the vertical direction

- radiation gases
 - heat is transfered through wave energy

Engineerin Materials **Civil Engineering**

aculty of

Heat transport

 In the porous materials the heat is transferred by combination of all types of heat transport

Depends on:

- porosity
- structure
- temperature
- material type

Department of Materials Engineering and Chemistry

aculty of Civil Engineering

epartment of Materials Engineering nd Chemistry

aculty of Civil Engineering

Building materials

Thermal conductivity

a material's ability to conduct heat

(coefficient of) thermal conductivity

Faculty of Civil Engineering

Thermal conductivity

- the quantity of heat transmitted, due to unit temperature gradient, in unit time under steady conditions in a direction normal to a surface
- λ (K-value)
- units SI: [W/m.K]
 - imperial units: [Btu/hr.ft.F]
 - (1 Btu/hr.ft.F = 1.730735 W/m.K)
- the lower λ , the better insulator
 - (thermal insulating materials $\lambda < 0,15$ W/m.K)
- range λ: 10⁻² 10² W/m.K

epartment of Materials Engineering nd Chemistry

Faculty of Civil Engineering

Building materials

Thermal conductivity - comparison

© 2011 Encyclopædia Britannica, Inc

Thermal conductivity Basic facts

- Organic materials are better insulators than inorganic m.
- Crystalline materials are better conductors than amorphous m.

- Materials with lower bulk density are usually better insulators.
- Metals are very good conductors.
- Anisotropic materials have different conductivity in different directions.

Engineering

Thermal conductivity

Depends on:

- chemical composition
- structure
- porosity (bulk density)
- moisture
- temperature

epartment of Materials Engineerin nd Chemistry

aculty of Civil Engineering

aculty of Civil Engineering

Influence of porosity on thermal conductivity

- $\lambda_{AIR} = 0,025 \text{ W.m}^{-1}.\text{K}^{-1}$
- the higher the amount of air in the material (porosity), the lower bulk density and thermal conductivity is
- size of pores is limited (best 0,1 1 mm) (because of capillarity)

aterials

Porosity x thermal conductivity

Influence of moisture on thermal conductivity

λ_{water} app. 25 x higher than λ_{air}

- moisture significantly reduces the thermal insulating ability of materials
- very small pores are liable to wetting (capillarity) – the best size of pores in insulating materials: 0,1 – 1 mm

Civil Engineering

aculty of

Moisture x thermal conductivity

~

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Department of Materials Engineering Ind Chemistry

⁻aculty of Civil Engineering

Building materials

Influence of temperature on thermal conductivity

• λ increases with rising temperature

 $\lambda_{t} = \lambda_{0} + 0.0025 t$ (for t = 0 - 100°C)

Thermal insulating materials - overview

• fibrous - mineral and glass fibers

- wood wool (excelsior)
- cellulose fibers
- recycled paper fibers
- straw (bales, loose)

porous particles

- expanded clay aggregate
- expanded perlite
- ash
- cinders

Civil Engineering

aculty of

Civil Engineering

aculty of

Building material

Thermal insulating materials

- shaped
 lightweight concretes (with lightweight aggregates, pervious c., aerated concretes)
 insulating brick blocks
 - diatomite
- foamed foamed polymers (PU,PS, phenolic foam)
 cellular glass

epartment of Materials Engineering nd Chemistry

aculty of Civil Engineering

Building materials

Thermal insulating materials

• other

- cork (expanded)
- wood
- wood-based materials (fiber board, particle board)
- lamb wool

Best insulation?

inside Getter/Desiccant

1. Core Material

Heat Sea

2. Barrier/

Envelope

- vacuum
- "VIP" = Vacuum Insulated Panel
- a nearly gas-tight enclosure surrounding a rigid core, from which the air has been
 - evacuated
- $\lambda = 0,004 0,008 \text{ W/m} \cdot \text{K}$

spartment of Materials Engineerin Id Chemistry

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Thermal conductivity measuring

- steady-state methods the temperature of the measured material does not change with time
- transient (non steady-state) methods a measurement during the process of heating up

Steady state - a situation in which all variables are constant in spite of ongoing processes that strive to change them. For an entire system to be at steady state, i.e. for all state variables of a system to be constant, there must be a flow through the system

Civil Engineering

aculty of

Thermal conductivity measuring

Steady-state methods:

- Guarded hot plate
- Divided bar
- Hot box

Transient methods:

- Hot wire
- Plane source
- Needle probe
- Laser flash method

Department of Materials Engineerin and Chemistry

Civil Engineering

aculty of

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

materials bui E

Thermal conductivity

Thermal conductivity determination

Steady state method:

$$\lambda = \frac{q \times d}{T_1 - T_2}$$

- **q**.... of heat passing through a unit area of the sample in unit time [W/m²]
- d average thickness of sample [m]
- T_1 temperature of warm side of the sample [K]
- T_2 ... temperature of cold side of the sample [K]
- **Q**.... quantity of heat passing through a base area of the sample [W]
- A base area of the sample [m²]

aculty of Civil Engineering

Materials Engineering

tment of

<u>Chemistr</u>

aculty of Civil Engineering

Guarded hot plate

- placing a solid sample of fixed dimension between two temperature-controlled plates
- one plate is heated while the other plate is cooled, and their temperatures are monitored until they are constant

Department of Materials Engineering Ind Chemistry Thermal resistance R-value

 $\mathbf{R} = \mathbf{d} / \lambda \left[(\mathbf{m}^2 \cdot \mathbf{K}) / \mathbf{W} \right]$

- directly proportional to the thickness of the material
- for construction, not material
- can be used for masonry blocks

R = 0,65 (m²·K)/W

Department of Materials Engineerin and Chemistry

⁻aculty of Civil Engineering

Thermal resistance

multi-layered construction : the R-values of the individual layers are summed

aculty of

Thermal transmittance U-value

- the measure of the rate of heat loss through a material
- incorporates the thermal conductance of a structure along with heat transfer due to convection and radiation

U-value in Europe

Rank	Country	Walls	Country	Roof	Country	Floor	Country	Windows
1	Sweden	0.3	Sweden	0.2	Sweden	0.2	Finland	1.9
2	Finland	0.4	Denmark	0.3	Denmark	0.4	Austria	2.3
3	Denmark	0.5	Finland	0.3	Finland	0.4	Denmark	2.4
4	Czech Republic	0.8	Czech Republic	0.6	Germany	0.8	Sweden	2.5
5	Austria	0.9	Austria	0.6	Czech Republic	0.9	Germany	2.7
6	Germany	0.9	Ireland	0.7	Belgium	0.9	Czech Republic	2.7
7	UK	1.0	Germany	0.7	France	1.0	France	3.1
8	Netherlands	1.1	UK	1.1	Ireland	1.0	Netherlands	3.2
9	France	1.2	Netherlands	1.2	Austria	1.0	Belgium	3.8
10	Ireland	1.2	France	1.3	UK	1.2	Ireland	3.8
11	Belgium	1.5	Belgium	1.6	Netherlands	1.3	UK	3.9

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Specific heat capacity c

= specific heat

- the amount of heat required to change
 1 kg of substance's temperature by a 1
 K
- units: [J.kg⁻¹.K⁻¹]

Depends on:

- temperature
- moisture: $c = c_0 + 0.42 w_m$

epartment of Materials Engineerin 1d Chemistry

Engineering

materials

Specific heat of some materials

Material	C [kJ.kg ⁻¹ .K ⁻¹]
asphalt	0,92
concrete	0,88
brick	0,84
glass	0,84
copper	0,39
granite	0,79
gypsum	1,09
water	4,18
wood I to fibers	0,42

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Heat accumulation

Thermal mass of building

 absorbs thermal energy when the surroundings has higher temperature than the material and give thermal energy back when the surroundings are cooler

bg

Interior thermal control

Phase - change materials (PCM)

- materials with very high latent heat storage capacities
- best melting point for building purposes about 25 °C
- heat is absorbed or released when the material changes from solid to liquid and vice versa
- Materials:
 - paraffin
 - fatty acids
 - salt hydrates

⁻aculty of Civil Engineering

aculty of Civil Engineering

Thermal effusivity

 determines the interfacial temperature when two semi-infinite objects at different temperatures touch

$$\boldsymbol{b} = \sqrt{\lambda_{\text{-}} \boldsymbol{C}_{\text{-}} \boldsymbol{\rho}_{\text{V}}}$$

• units: [W.s^{0,5}.m⁻².K⁻¹]

 the higher b is, the colder sensation gives the material

Thermal comfort

- the condition of mind which expresses satisfaction with the thermal environment
- affected by

bu

35

- air temperature
 temp. of surrounding surfaces

Materials Engineering partment of d Chemistr

⁻aculty of Civil Engineering

aculty of Civil Engineering

Building materials

Reflectivity

- the ability of a surface to reflect radiation
- light reflectivity the percentage light reflected from a surface at a given wavelength.

Heat reflection and absorption

- reflection ρ
- absorption α

Heat reflectance:

$$\alpha + \rho = 1$$

 $\mathbf{R} = \frac{\alpha}{\mathbf{incidentheat}}$

- black body R =1
- white **R** = 0,5

Department of Materials Engineering and Chemistry

⁻aculty of Civil Engineering

eria

mat

bui

Solar absorptivity

Solar Absorptivity Chart for Selected Colours

Code	Colour	Absorptivity
6068	Black	0.94
6062	Dark Brown	0.91
6154	Metro Brown	0.89
6073	Dark Green	0.89
6072	Charcoal	0.89
6084	Navy Blue	0.87
6079	Heron Blue	0.85
6078	Green	0.84
6067	Slate Blue	0.8
6082	Regent Grey	0.75
6071	Stone Grey	0.6

Faculty of Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

aculty of Civil Engineering

Building materials

Changes of materials effects of the temperature

Thermal expansion

• linear

 $\Delta L = \alpha . L_0 . \Delta T$

- ΔL ... dimension change (elongation) [m]
- α coefficient of thermal expansion [K⁻¹]
- L_0 linear dimension (length) [m] ΔT temperature change [K]

Department of Materials Engin and Chemistry

Civil Engineering

aculty of

• volumetric t. e. $\gamma \cong 3\alpha$

Values of α : common materials... $\alpha = 6 - 16.10^{-6} \text{ K}^{-1}$ plastics $\alpha = 80 - 200.10^{-6} \text{ K}^{-1}$

 α concrete = α steel = 10 –12.10⁻⁶ K⁻¹

Steel, concrete - 1m, temperature change 50 K: $\Delta L = (10.10^{-6}).1000.50 = 5.10^{-1} = 0.5 \text{ mm/1 m}$

Civil Engineering

Faculty of Civil Engineering

Building materials

Thermal expansion of different materials

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Thermal expansion in buildings

Materials Engineering

of

J

ding

Density anomaly of water from 0°C to 3,99°C the volume of the water decreases

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Coefficient of thermal expansion

Influence of heat on the mechanical properties

20

0

the change of strength, modulus of elasticity

<u>Materials Engineering</u> epartment of d Chemistry

Faculty of Civil Engineering

Γ

mal

aculty of Civil Engineering

uilding material

Fire resistance

 reaction of the materials and constructions to the fire

Dangerous effects of fire

big heat

- deformation of materials (loss of strength)
- falling of burning droplets
- smoke
- toxic fumes

Department of Materials Engineerin and Chemistry

Civil Engineering

aculty of

Building material

epartment of Materials Engineering nd Chemistry

Faculty of Civil Engineering

Fire development

Flashover - a dramatic increase in the rate of heat release and smoke production (typically occurs when the combustion gases reach a temperature of around 600°C)

Materials Engineerin

aculty of Civil Engineering

din

Flash point

 the lowest temperature at which the vapor formed above a pool of a combustible liquid can be ignited in air

Fire point

the lowest temperature at which, on further heating beyond the flash point, the sample will support combustion for 5 seconds

erials

Ĕ

ilding

E

Flammable and combustible liquids

susceptibility to ignition

Hazard classification for flammable liquids						
Class Flash point		Boiling point	Examples			
I-A	below 73°F (23°C)	below 100°F (38°C)	diethyl ether, pentane, ligroin, petroleum ether			
I-B	below 73°F (23°C)	at or above 100°F (38°C)	acetone, benzene, cyclohexane, ethanol			
I-C	73-100°F (24-38°C)		p-xylene			
Hazard classification for combustible liquids						
II	101-140°F (39-60°C)		diesel fuel, motor oil, kerosene, cleaning solvents			
III-A	141-199°F (61-93°C)		paints (oil base), linseed oil, mineral oil			
III-B	200°F (93°C) or above		paints (oil base), neatsfoot oil			

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Materials Engineering

partment of

Chemistry

Faculty of Civil Engineering

J

Autoignition temperature (kindling point)

• the lowest temperature where a substance will auto-ignite and combust in normal atmospheric conditions without any external influences.

FAHRENHEIT 451

FAHRENHEIT 451 the temperature at which book-paper catches fire, and burns . . .

BALLANTINE BOOKS . NEW YORK

Self- extinguishing materials

- the inability to support flame after the source of the flame is withdrawn
- some polymers (EPS, ..)

epartment of Materials Engineering nd Chemistry

aculty of Civil Engineering

Flame retardants

- chemicals used in thermoplastics, thermosets, textiles and coatings that inhibit or resist the spread of fire
 - a protective non-flammable layer around a combustible material
 - a chemical reaction releasing water vapors
 - layer of carbon charintumescent layers

Department of Materials Engineerin and Chemistry

Engineering

Civil

aculty

Flammability (combustibility)

- how easily material will burn or ignite, causing fire or combustion
- older national standards

Degree of combustibility (DIN 4102, BS 476):

- A1 100 % noncombustible (concrete, brick)
- A2 98 % noncombustible (gypsum plaster)
- **B1** difficult to ignite (often self-extinguishing)
- B2 normal combustibility (wood)
- B3 easy to ignite (PU foam)

Reaction to fire

- **EN 13501 –1** Fire classification of construction products and building elements
- determines whether a material fuels a fire
- 7 classes : A1, A2, B, C, D, E, F

Euroclass	Contribution to fire	
A1	Non Combustible	
A2	Limited Combustible No Flashover	
в	No Flashover 💊	
С	Flashover after 10 minutes	5
D	Flashover before 10 minutes	
Е	Flashover before 2 minutes	
F	No Performance Determined	1

epartment of Materials Engineer nd Chemistry

Reaction to fire

Class	Reaction to Fire	Flashover in the Room Corner reference test	Additional criteria tested for
A1	No contribution to a fire	No	None (insignificant smoke release with no flaming droplets or particles expected)
A2	No significant contribution to fire growth	No	Production of smoke & flaming droplets or particles
В	Very limited contribution to fire growth	No	Production of smoke & flaming droplets or particles
С	Limited contribution to flashover	Flashover after 10 min	Production of smoke & flaming droplets or particles
D	Contribution to flashover	Flashover between 2 to 10 min	Production of smoke & flaming droplets or particles
E	Significant contribution to flashover	Flashover before 2 min	Production of flaming droplets or particles (Smoke release is expected to be substantial)
F	Not tested or incapable of achieving Class E	No performance determined	

Department of Materials Engineering and Chemistry Faculty of Civil Engineering materials

ding

E

Reaction to fire – additional classification

Smoke:

- s1 very limited amount of smoke developed
- s2 limited amount of smoke developed
- s3 no demands to the amount of smoke developed

Burning droplets:

- d0 no burning droplets or particles
- d1 limited amount of burning droplets or particles
- d2 no demand to the amount of burning droplets or particles

Reaction to fire

What does a classification look like?

There may or may not be a subscript next to the letter. A subscript "fl" means the product has been classified for use as a flooring. A subscript "L" means the product has been classified for use as a linear pipe thermal insulation product. The absence of a subscript means the product is for use on walls or ceilings.

There is a classification for flaming droplets and particles during the tests, of d0 to d2. d0 represents the highest level of performance. d2 represents the lowest level of performance.

Department of Materials E and Chemistry ⁻aculty of Civil Engineering

<u>Materials Engineering</u>

Ē

ding

bul

Reaction to fire - tests

- SBI test single burning item
- small flame test
 - flame spread within 20 60 s

- RP test radiant panel
 - floorings

H-6240C H-6240N

⁻aculty of Civil Engineering

Class A1 without testing:

- Expanded clay
- Expanded perlite
- Expanded vermiculite
- Mineral wool
- Cellular glass
- Concrete
- Aggregate concrete (dense and lightweight mineral aggregates, excluding integral thermal insulation)
- Autoclaved aerated concrete units
- Fibre cement
- Cement
- Lime
- Blast furnace slag/pulverized fly ash (PFA)

Civil Engineering

aculty of

Reaction to fire

Class	Performance description	Fire scenar att	rio and heat ack	Examples of products				
A1	No contribution to fire	Fully developed fire in a room	At least 60 kW/m ²	Products of natural stone, concrete, bricks, ceramic, glass, steel and many metallic produ				
A2				Products similar to those of class A1, including small amounts of organic compounds				
В	Very limited contribution to fire	Single burning item in a room	40 kW/m ² on a limited area	Gypsum boards with different (thin) surface linings Fire retardant wood products				
С	Limited contribution to fire			Phenolic foam, gypsum boards with different surface linings (thicker than in class B)				
D	Acceptable contribution to fire	ũ	ũ	Wood products with thickness ≥ about 10 mm and density ≥ about 400 kg/m ³ (depending on end use)				
E	66	Small flame attack	Flame height of 20 mm	Low density fibreboard, plastic based insulation products				
F	No performance requirements	1970) 1970		Products not tested (no requirements)				

Department of Materials Engineering and Chemistry Faculty of Civil Engineering

Fire resistance

- how well a building component (for a stated period of time) can hold back the fire and prevent it from penetrating from one room to another
- based on the time during which construction elements accomplish their function in case of an unstoppable, fully developed fire

Fire classification of construction, not material!

Department of Materials Engineering and Chemistry

Engineering

Faculty of Civil Engineering

Π

Reaction to fire x Fire resistance

Fire resistance criteria

- **R** = load bearing capacity
- E = integrity (capacity to remain intact)
- I = insulation (capacity to maintain a defined

Department of Materials Engineeri and Chemistry

aculty of Civil Engineering

Fire resistance criteria

- R the structural element should not collapse or deflect beyond the permitted levels when subjected to the applied load
- E the integrity of the room must be maintained. No breakthrough of flames is permitted.
- I the temperature on the non-exposed side of the structural element must not rise more than 140° C above ambient as an average measurement and no more than 180° C at any one location.

aculty of Civil Engineering

Classification of building components

Load bearing building components the time span where all three criteria, load bearing capacity, integrity and REI - time insulation are fulfilled the time span where the two criteria, load bearing capacity and integrity, are RE - time fulfilled the time span where the criteria load bearing capacity is fulfilled. R - time

Non load bearing building components

- EI time time span where the two criteria, integrity and insulation, are fulfilled
- E time the time span where the criteria integrity is fulfilled

REI 120 – all three criteria must be fulfilled for 120 minutes

	CONST	RUCTION COMPO	FIRE EXPOSURE	
FINE RESISTANCE	Exterior coat	Mineral board ²		
REI 60 D3		120	Knauf® GKE 12.5	External fire (exposed CETRIS® board)
REW 60 D3 ³	GETNI3* 14	120	Kildul" GKF 12.5	Internal fire (exposed KNAUF board)

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Other properties

Radioactivity

natural radioactivity of materials

Periodic Table of the Radioactive Elements

۱.	1A												http://ch	emistry.	about.co	m		8A	
	1								Half	life of Mos	t Stable Is	otope	©2011	Todd He	Imenstin	е		2	
	н			Atomic	Number					Sta	able		About C	Chemistr	У			Не	
	6	2A	_							h _{1/2} > 1	0 ⁶ years		ЗA	4A	5A	6A	7A	8	
	3	4		SVI	nhol				10) ³ yrs < h	_{1/2} < 10 ⁶	yrs	5	6	7	8	9	10	
	Li	Ве		Syi	nboi					1 yr < h _{1/2}	₂ < 10 ³ yr	s	в	С	N	0	F	Ne	
	8	10	14						1	day < h	_{/2} < 10 ³ y	rs	11	13	14	14	16	19	
	11	12		# OT I	sotopes					h _{1/2} <	1 day		13	14	15	16	17	18	
	Na	Ma				•				unkr	nown		AI	Si	Р	s	С	Ar	
	18	21	3B	4B	5B	6B	7B		— 8B —		1B	2B	22	23	22	21	22	22	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
	К	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
U-	23	23	20	24	23	25	25	28	26	31	28	30	27	28	29	29	29	31	
	37 Dh	38	39 V	40	41	42	43 T a	44	45 Dh	46 Dal	47	48	49	50 Cm	51 Ch	52 T a	53	54 X a	
		Sr	Y				1C			Pa	Ag	Ca	10	Sn	SD 36	1e	36	Xe	
Uh	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	Cs	Ва		Hf	Та	w	Re	Os	Ir	Pt	Au	Ηα	т	Pb	Bi	Po	At	Rn	
	40	39	Lanthanides	35	34	33	35	35	36	37	36	38	32	33	35	33	33	34	
IE	87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	
н.	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo	
I.	34	33	Actinides	13	12	10	10	8	6	7	5	4	4	4	2	6	unknown	1	
				57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	FORCE EARM PRODUCE
		Lanthar	nides	l la	Ce	Pr	Nd	Pm	Sm	Fu	Gd	Th	Dv	Но	Fr	Tm	Yh	1 in 1	LUA ENTER PRESH TRANS
				34	35	33	34	31	33	33	32	31	31	33	32	31	32	35	
				89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Actinide	es	Ac	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
			1.000	29	30	28	24	20	20	17	20	14	20	17	18	16	12	11	
																		6	AVA CRAIL AND A
																		6	
																		1	
				10			22				22							15	- Starting Shing S
				40			ZZ		9		LZ (5	h						
	1				I														
																			The second secon
																			Comments and the second

epartment of Materials Engineering nd Chemistry

Faculty of Civil Engineering

din

EE

Department of Materials Engineering nd Chemistry

Faculty of Civil Engineering

Building materials

Sources of radioactivity in the building

Radioactive could be (but not necessary!) e.g.:

- aggregate from uranium ores
- blast–furnace slag
- cinder
- coal fly ash
- phosphogypsum

Asbestos is not radioactive !

epartment of Materials Engine nd Chemistry

Radioactivity of building materials

- ²²⁶Ra mass activity concentration [Bq.kg⁻¹]
- activity concentration index I [unitless]

where a_{K} , a_{Ra} , a_{Th} are radium, thorium and potassium activity concentrations in material

Activity concentration

Activity concentration range (Bq/kg) of common building materials.

Building material	²²⁶ Ra [Bq/kg]	²³² Th [Bq/kg]	⁴⁰ K [Bq/kg]
Concrete	18 - 67	3 - 43	16 - 1100
Light weight concrete	10 - 60	6 - 66	51 - 870
Bricks	7 - 140	8 - 127	227 - 1140
Gypsum	1 - 67	0.5 - 190	22 - 804
Cement	13 - 107	7 - 62	48 - 564

Activity concentration range (Bq/kg) of selected covering building materials.

Building material	²²⁶ Ra [Bq/kg]	²³² Th [Bq/kg]	⁴⁰ K [Bq/kg]		
Ceramics	25 - 193	29 - 66	320 - 1049		
Granite	ND - 160	ND - 354	24 - 2355		
Tiles	33 - 61	45 - 66	476 - 788		
Marble	1 - 63	0.4 - 142	9 - 986		

Department of Materials Engineering and Chemistry Faculty of Civil Engineering Ĩ

ateria

Radioactivity of building materials

- most countries with reference levels for radioactive elements in building materials apply activity indices or maximum permissible/recommended concentrations
- some countries one reference level for Ra²²⁶
- other countries level for each Ra²²⁶, Th²³² and K⁴⁰
- in most of the countries the levels are enforced, only in Norway are the reference levels advisory

Reference Levels for Radioactive Elements in Building Materials

Czech Republic:

- enforced level: 150-200 Bq/kg materials in buildings where people could stay more than 1000 h/year (depending on the type of material); 1000 Bq/kg for materials in other buildings.
- advisory level: 80-120 Bq/kg in buildings where people normally stay more than 1000 h/year; 300-500 Bq/kg for materials in other buildings

Engineering

eria

Reference Levels for Radioactive Elements in Building Materials

1	Type of building material	Example
0,5	materials used in bulk amount	bricks, cement, concrete, gypsum
1	raw materials	aggregates, stones, clay
2	materials used in "small" amount	ceramic tiles

Department of Materials Engineering and Chemistry

⁻aculty of Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building material

Doses from radiation sources

Radon

- colorless, odorless, tasteless gas
- radioactive product of decay uranium or thorium
- half-life 3,8 days → radon daughters (solids Po, Pb, Bi) stick to surfaces such as dust particles in the air
- if contaminated dust is inhaled, these particles can stick to the airways of the lung and increase the risk of developing lung cancer

Civil Engineering

Department of Materials Engineering Ind Chemistry

aculty of Civil Engineering

Building materials

 Cracks in solid floors

Radon in houses

- Construction joints
- Cracks in walls
- Gaps in suspended floors
- Gaps around service pipes
- Cavities inside walls
- The water supply

Radon map

...

J

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Acoustic properties

Noise sources

- Outside air-borne noises: road, rail or air traffic
- Inside air-borne noises: conversations, hi-fi, TV...
- Impact: movement of people or furniture, falling objects...
- Equipment noises: lift, taps, mechanical ventilation, heating or air conditioning installation.

Department of Materials Engineeri and Chemistry

Civil Engineering

aculty of

<u>tment of Materials Engineering</u>

Faculty of Civil Engineering

Chemistr

Noise

level

140 DECIBELS Immediate danger to hearing Gunshot, Jet engine at take-off

120 DECIBELS Risk of hearing damage in 7.5 minutes Rock concert, Sandblasting

110 DECIBELS Risk of hearing damage in 30 minutes Snowmobile from driver's seat

100 DECIBELS Risk of hearing damage in 2 hours Chainsaw, Stereo headphones

90 DECIBELS Risk of hearing damage in 8 hours Lawn mower, Truck traffic

NOISE THERMOMETER

125 DECIBELS Pain threshold Air raid siren, Firecracker

115 DECIBELS Risk of hearing damage in 15 minutes Baby's cry, Stadium football game

105 DECIBELS Risk of hearing damage in 1 hour Jackhammer, Helicopter

95 DECIBELS Risk of hearing damage in 4 hours Motorcycle, Power Saw

85 DECIBELS Beginning of OSHA regulations

Basic acoustic parameters

Acoustic absorptivity

 sound energy is reduced when sound waves pass through a medium or strike a surface - the incident sound that strikes a material is not reflected back

Reverberation

• the collection of reflected REFLECTION sounds from the surfaces

NOISE

Engineering

aculty of Civil Engineering

Building materials

Sound absorption coefficient

how much of the sound is absorbed in the material

 I_a sound intensity absorbed [W/m²]
I_i incident sound intensity [W/m²]

Material	α
Plaster walls	0.01 - 0.03
Unpainted brickwork	0.02 - 0.05
Painted brickwork	0.01 - 0.02
3 mm plywood panel	0.01 - 0.02
6 mm cork sheet	0.1 - 0.2
Hardwood	0.3
100 mm mineral wool	0.65
Persons, each	2.0 - 5.0

Faculty of Civil Engineering

Material

Acoustic constructions

- against sound reflection materials with good sound absorptivity
 - soft, pliable, porous materials
- against sound transmission sound insulating materials

- materials with high surface density

Noise insulation

Airborne noise (voices, music)

 materials with high surface density (mass per unit area)
min 350 kg.m⁻²

Impact noise (feet, moving furniture, dropped items)

 padding or cushioning - soft, sound absorbing materials (carpets, mineral wool)

Department of Materials Enginee Ind Chemistry

Civil Engineering

Acoustic comfort

good sound environment

- lower sound level
 - an acoustic ceiling with high absorption factor
- reduced sound propagation
- increased speech intelligibility
 - combination absorbers which enhance early reflections and minimize late reflections
- appropriate reverberance
 - the room volume, the amount of absorbing material and the position of absorbers and reflectors

Department of Materials Engineeri Ind Chemistry

Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

- Chemical reactions in materials:
 - processing (setting and hardening , foaming...)
 - materials (in)compatibility
 - ageing

 – corrosion (degradation) (inorganic materials, metals, biocorrosion...)

<u>Civil</u> Engineering

Materials incompatibility

Metals:

- galvanic corrosion (dissimilar metal corrosion)
 - contact of two metals with different electrical potentials
- aluminum + alkali environment
 - copper + low pH water, + aggressive soils
- steel + gypsum

Civil Engineering

Department of Materials Engineering and Chemistry

⁻aculty of Civil Engineering

Building materials

Materials incompatibility

Plastics:

- EPS + solvents (in the paints)
- PVC + formaldehydes
- phenolic foam (acid pH) + steel

Cement, concrete:

- cement + wood
 - sugar content in the wood
- concrete + glass fibers
- cement + some type of aggregates
 ASR alkali-silica reaction

Engineering

Corrosion

- the deterioration of a material due to interaction with its environment
- the disintegration of an engineered material into its constituent atoms due to chemical reactions with its surroundings
- metals atmospheric corrosion
- non-metal materials
 - ceramic
 - plastics
 - concrete
 - glass
 - biodegradation

Department of Materials Engineerin and Chemistry

Engineering

Ceramic

- refractory materials + wood combustion
- bricks + flue gases
- Concrete
 - decalcification (water without minerals)
 - leaching
 - sulphates
 - bacteria

Civil Engineering

Caused by:

bul

- microorganism
- fungi
- insects
- birds
- plants
- rodents

Biodegradation is natural process!

Miloš Anděra

Department of Materials Engineering and Chemistry

⁻aculty of Civil Engineering

aculty of Civil Engineering

Biodegradation - examples

- wood + fungi (dry rot -Merulius Lacrymans)
- wood + insects (old house borer - Hylotrupes Bajulus)
- nitrifying bacteria on the asbestos-cement roofs
- sulphur oxidizing bacteria on concrete

ateri

epartment of Materials Engineering did Chemistry

aculty of Civil Engineering

Biodegradation - examples

- stone + lichen
- building + plants

termites + thermal insulation

materi

uilding

Department of Materials Engineering and Chemistry

aculty of Civil Engineering

Biodegradation - examples

insulated facade + woodpeckers

Hygienic properties

- pollutants in air (styrene, formaldehyde, plasticizers in PVC)
- contact with the skin (biocides, paints)
- respirable fibers (asbestos, glass)

The higher amount of pollutants can be caused by more accurate measuring methods, not in reality !

aculty of

Material

- low energy consumption at production
- the renewable resources
- recycling possibility
- low liquidation costs
- PVC bad recyclability, toxicity at incineration

 ability to be used over a desired period

Factors affecting durability:

– age

- maintenance
- high temperature
- UV radiation
- -load
- chemical attacks
- weathering actions (frost)

Civil Engineering

aculty of Civil Engineering

Life span of buildings

- 40 100 years industrial buildings
- 50 100 y. residential buildings
- 70 500 y. bridges and monuments
- special causes: 2 5 millennia – nuclear waste disposals

erials

mal

Durability of buildings and materials

Life span of building		Expected durability of building materials		
	Yrs.	Easily replaceable	Replaceable with some effort	Unreplace- able
short	10	10	10	10
middle	25	10	25	25
normal	50	10	25	50
long	100	10	25	100

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Durability of some materials

Roofing

- Ceramic tiles
- Concrete tiles
- Steel sheets
- Asphalt shingle

100 years 100 years

- 50 years
 - less than 50 years

Waterproof insulation

- asphalt felts
- modified bitumen membranes
- rubber membrane
- PVC membrane

15 years 100 years (exp.) 70 years 25 years

Civil Engineering