Building Materials

Lecture 6

uilding material

Other properties

Department of Materials Engineering and Chemistry

Radioactivity

natural radioactivity of materials

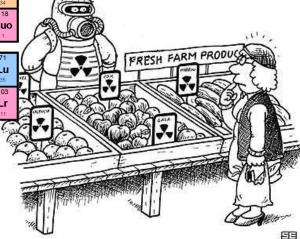
Cf

Es

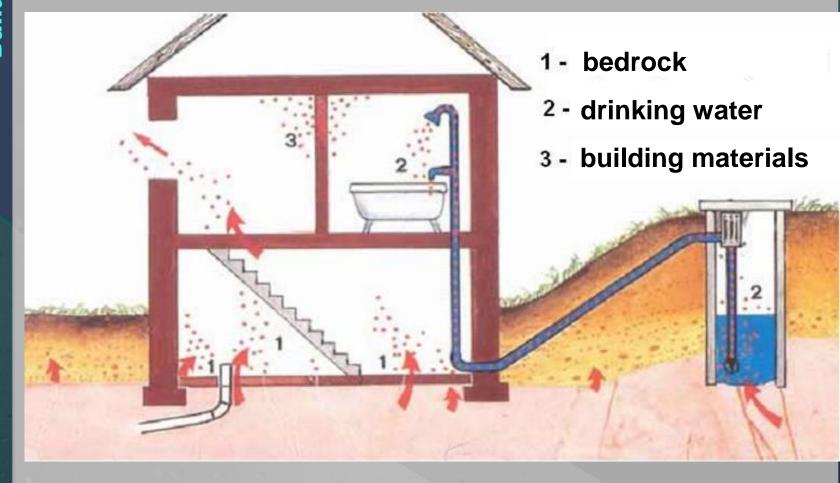
Fm

Md

Cm


Am

Periodic Table of the Radioactive Elements


П	1A													8A				
	1	1							Half	life of Mos	t Stable Is	otope	©2011 Todd Helmenstine					
۱	н			Atomio	Number		Stable About Chemistry											He
۱	6	2A		Atomic	Number		h _{1/2} > 10 ⁶ years				4A	5A	6A	7A	8			
ı	3	4		Sum	nhal	10 ³ yrs < h _{1/2} < 10 ⁶ yrs								6	7	8	9	10
ı	Li	Ве		Syli	nbol								В	С	N	О	F	Ne
ı	8	10		44 - 61-									11	13	14	14	16	19
П	11	12		# 01 15	otopes								13	14	15	16	17	18
ı	Na	Mg								nown		ΑI	Si	Р	S	CI	Ar	
ı	18	21	3B	4B	5B	6B	7B		— 8B —		1B	2B	22	23	22	21	22	22
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ì	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
ı	23 37	23 38	20 39	24 40	23 41	25 42	25 43	28 44	26 45	31 46	28 47	30 48	27 49	28 50	29 51	29 52	29 53	31 54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	l in	Sn	Sb	Te	33 I	Хe
ı	29	33	33	32	33	33	33	33	34	33	38	36	38	38	36	37	36	38
	55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ва		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
ı	40	39	Lanthanides	35	34	33	35	35	36	37	36	38	32	33	35	33	33	34
	87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
ı	Fr 34	Ra	Actinides	Rf 13	Db	Sg	Bh 10	Hs	Mt	Ds	Rg	Cn ₄	Uut	Uuq	Uup	Uuh 6	Uus	Uuo
	34	35	710ti/11063	15	12	10	10	·	Ů		3	-	-	4	2		distorii	
ı		200		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
ı		Lanthar	nides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				34	35	33	34	31	33	33	32	31	31	33	32	31	32	35

Pu

40K, ²²⁶Ra, ²²⁸Th

Sources of radioactivity in the building

Radioactive materials

Radioactive could be (but not necessary!) e.g.:

- aggregate from uranium ores
- blast-furnace slag
- cinder
- coal fly ash
- phosphogypsum

Asbestos is not radioactive!

Radioactivity of building materials

- ²²⁶Ra mass activity concentration [Bq.kg⁻¹]
- activity concentration index I [unitless]

$$I = \frac{a_K}{3000} + \frac{a_{Ra}}{300} + \frac{a_{Th}}{200}$$

where a_K, a_{Ra}, a_{Th} are radium, thorium and potassium activity concentrations in material

Activity concentration

Activity concentration range (Bq/kg) of common building materials.

Building material	²²⁶ Ra [Bq/kg]	²³² Th [Bq/kg]	⁴⁰ K [Bq/kg]
Concrete	18 - 67	3 - 43	16 - 1100
Light weight concrete	10 - 60	6 - 66	51 - 870
Bricks	7 - 140	8 - 127	227 - 1140
Gypsum	1 - 67	0.5 - 190	22 - 804
Cement	13 - 107	7 - 62	48 - 564

Activity concentration range (Bq/kg) of selected covering building materials.

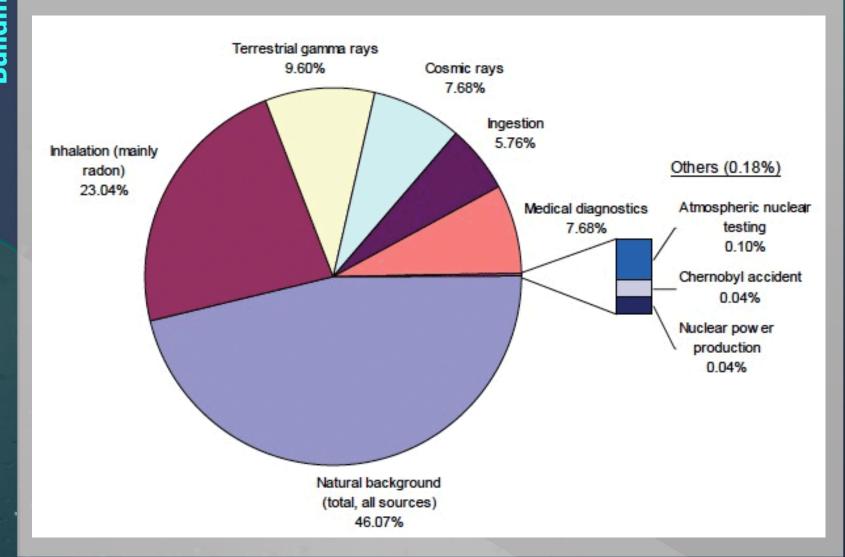
Building material	²²⁶ Ra [Bq/kg]	²³² Th [Bq/kg]	40K [Bq/kg]
Ceramics	25 - 193	29 - 66	320 - 1049
Granite	ND - 160	ND - 354	24 - 2355
Tiles	33 - 61	45 - 66	476 - 788
Marble	1 - 63	0.4 - 142	9 - 986

Radioactivity of building materials

- most countries with reference levels for radioactive elements in building materials apply activity indices or maximum permissible/recommended concentrations
- some countries one reference level for Ra²²⁶
- other countries level for each Ra²²⁶, Th²³² and K⁴⁰
- in most of the countries the levels are enforced, only in Norway are the reference levels advisory

Reference Levels for Radioactive **Elements in Building Materials**

Czech Republic:


- enforced level: 150-200 Bq/kg materials in buildings where people could stay more than 1000 h/year (depending on the type of material); 1000 Bq/kg for materials in other buildings.
- advisory level: 80-120 Bq/kg in buildings where people normally stay more than 1000 h/year; 300-500 Bq/kg for materials in other buildings

Reference Levels for Radioactive **Elements in Building Materials**

	Type of building material	Example
0,5	materials used in bulk amount	bricks, cement, concrete, gypsum
1	raw materials	aggregates, stones, clay
2	materials used in "small" amount	ceramic tiles

Doses from radiation sources

Radon

- colorless, odorless, tasteless gas
- radioactive product of decay uranium or thorium
- half-life 3,8 days → radon daughters (solids Po, Pb, Bi) stick to surfaces such as dust particles in the air
- if contaminated dust is inhaled, these particles can stick to the airways of the lung and increase the risk of developing lung cancer

Radon in houses

- Cracks in solid floors
- Construction joints
- Cracks in walls
- Gaps in suspended floors
- Gaps around service pipes
- Cavities inside walls
- The water supply

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

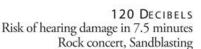
Acoustic properties

Noise sources

 Outside air-borne noises: road, rail or air traffic

- Inside air-borne noises: conversations, hi-fi, TV...
- Impact: movement of people or furniture, falling objects...
- Equipment noises: lift, taps, mechanical ventilation, heating or air conditioning installation.

Faculty of Civil Engineering


Noise level

140 DECIBELS

Immediate danger to hearing Gunshot, Jet engine at take-off

110 DECIBELS

Risk of hearing damage in 30 minutes Snowmobile from driver's seat

100 DECIBELS Risk of hearing damage in 2 hours Chainsaw, Stereo headphones

90 DECIBELS

Risk of hearing damage in 8 hours Lawn mower, Truck traffic

NOISE THERMOMETER

125 DECIBELS Pain threshold Air raid siren, Firecracker

115 DECIBELS

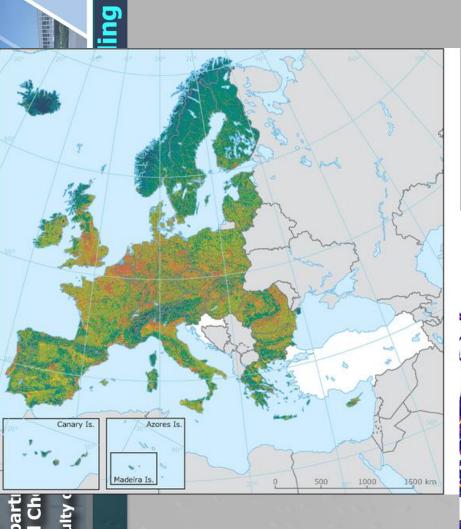
Risk of hearing damage in 15 minutes Baby's cry, Stadium football game

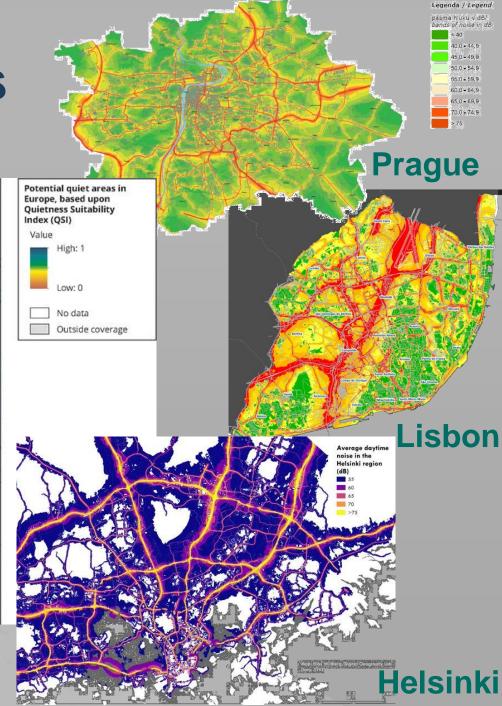
105 DECIBELS

Risk of hearing damage in 1 hour Jackhammer, Helicopter

95 DECIBELS

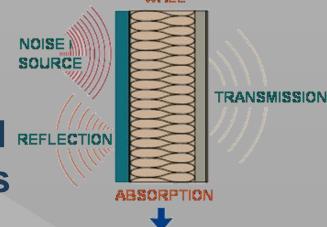
Risk of hearing damage in 4 hours Motorcycle, Power Saw


85 DECIBELS Beginning of OSHA regulations


30 DECIBELS Faint sound Whisper

Noise maps

Faculty


Basic acoustic parameters

Acoustic absorptivity

 sound energy is reduced when sound waves pass through a medium or strike a surface - the incident sound that strikes a material is not reflected back

Reverberation

• the collection of reflected REFLECTION sounds from the surfaces

Sound absorption coefficient

how much of the sound is absorbed in the

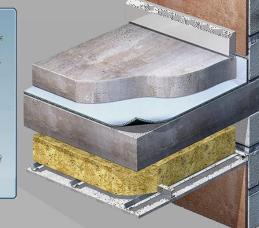
material

$$\alpha = \frac{\textbf{I}_{a}}{\textbf{I}_{i}}$$

I_a sound intensity absorbed [W/m²]

I_i incident sound intensity [W/m²]

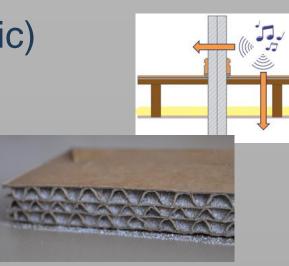
Material	α
Plaster walls	0.01 - 0.03
Unpainted brickwork	0.02 - 0.05
Painted brickwork	0.01 - 0.02
3 mm plywood panel	0.01 - 0.02
6 mm cork sheet	0.1 - 0.2
Hardwood	0.3
100 mm mineral wool	0.65
Persons, each	2.0 - 5.0


Acoustic constructions

- against sound reflection materials with good sound absorptivity
 - soft, pliable, porous materials
- against sound transmission sound insulating materials

- materials with high surface density

Noise insulation


Airborne noise (voices, music)

 materials with high surface density (mass per unit area)

- min 350 kg.m⁻²

 padding or cushioning - soft, sound absorbing materials (carpets, mineral wool)

Soundproofing

- = sound blocking
- reducing the sound pressure
- to stop sound from entering or leaving a space

Sound absorption

- = acoustic enhancement
- to enhance the properties of sound by improving speech clarity and sound quality

Acoustic comfort

- good sound environment
 - lower sound level
 - an acoustic ceiling with high absorption factor
 - reduced sound propagation
 - increased speech intelligibility
 - combination absorbers which enhance early reflections and minimize late reflections
 - appropriate reverberance
 - the room volume, the amount of absorbing material and the position of absorbers and

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Chemical properties

- Chemical reactions in materials:
 - processing (setting and hardening , foaming...)
 - materials (in)compatibility
 - ageing
 - corrosion (degradation) (inorganic materials, metals, biocorrosion...)

Materials incompatibility

Metals:

- galvanic corrosion (dissimilar metal corrosion)
 - contact of two metals with different electrical potentials
- aluminum + alkali environment
- copper + low pH water,+ aggressive soils
- steel + gypsum

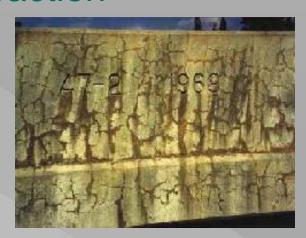
Materials incompatibility

Plastics:

- EPS + solvents (in the paints)
- PVC + formaldehydes

phenolic foam (acid pH) + steel

	ABS	ABS/PC	CP	PA	PBT	PC	PC/PBT	PE	PEEK	ΡEI	PET	PMMA	POM	ЬР	PPO	PPS	PS	PVC	SAN
ABS	X	X										X					0	0	0
ABS/PC	х	х				X	0					0							
LCP			х			7													
PA				X															
PBT					X		0			0									
PC		X				X	0					X			0				
PC/PBT		0			0	0	X					0							
PE								X											
PEEK									X										
PEI					0					x									
PET											х				I.J.				
PMMA	х	0				х	0					х							0
POM													X						
PP							0. 1							х					
PPO						0									X		X		0
PPS		- 13														X			
PS	0														X		X		0
PVC	0																	X	
SAN	0											0			0		0		х


X COMPATI

O OCCASIONALLY

Materials incompatibility

Cement, concrete:

- cement + wood
 - sugar content in the wood
- concrete + glass fibers
- cement + some type of aggregates
 - ASR alkali-silica reaction

Corrosion

- the deterioration of a material due to interaction with its environment
- the disintegration of an engineered material into its constituent atoms due to chemical reactions with its surroundings
- metals atmospheric corrosion
- non-metal materials -
 - ceramic
 - plastics
 - concrete
 - glass
 - biodegradation

Corrosion of non-metal materials (degradation)

Ceramic

- refractory materials + wood combustion gases
- bricks + flue gases

- decalcification(water without minerals)
- leaching
- sulphates
- bacteria

Biodegradation

Caused by:

- microorganism
- fungi
- insects
- birds
- plants
- rodents

Biodegradation is natural process!

Biodegradation - examples

- wood + fungi (dry rot -Merulius Lacrymans)
- wood + insects (old house borer - Hylotrupes Bajulus)
- nitrifying bacteria on the asbestos-cement roofs
- sulphur oxidizing bacteria on concrete

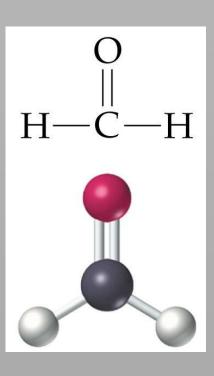
Biodegradation - examples

- stone + lichen
- building + plants
- termites + thermal insulation

Biodegradation - examples

insulated facade + woodpeckers

rodents



Hygienic properties

- pollutants in air (styrene, formaldehyde, plasticizers in PVC)
- contact with the skin (biocides, paints)
- respirable fibers (asbestos, glass)

The higher amount of pollutants can be caused by more accurate measuring methods, not in reality!

Environmental safety

- low energy consumption at production
- the renewable resources
- recycling possibility
- low liquidation costs

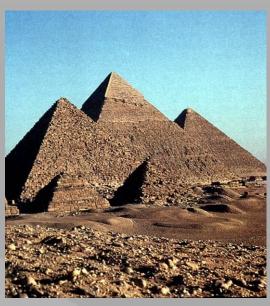
 PVC – bad recyclability, toxicity at incineration

Durability of materials

 ability to be used over a desired period

Factors affecting durability:

- age
- maintenance
- high temperature
- UV radiation
- load
- chemical attacks
- weathering actions (frost)



Life span of buildings

- 40 100 years industrial buildings
- 50 100 y. residential buildings
- 70 500 y. bridges and monuments
- special causes: 2 5
 millennia nuclear waste disposals

Durability of some materials

Roofing

Ceramic tiles

100 years

Concrete tiles

100 years

Steel sheets

50 years

Asphalt shingle

less than 50 years

Waterproof insulation

asphalt felts

15 years

modified bitumen membranes

100 years (exp.)

rubber membrane

70 years

PVC membrane

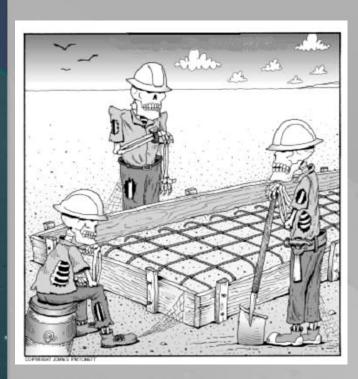
25 years

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Binders


Binders

materials, that binds other materials together

0 processing

setting

2 hardening

- 0 activation (mixing water and binder)
- 1 initial setting time
- 2 final setting time

Binders - terminology

Processing

mixing, transport, placing

Setting

change from liquid to solid phase

Initial setting time

 material begins to stiffen to such a degree that, although still soft, it becomes unworkable

Final setting time

material may be regarded as a rigid solid

Hardening

increase of strength

Binders

in the building industry mostly inorganic

(air binders)

· need air to set

Hydraulic

- can set and harden in water
- water resistant

Hydraulic binders

- binders which set and harden by chemical reactions with water and continue to harden even if subsequently placed under water
- presence of hydraulic oxides is necessary: SiO₂, Al₂O₃, Fe₂O₃

Non-hydraulic binders:

- gypsum
- lime
- magnesia binder
- water glass

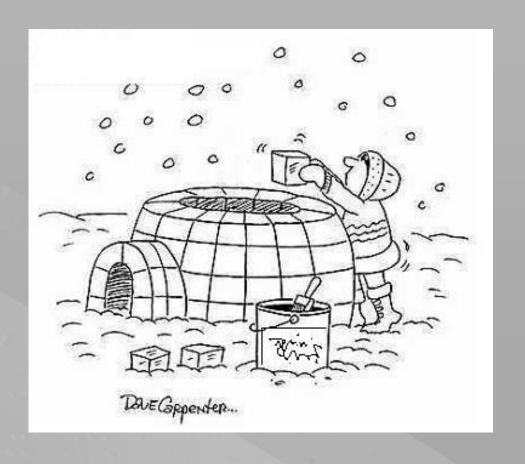
Hydraulic binders:

- hydraulic lime
- cement

Hydraulic modulus

$$HM = \frac{CaO}{SiO_2 + Al_2O_3 + Fe_2O_3}$$

- air (non-hydraulic) lime
- hydraulic lime
- portland cement
- high alumina cement


HM > 6

HM < 6

HM < 2,5

HM < 1,5

Hydraulic binders

Hydraulic binders

opus caementicium

"There is also a kind of powder from which natural causes produces astonishing results. This substance, when mixed with lime and rubble, not only lends strength to buildings of other kinds, but even when piers are constructed of it in the sea, they set hard under water."

Marcus Vitruvius Pollio, 13 B.C.

uilding materials

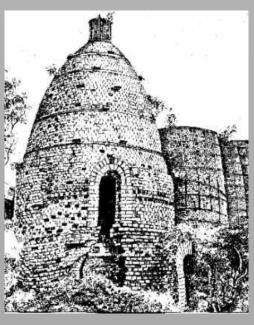
Cement

A.D. 1824 N° 5022.

Artificial Stone.

ASPDIN'S SPECIFICATION.

TO ALL TO WHOM THESE PRESENTS SHALL COME, I, JOSEPH ASPDIN, of Leeds, in the County of York, Bricklayer, send greeting.


WHEREAS His present most Excellent Majesty King George the Fourth, by His Letters Patent under the Great Seal of Great Britain, bearing date at 5 Westminster, the Twenty-first day of October, in the fifth year of His reign, did, for Himself, His heirs and successors, give and grant unto me, the said Joseph Aspdin, His especial licence, that I, the said Joseph Aspdin, my exors, admors, and assigns, or such others as I, the said Joseph Aspdin, my exors, adinors, and assigns, should at any time agree with, and no others, from time 10 to time and at all times during the term of years therein expressed, should and lawfully might make, use, exercise, and vend, within England, Wales, and the Town of Berwick-upon-Tweed, my Invention of "AN IMPROVEMENT IN THE MODES OF PRODUCING AN ARTIFICIAL STORE;" in which said Letters Patent there is contained a proviso obliging me, the said Joseph Aspdin, by an instru-15 ment in writing under my hand and seal, particularly to describe and ascertain the nature of my said Invention, and in what manner the same is to be performed, and to cause the same to be inrolled in His Majesty's High Court of Chancery within two calendar months next and immediately after the date of the said in part recited Letters Patent (as in and by the same), reference 20 being thereunto had, will more fully and at large appear.

NOW KNOW YE, that in compliance with the said proviso, I, the said Joseph Aspdin, do hereby declare the nature of my said Invention, and the manner in which the same is to be performed, are particularly described and ascertained in the following description thereof (that is to say):-

Cement

Joseph Aspdin author of the patent for "Portland cement" (1824)

First cement kiln "Beehive"

More information – cement history:

https://www.dartfordarchive.org.uk/technology/cement.shtml

Cement manufacture

Raw material:

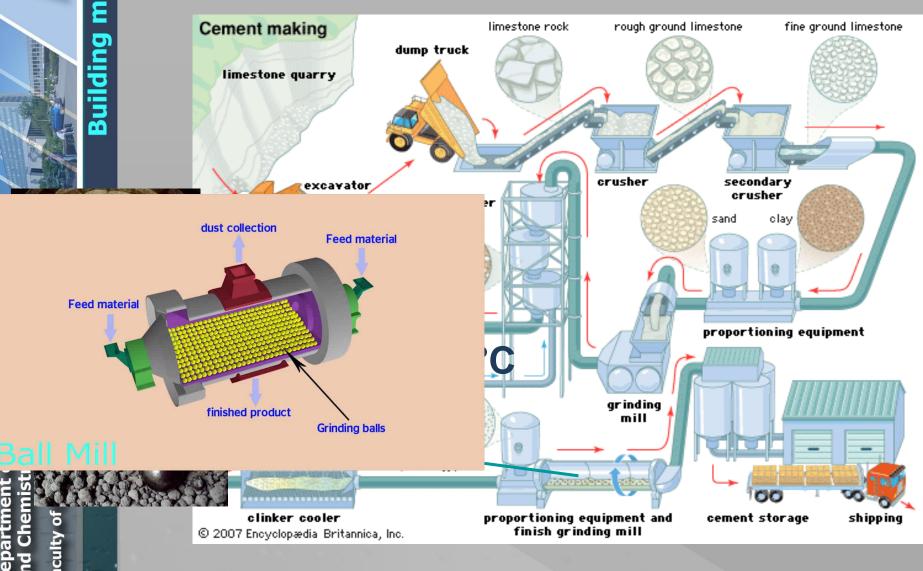
- minerals containing CaCO₃ + SiO₂ (+ other hydraulic oxides)
 - impure limestone, marl, chalk
- secondary raw materials (as source of

hydraulic oxides)

- clay, shale, fly ash, slag

calcium sulphate (as setting retarder)

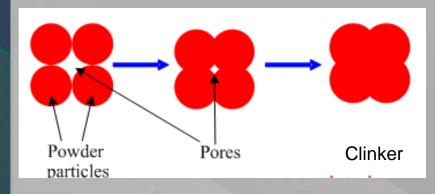
- gypsum, anhydrite


Limestone quarry "America", Czech Rep.

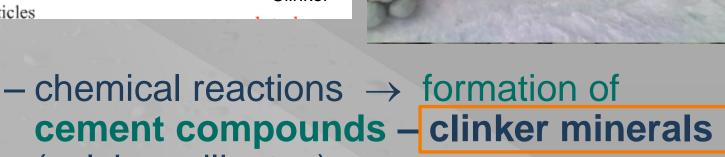
Faculty of Civil Engineering

Cement manufacture

Cement manufacture



Sintering


 consolidation of powder particles by heating at 1300 - 1400°C → clinker

the separate particles diffuse to the neighboring

powder particles

(calcium silicates)

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Rotary kiln

about 1480 °C

Chemical composition of cement

- expressed as amount of oxides in mass %
- determined by chemical analysis (EN 196-2)

• Ca	46,4	%
------	------	---

Main clinker minerals

cement oxides are (mostly) not free, but form clinker minerals

Tricalcium silicate	Alite	3CaO⋅SiO ₂
Dicalcium silicate	Belite	2CaO⋅SiO ₂
Tricalcium aluminate	-	3CaO·Al ₂ O ₃
Tetracalcium aluminoferrite	Ferrite (brown- millerite)	4CaO · Al ₂ O ₃ · Fe ₂ O ₃

Cement chemist notation (CCN)

an abbreviated record of the cement compounds

Compound	Name	CCN	Formula
Calcium oxide	lime	С	CaO
Silicon dioxide	silica	S	SiO ₂
Aluminum oxide	alumina	Α	Al_2O_3
Iron oxide	rust	F	Fe ₂ O ₃
	water	Н	H ₂ O

Clinker minerals in cement notation

Mineral	Abbreviation	Formula	
Tricalcium silicate	C ₃ S	3CaO⋅SiO ₂	
Dicalcium silicate	C ₂ S	2CaO·SiO ₂	
Tricalcium aluminate	C ₃ A	3CaO⋅Al ₂ O ₃	
Tetracalcium aluminoferrite	C ₄ AF	4CaO⋅Al ₂ O ₃ ⋅Fe ₂ O ₃	

Cement minerals properties

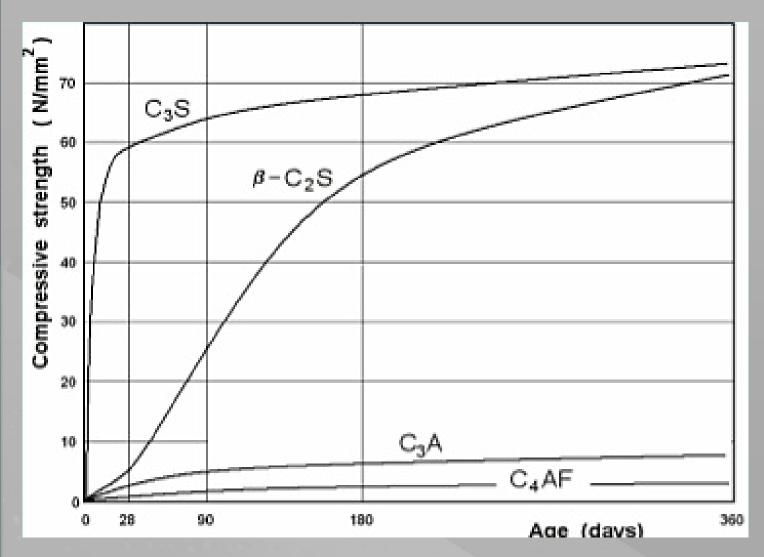
C₃S

- hydrates and hardens rapidly
- responsible for initial set and early strength

C₂S

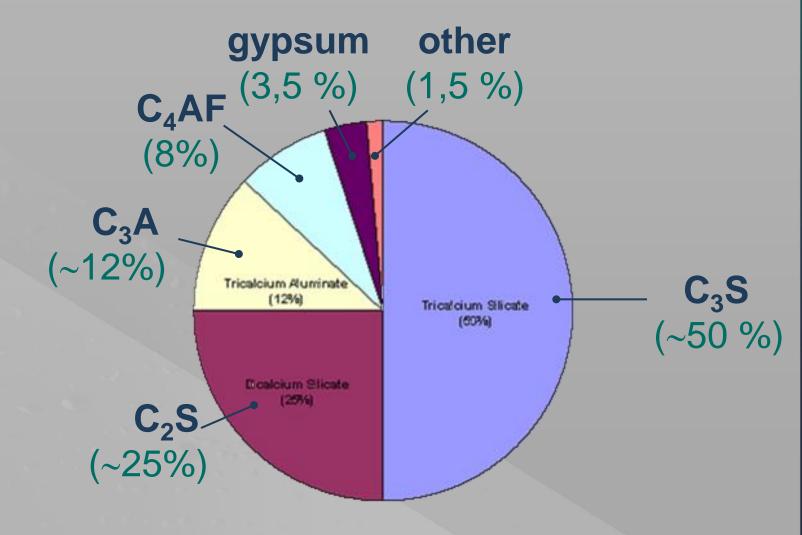
- hydrates and hardens slowly
- responsible for later strength increase
- low hydration heat

C₃A


- hydrates and hardens the quickest
- a large amount of heat
- important in sulphate corrosion of concrete

C₄AF

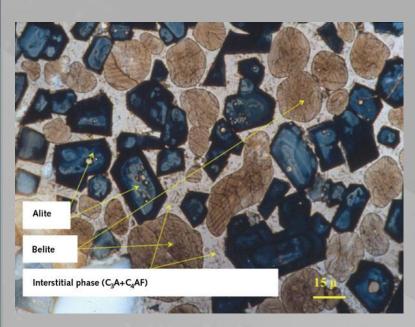
- contributes little to strength
- color effects

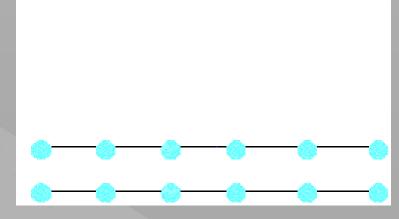

Faculty of Civil Engineering

Contribution of cement minerals to strength

Materials Engineering Faculty of Civil Engineering

Composition of Portland cement




Composition of different cements

Comp. Cement type	C ₃ S	C ₂ S	C ₃ A	C ₄ AF
Portland cement	65	15	8	9
C. with low heat of hydration	25	55	3	14
Sulphate resistant c.	73	9	2	13
White cement	73	14	11	0

Cement compound composition determination

- microscope
- roentgen diffraction
- Bogue calculation

Bogue calculation

- determines the approximate proportions of the four main minerals in Portland cement clinker
- the calculation assumes that the four main clinker minerals are pure minerals
- there is necessary to know chemical composition of cement (% amount of oxides)

 refers to cement clinker, but it can be adjusted for use with cement

Bogue calculation principles

- 1. Ferrite is the only mineral to contain iron. Assume that all the Fe₂O₃ is in C₄AF.
- 2. The aluminate content is fixed by the total alumina content minus the alumina in the ferrite. This can now be calculated, since the amount of ferrite has been calculated.
- 3. Deduct from the CaO content the amounts attributable to C₄AF, C₃A and free lime, and solve two simultaneous equations to obtain the contents of C₃S and C₂S.

C ₃ A	3CaO(Al ₂ O ₃)
C ₄ AF	4CaO(Al ₂ O ₃)Fe ₂ O ₃

iculty of Civil Engineering

Bogue calculation

 $[C_3A] = 2.65*[A] - 1.69*[F]$

 $[C_3S] = 4.07*[C] - 1.43*[F] - 6.72*[A] - 7.60*[S]$

 $[C_2S] = 8.6*[S] - 3.07*[C] + 1.08*[F] + 5.1*[A]$

where the [F], [C], [A], [S] are the weight percentages of the oxides F2O3, CaO, Al2O3, SiO₂ in the clinker

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Cement hydration

- series of irreversible chemical reactions between cement and water
- during hydration the cement sets and hardens, "gluing" the aggregate together in a solid mass

Hydration depends on:

- cement type (chemical composition)
- fineness
- amount of water added
- presence of other admixtures

Cement hydration

- when water is added mostly exothermic reactions occur
- evolution of heat (monitored by conduction calorimetry) → 5 stages:
- 1. Pre-induction
- 2. Dormancy

(induction period)

3. Setting and hardening

- 4. Cooling
- 5. Densification

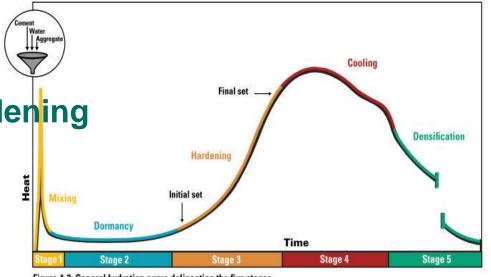
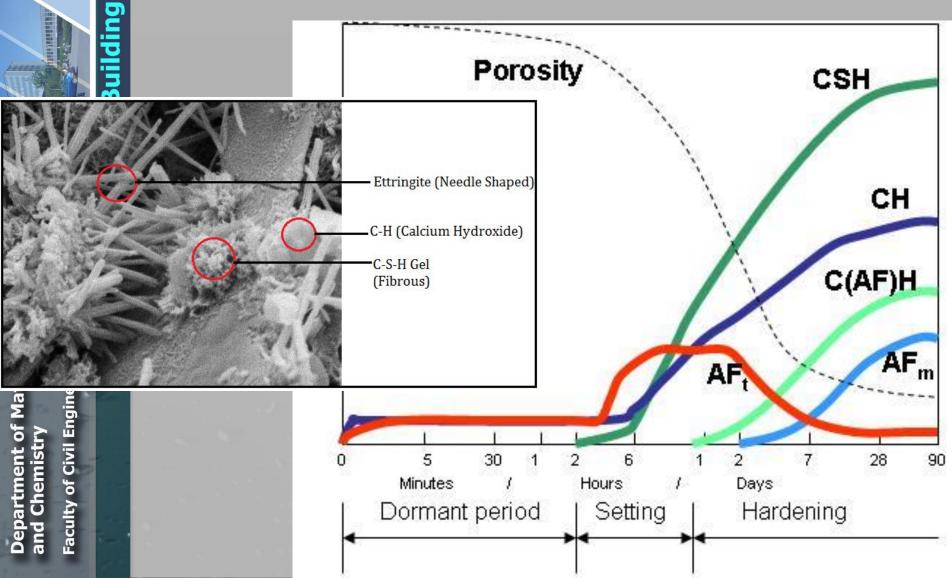
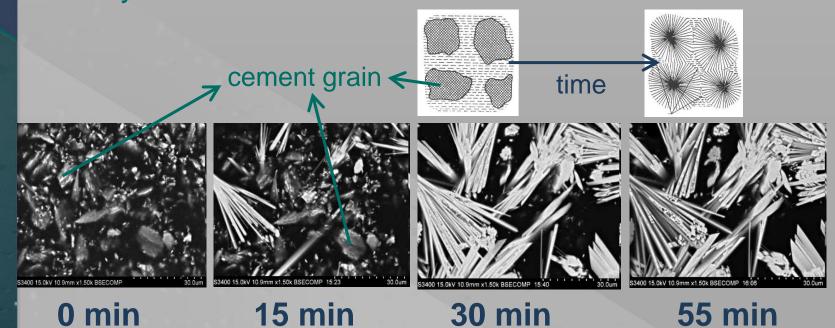
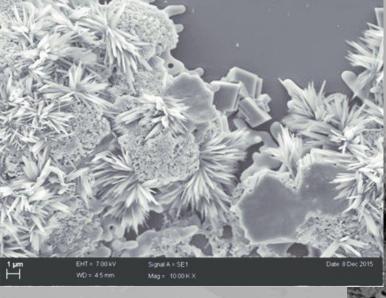



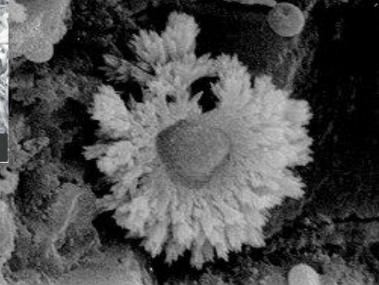
Figure 4-2. General hydration curve delineating the five stages

Products of cement hydration


- Calcium silicate hydrate (abbrev. C-S-H):
 - main reaction product
 - main source of concrete strength.
- Calcium hydroxide Ca(OH)₂ = portlandite (abbrev.
 CH)
 - formed mainly from alite
- AFm and AFt phases:
 - most common AFm monosulfate (C₃A.CaSO₄.12H₂O)
 - most common AFt ettringite (C₃A.3CaSO₄.32H₂O)
- Monocarbonate:
 - produced in the presence of fine limestone as some of the limestone reacts with the cement pore fluid (C₃A.CaCO₃.11H₂O)

Products of cement hydration


Cement setting and hardening


- Setting:
 - stiffening of the original plastic mass due to initial gel formation.
- Hardening
 - development of strength, due to crystallization
 - crystals form and interlock with each other

Cement hydration

SEM (scanning electron microscope) images of hydrated cement grains

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Cement types (EU)

EN 197-1: 5 main types - 27 common cements

- CEM I Portland cement
 - min 95% of clinker
- CEM II Portland composite cement
 - up to 35% of siliceous fly ash
- CEM III Blastfurnace cement
 - up to 95% blastfurnace slag
- CEM IV- Pozzolanic cement
 - up to 55% of pozzolana
- CEM V Composite cement
 - up to 80% of blastfurnace slag or fly ash and pozzolana

Main	Notation of	the 27		Composition [proportion by mass ¹⁾] EN 19									31-1
- Stock water and I			Pozzolana Fly ash Limestone*							stone*	Minor		
Types			Clinker K	Blastfurnace slag S	Silica fume D ²⁾	natural P	natural calcined Q	siliceous	calcareous	Burnt shale T		LL	Additional
CEMI		CEMI	95-100		-			-	220			240	0-5
200170000	Portland-slag Cement	CEM II/A-S	80-94	6-20								**	0-5
		CEM II/B-S	65-79	21-35	-					**			0-5
	Portland cilies	CEM II/A-D	90-94	-	6-10	-	-	-	-	**	-		0-5
		CEM II/A-P	80-94	-	-	6-20		-					0-5
	Portland-	CEM II/B-P	65-79	-		21-35							0-5
	Pozzolana cement	CEM II/A-Q	80-94			-	6-20						0-5
		CEM II/B-Q	65-79	220	-		21-35	-	-				0-5
		CEM II/A-V	80-94				-	6-20					0-5
CEMII		CEM II/B-V	65-79	-				21-35				**	0-5
CEIVIII		CEM II/A-W	80-94						6-20				0-5
		CEM II/B-W	65-79	-	-				21-35				0-5
1	Portland-burnt	CEM II/A-T	80-94	-						6-20			0-5
		CEM II/B-T	65-79							21-35			0-5
		CEM II/A-L	80-94	-				-			6-20		0-5
	Portland-limestone	CEM II/B-L	65-79	-							21-35		0-5
		CEM II/A-LL	80-94	-	-			-			-	6-20	0-5
		CEM II/B-LL	65-79		-	-		-				21-35	0-5
	Portland-composite	CEM II/A-M	80-94	6-20							0-5		
	cement3)	CEM II/B-M	65-79	4				1-35					0-5
	A STATE OF	CEM III/A	35-64	36-65		-		-			-		0-5
CEM III	Blastfurnace	CEM III/B	20-34	66-80		-					_		0-5
Control of the Contro	cement	CEM III/C	5-19	81-95	_	-			-		-		0-5
		CEM IV/A	65-89	-			11-3	35					0-5
CEM IV	Pozzolanic cement ³⁾	CEM IV/B	45-64			·····	36-				-		0-5
		CEM V/A	40-64	18-30		4	18-30		-		-		0-5
250700 VOX.	Composite cement ³⁾	CEIVI VIA				-	31-50						0-5

cements CEM V/A and CEM V/B the main constituents besides clinker shall be declared by designation of the cement. * L: total organic carbon (TOC) shall not exceed 0.5% by mass; LL: TOC shall not exceed 0.20% by mass.

Cement constituents

- Portland cement clinker (K)
 - made by sintering a mixture of raw materials
- Granulated blastfurnace slag (S)
 - made by rapid cooling of a slag, as obtained by smelting iron ore in a blastfurnace
 - possesses hydraulic properties when suitably activated

Cement constituents

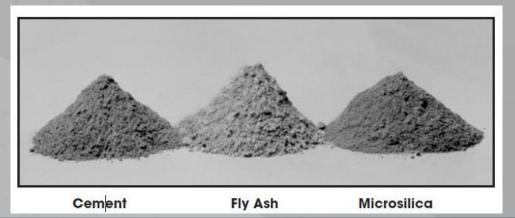
Pozzolanic materials

- natural substances of siliceous or silicoaluminous composition
- when finely ground and in the presence of water, they react with dissolved calcium hydroxide Ca(OH)₂
- Natural pozzolana (volcanic origin) (P)
- Natural calcined pozzolana (Q)
 - activated by thermal treatment

Pozzolanic materials

- contain active silica (SiO₂)
- not cementitious in itself but will, in a finely divided form and in the presence of moisture, chemically react with calcium hydroxide at ordinary temperatures to form cementitious compounds

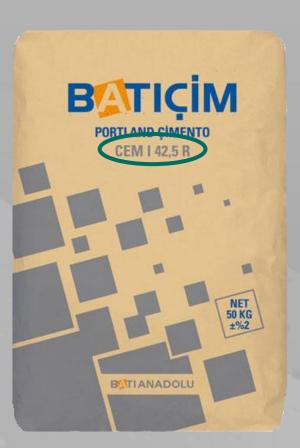
silica must be glassy and amorphous

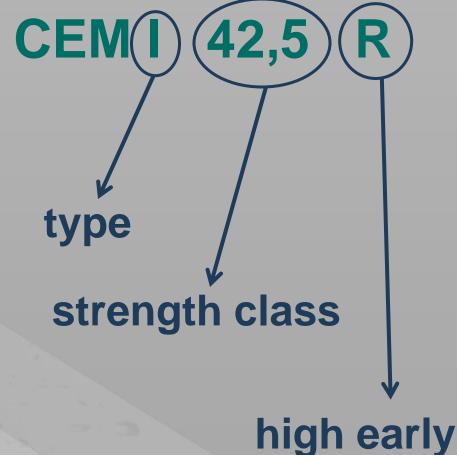


Cement constituents

Fly ashes

- obtained by electrostatic or mechanical precipitation of dust-like particles from flue gases from furnaces fired with pulverised coal
- Siliceous fly ash (V)
- Calcareous fly ash (W)

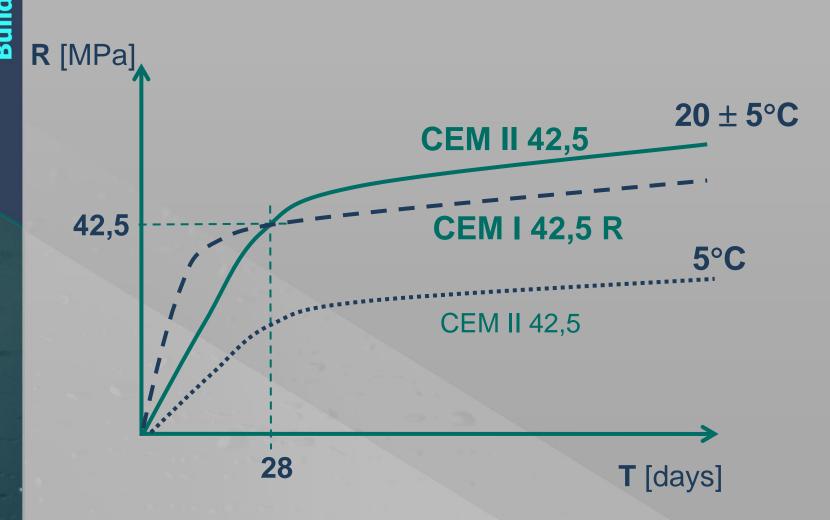



Cement constituents

- Burnt shale (T)
 - specifically burnt oil shale at approximately 800 °C
- Limestone (L, LL)
 - CaCO₃ content ≥ 75 % by mass
- Silica fume (D) (microsilica)
 - originates from the reduction of high purity quartz with coal in electric arc furnaces in the production of silicon and ferrosilicon alloys (very fine spherical particles)

Cement classification

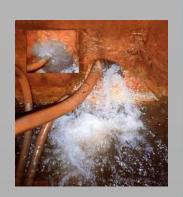
(EN 197-1)


strength

Strength classes of cement

- the standard strength of a cement is the compressive strength in MPa determined in accordance with EN 196-1 at 28 days
- three classes of standard strength:
 - 32,5
 - 42,5
 - 52,5

Strength increase


Properties of cement types

- Portland cement
 - high strength
 - fast increase of strength
 - big amount of hydration heat
- Portland slag blastfurnace cement
 - high sulphate resistance
 - low hydration heat
- silica-fume cement
 - low porosity of concrete
 - exceptionally high strength
- fly-ash cement
 - good workability,
 - lower concrete water content

Special cements

- expansive cement
 - against drying shrinkage
- fast repair cement
- sulphate resistant C₃A < 3,5%
- white Fe < 1%
- colored 5-10 % of pigments
- strontium and barium cements
 - Ba or Sr instead of Ca
 - high resistance to attack by sea water,
 - resistance to high temperatures
 - radiation shields

Masonry cement (MC)

EN 413-1

- for use in mortars for masonry construction
- lower strength
 MC5, MC 12,5, MC 22,5
- can contain besides the portland cement lime, clay

Calcium aluminate cement

(High-alumina cement)

- consisting predominantly of hydraulic calcium aluminates
- over 35 % of Al₂O₃
- ultra rapid strength development
- high chemical resistance
- refractory material (to 1750°C)

But!

- loss of strength due to "conversion"
- several failures in the 1970s
- → forbidden for the use in the bearing constructions!

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Cement testing

EN 196 – Methods of testing cement

- 1 Determination of strength
- 2 Chemical analysis of cement
- 3 Determination of setting time and soundness
- 4 Quantitative determination of constituents
- 5 Pozzolanicity test for pozzolanic cement
- 6 Determination of fineness
- 7 Methods of taking and preparing samples of cement
- 10 Determination of the water soluble chromium
 (VI) content of cement
- 21 Determination of the chloride, carbon dioxide and alkali content of cement

Testing of cements - terms

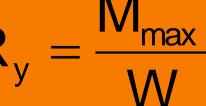
- cement paste
 - cement + water
- cement mortar
 - cement + water + fine aggregates
- concrete
 - cement + water + fine + coarse aggregates

6 mm

- water/cement ratio w/c
 - mass of water/mass of cement
- standard (normal) consistency
 - the Vicat plunger penetrates 5 7 mm from the bottom of the mould

Determination of strength

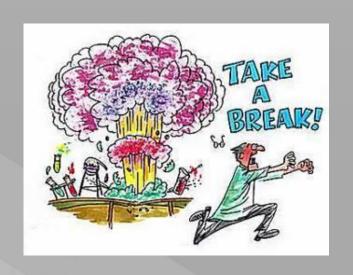
(EN196-1)


compressive

flexural (bending)

$$R_t = \frac{F_{\text{max}}}{A}$$

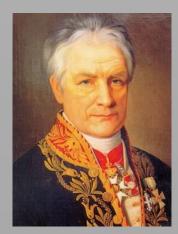
Expression of test results of compressive strength


- test set 3 prism → 6 halves
- arithmetic mean of the 6 individual result
- if one result within the 6 individual results varies by more than ± 10 % from the mean, discard this result and calculate the arithmetic mean of the 5 remaining results
- if one result within the 5 remaining results varies by more than ± 10 % from their mean, discard the set of results and repeat the determination

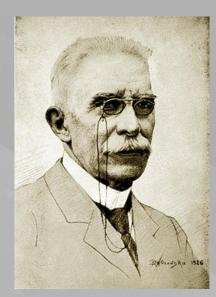
Chemical analysis of cement

(EN196-2)

- loss on ignition
- residue insoluble
- determination of sulfate
- determination of major elements
 - silica
 - oxides Fe, Al, Ca, Mg
 - chloride
 - carbon dioxide
 - alkali


Setting time (EN196-3)

- initial seting time
- final setting time


Vicat apparatus

Louis **Vicat** (1786 -1861)

Soundness (EN196-3)

the ability of a hardened cement paste to retain its volume after setting without delayed destructive expansion caused by CaO or MgO

Henry Louis Le Chatelier (1850 - 1936)

ateria

Finneness (EN196-6)

• Blaine apparatus (see Lecture 2)

$$S = \frac{K}{\rho} \times \frac{\sqrt{e^3}}{(1-e)} \times \frac{\sqrt{t}}{\sqrt{0.1\eta}}$$

Taking and preparing samples (EN196-7)

- from bags, containers, bulk, silos, filling machines
- quartering, sampling tube, screw sampler

Water soluble chromium (VI) content (EN196-10)

hygienic and ecological properties

Mechanical and physical requirements (EN197-1)

	Com	pressive	Initial	Soundness				
Strength	Early st	rength	Standard	strength	setting time	(expansion)		
	2 days	7 days	28 c	lays	minut	mm		
32,5 N	-	≥ 16,0	≥ 32,5	≤ 52,5	≥ 75			
32,5 R	≥ 10,0	-	2 32,5			≤ 10		
42,5 N	≥ 10,0	-	≥ 42,5	≤ 62,5	≥ 60			
42,5 R	≥ 20,0		2 42,5	5 02,5	2 00	2 10		
52,5 N	≥ 20,0		≥ 52,5		≥ 45			
52,5 R	≥ 30,0	-	2 52,5		2 45			

Civilcrete complies with the chemical and physical requirements of SANS 50197 (EN197) for a Class IV 32,5R cement.

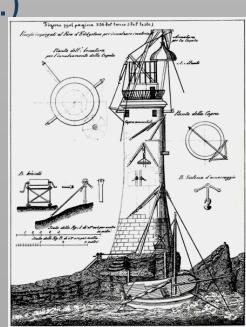
PHYSICAL PROPERTIES

Property	Civilcrete*	EN Spec. requirement
2 day Compressive strength	16,0 MPa	≥ 10,0 MPa
7 day Compressive strength	26,8 MPa	_
28 day Compressive strength	43,5 MPa	≥ 32,5 MPa
Initial set	197 minutes	≥ 75 minutes
Soundness	1,0 mm	≤ 10 mm

*Average test results

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering



Building materials

Hydraulic lime

- used by the Romans (100 B.C.)
 - (Plinus, Vitruvius)
 - "Opus caementicium"
- forgotten in the middle age
- discovered again in the 18th century by burning limestone containing clays
 - 1756 John Smeaton
 - 1796 "roman cement" (James Parker)
 - Louis Joseph Vicat

Eddystone Lighthouse

Hydraulic lime

Raw material:

- argillaceaous (= containing clays)
 limestones → natural hydraulic lime (NHL)
- quick lime (burned limestone) + pozzolanic materials → hydraulic lime (HL)

Pozzolanic materials (pozzolans):

- consist mainly from reactive silica (SiO₂) and alumina (Al₂O₃)
- when finely ground and in the presence of water, they react with dissolved Ca(OH)₂
- volcanic ash, fly ash, silica fume, high-reactivity metakaolin, ground granulated blast furnace slag

Hydraulic lime manufacture

Natural hydraulic lime (NHL):

- burning of raw materials at the temperature under 1250 °C
- slaking (only when HM > 3)

Hydraulic lime (HL):

grinding of quicklime together with pozollans

Hydraulic lime

- in contrast to portland cement has higher amount of the free CaO and no alite (C₃S)
 - → lower strength than cement

According the degree of hydraulicity (hydraulic modulus):

- feebly hydraulic lime (HM 6 9) need slaking
- moderately hydraulic lime (HM 3 6) need slaking
- eminently hydraulic lime (HM 1,7 3) does not need slaking

Natural hydraulic lime - EN 459

Type	SO ₃ (mass %)	Free lime (mass %)	Strength after 28 days [MPa]
NHL 1	≤ 2	≥ 50	≥ 0,5 - ≤ 3
NHL 2	≤ 2	≥ 40	≥2- ≤7
NHL 3,5 <	<u>≤</u> 2	≥ 25	≥ 3,5 - ≤ 10
NHL 5	≤ 2 Singleton	≥ 15 Sincleton	≥5 - ≤15 Singleton
	Birch Birated Fabrad Se NHL 1 25KG	Birch Birch Birch Birch Birch Co	NHL 3.5 NHL 5 25KG 25KG

Hydraulic lime use

- better breathing of walls
- moisture can evaporate
- mortars and renders do not set too hard
- expansion joints can often be avoided
- reduced condensation
- no salt staining

Using of cement with old bricks