Department of Materials Engineering Ind Chemistry

aculty of Civil Engineering

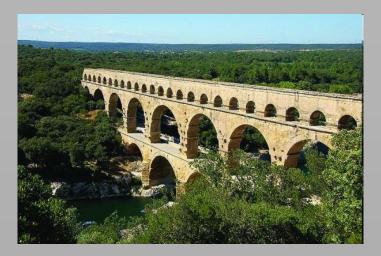
Building materials

Building materials

Lecture 8

Non-hydraulic binders

- ✓ gypsum binder
- ✓ anhydrite binder
- (non-hydraulic) lime
- water glass
- magnesium binder



aculty of Civil Engineering

Air (non hydraulic) lime

calcium oxide CaO or calcium hydroxide
 Ca(OH)₂ with different purity

 known from ancient days (Assyrians, Egyptians, Greeks, Romans.....)

materia **Building limes classification EN 459 Building lime** Air lime **Hydraulic lime** Natural Hydraulic Dolomitic **Faculty of Civil Engineering** hydraulic Calcium lime lime HL lime lime NHL

oartment of Materials Engineering I Chemistry

Air lime manufacturing

Raw material:

- limestone, calcite, chalk (CaCO₃)
- dolomitic limestone (CaCO₃+MgCO₃)
- dolomite (CaCO₃·MgCO₃)

Civil

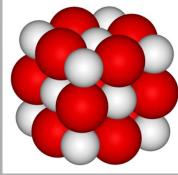
aculty

Department of Materials Engineering ind Chemistry

Faculty of Civil Engineering

Building materials

Air lime manufacturing



Pieter van Laer (1599 - 1642)

Air lime manufacturing

- step 1 burning (decarbonation) → quicklime CaO
 - crushed, ground, pulverized
 - unstable in the presence of moisture and CO₂

- step 2 − slaking (hydration)→
 hydrated lime Ca(OH)₂
 - lime water, slurry, putty, milk of lime
 powder

Civil Engineering

Air lime burning

Limestone

Cooling

Exhaust Gases

Fan

Ring Injection

Filter

System

Cooling Ai

Gas

Gas

900 - $1200^{\circ}C \rightarrow decarbonation in kilns$ $\langle CaCO_3 \rightarrow CaO + CO_2 \rangle$

 $CaCO_3 \cdot MgCO_3 + heat \rightarrow CaO + MgO + 2CO_2$

- Preheating • lower temperature - soft-burned lime more reactive, porous, suitable for Calcining mortars
- higher temperature hard-burned lime - less reactive, denser, suitable for AAC
- too high temperature overburned lime

Civil Engineering

aculty of

Ĕ

•

Lime kilns

traditional

Pacold lime kiln, Prague

contemporary

Rotary kiln

Crypta Balbi, Roma

Vertical kiln

Faculty of Civil Engineering

Quicklime CaO

- large lump lime
- crushed lime < 25 mm
- ground lime < 2,5 mm
- pulverized lime < 0,2 mm
- pelletized lime

Department of Materials Engineerin and Chemistry

aculty of Civil Engineering

20

Quicklime hydration

Reaction between guicklime and water: $\langle (CaO + H_2O \rightarrow Ca(OH)_2 + heat) \rangle$

- highly exothermic process
- Types of hydration:
- dry hydration \rightarrow Ca(OH)₂ in powder
- slaking → Ca(OH)₂ in suspension (slurry, putty, limewater)

Civil Engineering

Quicklime slaking

- CaO reacts with the amount of water much higher than the quantity, necessary for the reaction
- 240-320 I of water /100 kg of quicklime
- limewater, putty, slurry, milk of lime (= aqueous solution of Ca(OH)₂)
- a great quantity of heat is r
 → material can splatter
 → danger of burns!

Engineering

- the volume expansion (due to absorbed water) - the greater the expansion, the better lime
 - min. 2,6 I slurry from
 1 kg of quicklime

- the lime putty has to mature (few hours to many days) to allow the slaking of all particles
 - historically lime was slaked over a period of at least six months (even 10 years)

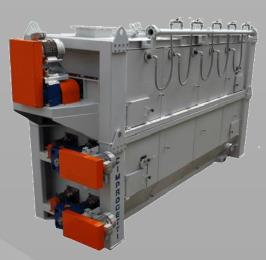
Quicklime slaking

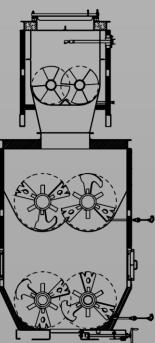
Factors affecting the slaking process:

- quality of quicklime
- specific surface
- temperature (slightly under 100 °C)
- amount of water added
 - to much water \rightarrow drowning (killing) the lime

Imperfect slaking:

- **uneconomical** (unskillful slaking may reduce the paste to less than two volumes)
- the unslaked particles may slake later in the mortar


Engineering


Civil

Dry hydration of quicklime

- adding water under controlled conditions
- reaction with just the right amount of water
- 65 –70 I of water /
 100 kg of quicklime
- powder hydrated lime (Ca(OH)₂)

- special equipment lime hydrator
- lime putty (powder + water) has to mature

Engineering

aculty of Civil Engineering

Setting and hardening of air lime

- Setting physical reaction (drying out of colloid gel)
- Hardening carbonation

 $Ca(OH)_2 + CO_2 + nH_2O \rightarrow CaCO_3 + (n+1)H_2O$

- slow
- depends on CO₂ concentration and RH and air temperature

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Lime cycle

Air lime use

- mortars and plasters
 - prepared in-situ
 - ready-made mixtures
- lime wash white or color paint
- disinfectant

- autoclaved sand lime bricks
- autoclaved aerated concrete

Engineering

aculty

Water glass

Sodium silicate – aqueous solution or solid compound of sodium oxide (Na₂O) and silica (silicon dioxide, SiO₂) $2 Na^{\dagger} O^{-}$

- sodium, potassium, lithium
- produced by burning of soda ash (Na₂CO₃) and silica sand (SiO₂) in a furnace (1000 - 1400 °C) or dissolving silica sand under pressure in a heated aqueous solution of soda (NaOH)
- hardening: adding of the weak acids (CO₂, organic esters)
- usually mixed with fine sand

Engineering

Civi

- timber treatment wood preservation
- binders exposed to heat or fire
- concrete and masonry treatment – reducing of their porosity
- refractory use with lightweight aggregates
- water treatment
- soil stabilization

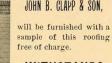
aculty of Civil Engineering

Magnesia binder

- Sorel cement
- based on MgO and MgCl₂
- prepared by mixing burned magnesia (MgO) with magnesium chloride
- hardening formation of magnesium oxychlorides
- high strength
- good fire resistance
- good resistance to abrasion
- high elasticity

<u>Engineering</u>

aculty of Civil Engineering


Magnesia binder use

- floorings (cast floors)
 - Xylolith
- fire protection products
- fiber boards
- grinding wheels,
- abrasive stones

WRITE FOR SAMPLE TO JOHN B. CLAPP & SON, 61 Market St., Hartford, Conn.

writing to

Any property owner

WITHSTANDS ALL THE ELEMENTS.

It is a non-conductor of heat and cold, and is absolutely water-proof and fire-proof. It is very easily applied as the illustration shows.

- mixture of magnesia cement, sawdust, and wood flour, with an addition of finely dispersed mineral substances (talc, asbestos, marble flour) and alkali-resistant pigments
- the seamless floors in residential and public buildings

Villa **Tugendhat**, Brno Ludwig **Mies van der Rohe**, 1930

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

J

Π

Ĕ

bg

Concrete

Fallingwater, Pennsylvania Frank Lloyd Wright, 1939

Dancing house, Prague V. Milunić, F. Gehry, 1996

Petronas Twin Towers, Kuala Lumpur César Antonio Pelli, 1999

Department of Materials Engineering and Chemistry Faculty of Civil Engineering

EN 206-1 Concrete - Part 1: Specification, performance, production and conformity:

 material formed by mixing cement, coarse and fine aggregate and water, with or without the incorporation of admixtures and additions, which develops its properties by hydration of the cement

Engineering

Civil Engineering

aculty of

- aggregates

binder (cement)

mixing water

Concrete components

- admixtures (up to 5 % of cement mass)
- additions (in powder, 5 40%)
- reinforcement (steel bars, grids, fibers)

 fresh concrete - concrete which is fully mixed and still in a condition that is capable of being compacted by the chosen method

 hardened concrete - concrete which is in a solid state and which has developed a certain strength

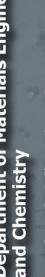
Terms (EN 206-1)

- designed concrete (most common) concrete for which the required properties and additional characteristics are specified to the producer who is responsible for providing a concrete conforming to the required properties and additional characteristics
- prescribed concrete (used rarely) concrete for which the composition of the concrete and the constituent materials to be used are specified to the producer who is responsible for providing a concrete with the specified composition

Civil Engineering

aculty of

Faculty of Civil Engineering


Concrete types according the bulk density

- normal weight concrete
 2000 2600 kg.m⁻³
- light-weight concrete
 800 2000 kg.m⁻³

- heavy-weight concrete
 - > 2600 kg.m⁻³

aculty of Civil Engineering

Concrete types according the place of manufacture

- site-mixed concrete concrete produced on the construction site by the user of the concrete for his own use
- ready-mixed concrete concrete delivered in a fresh state by a person or body who is not the user. Ready- mixed concrete is also:

- concrete produced off site by the user

- concrete produced on site, but not by the user

• precast concrete product - concrete product cast and cured in a place other than the final location of use

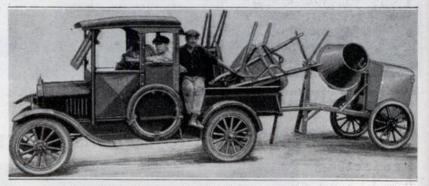
- mixing
 - transport
- placing
- compacting
- formwork removal
 curing

Concrete works

⁻aculty of Civil Engineering

Ξ

•)


On site mixed concrete

CONCRETE MIXER HAS RUBBER-TIRED WHEELS

offered for contractors' use, is mounted

on a rubber-tired twowheel truck so that it can be easily and quickly moved from one job to another. Whereas the usual portable type of mixer cannot be hauled faster than about 10 miles an hour, this one will trail behind a light auto truck at a speed of 30 miles an hour. A leg, set on the ground when the mixer is in use, supports it in a level position. It

A new concrete mixer, now being travels noiselessly and without jarring, and is no hindrance to traffic.

Concrete Mixer Mounted on a Rubber-Tired Two-Wheeled Truck, Which can be Hauled behind an Auto Truck at a 30-Mile Pace Instead of the Usual 10 Miles an Hour

oartment of Materials Engineering d Chemistry

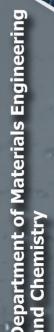
Faculty of Civil Engineering

J J

mai

ding

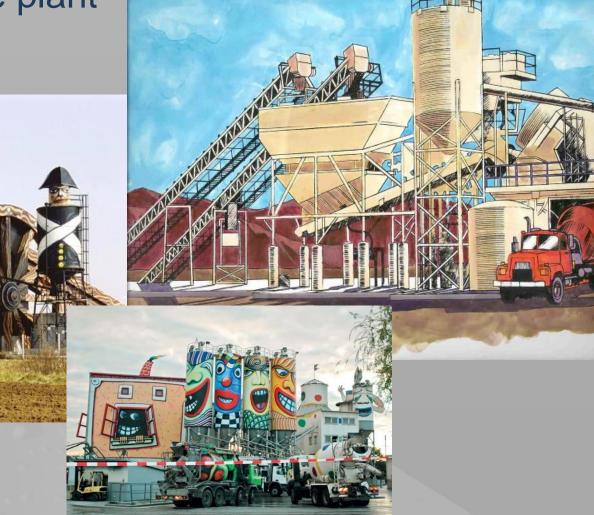
Build


Department of Materials Engineering and Chemistry

⁻aculty of Civil Engineering

On site mixed concrete

 mobile concrete batching plant



Faculty of Civil Engineering

Building materials

Ready mixed concrete

concrete plant

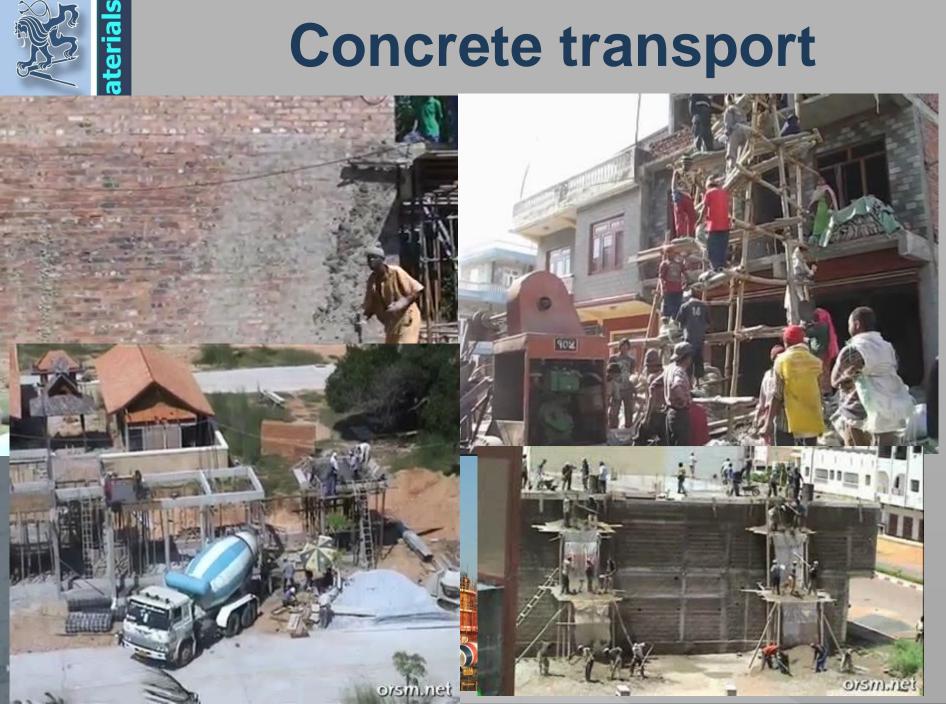
Concrete transport

 transferring of concrete from the mixing plant to the construction site

Main methods:

- mortar pan, wheelbarrow
 - on-site mixed concrete
- crane bucket and ropeway
- chute
- transit mixer
- pump

epartment of Materials Engineering nd Chemistry


Engineering

Civi

aculty of

Concrete transport

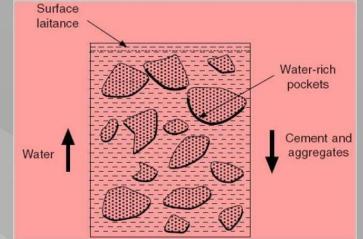
To get rid of the air voids:

- statical compacting
 - rodding, tamping, ramming
- dynamical
 - vibrating (immersion or surface vibrators)
- combined
 - pressure and jolting
- self- compacting
 - plasticizers

Engineering

Civil

aculty of


Segregation of concrete

 the separation of the constituent materials of concrete resulting in nonuniform mix (usually by over-vibration)

the denser aggregates settle to the bottom while the lighter cement paste tends to move upwards

Department of Materials Engineering



Concrete curing

- any procedure that maintains proper moisture and temperature of the concrete to ensure continuous hydration
- if the water is allowed to evaporate the hydration ceases and the concrete shrinks
 → cracks occur !

BC

aculty of Civil Engineering

Concrete curing methods

- ponding
- wrapping in plastic or wet cloth
- spraying on temporary curing membrane

terials

mat

Minimal time of curing

Building			Minimal time of curing in days				
8	Strength develop- ment	Estimate of f _{cm,2} /f _{cm,28}	Surface temperature υ in ° C				
			ບ ≥ 25	25> ບ ≥ 15	15> ບ <u>></u> 10	10 > ບ <u>></u> 5 ʰ)	
	rapid	≥ 0 ,5	1	1	2	3	
	medium	\geq 0,3 to < 0,5	2	2	4	6	
2	slow	≥ 0,15 to < 0,3	2	4	7	10	
	very slow	< 0,15	3	5	10	15	

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Concrete constituents

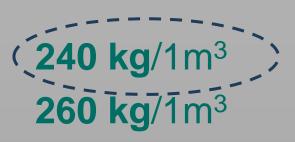
- binder
- aggregates
- mixing water
- admixture
- additions
- reinforcement

Department of Materials Engineering and Chemistry

Civil Engineering

aculty of

- binder mixing with water → cement paste → cement stone
- has to conform with EN 197-1
- most expensive part of the concrete as little cement as possible should be used



Department of Materials Engineeri and Chemistry

Cement dosage

Minimal:

- unreinforced concrete: (200 kg /1m³)
 of finished concrete
- reinforced concrete :
 - sheltered:
 - unsheltered:

- watertight constructions: 300 kg/1m³

Strength increases (in normal concrete) to the amount (450 kg/1m³)

→ higher dosage is not economical !

Department of Materials Engineer and Chemistry

Civil Engineering

aculty

polymers

+ high strength, good resistance
 against aggressive environment,
 fast setting and hardening

- demanding production, price, fire resistance

- asphalts
- roads
- gypsum
 - clays

- only in dry places
- low strength, volume instability

Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Aggregates

Building materials

Aggregates

- granular mineral material suitable for use in concrete
- aggregates may be natural, artificial or recycled from material previously used in construction
- gravels, stone and sands form the granular structure, which must have its voids filled as completely as possible by the binder glue
- approximately 80 % of the weight and 70 75% of the volume of the concrete

EN standards for aggregates

- EN 12620 Aggregates for concrete
 - normal and heavy-weight aggregates
- EN 13055-1 Lightweight aggregates. Lightweight aggregates for concrete, mortar and grout
- EN 13043 Aggregates for bituminous mixtures and surface treatments
- EN 13055-2 Lightweight aggregates for bituminous mixtures and surface treatments

Engineering

erials

Standard and special aggregates

		Standard aggregates	Bulk	density 2.2–3 kg/dm³	From natural deposits, e.g. river gravel, moraine gravel etc. Material rounded or crushed (e.g. excavated tunnel)
		Heavyweight aggregates		density > 3.0 kg/dm³	Such as barytes, iron ore, steel granulate. For the production of heavy concrete (e.g. radiation shielding concrete)
		Lightweight aggregates	Bulk	density < 2.0 kg/dm³ Bulk	Such as expanded clay, pumice, polystyrene. For lightweight concrete, insulating concretes
	Hard aggregates		density > 2.0 kg/dm³	Such as quartz, carborundum; e.g. for the production of granolithic concrete surfacing	
		Recycled granulates	Bulk	approx. 2.4 kg/dm³	From crushed old concrete etc.

Faculty of Civil Engineering

Origin of aggregates

- natural aggregate aggregate from mineral sources which has been subjected to nothing more than mechanical processing
- manufactured aggregate aggregate of mineral origin resulting from an industrial process involving thermal or other modification
- recycled aggregate aggregate resulting from the processing of inorganic material
- recovered aggregate aggregate recovered from wash water or fresh concrete

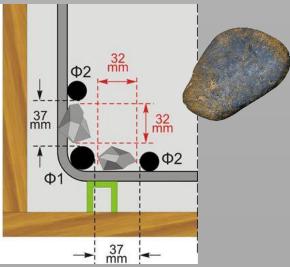
Civil Engineering

Engineering

Puilding mat

Properties of aggregates

Required for mix design:


- grading
- durability
- particle shape and surface texture
 - rounded, smooth aggregates more workable mix
 - angular, rough aggregates harder to place, work and compact concrete, but concrete is stronger
- abrasion and skid resistance
- unit weights and voids
- absorption and surface moisture

Maximum aggregate size D_{max}

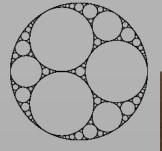
D_{max} shall be selected taking into account the cover to reinforcement and the minimum section width

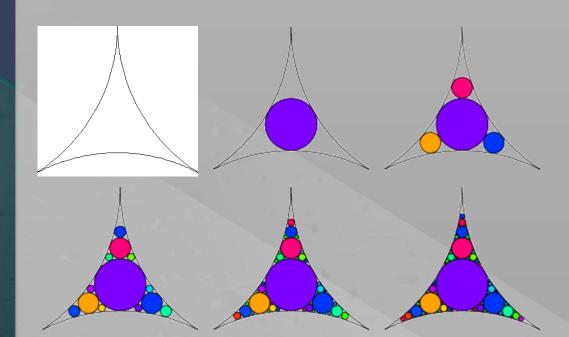
- max. 1/3 to 1/2 of the narrowest dimension of a concrete member
 - columns max.1/4
 - horizontal slabs max.1/2
- 1/3 of diameter of pump hose
- max. 1,3 times of bar cover
- spacing between bars 5 mm

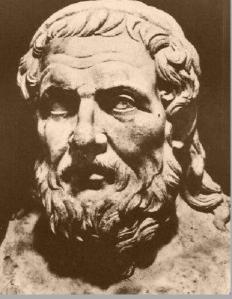
use of the largest possible maximum size (with some limitations)

Civil Engineering

Materials Engineering 0 emist men


Faculty of Civil Engineering

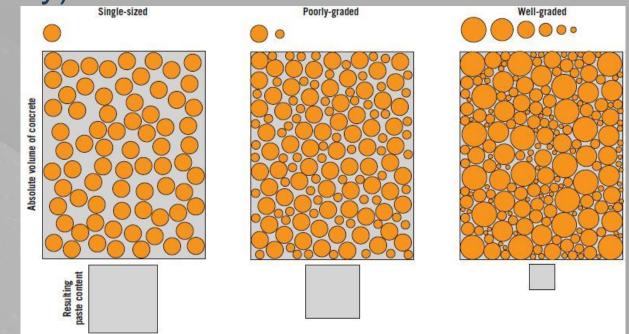

din



ideal filling of space

- less voids in concrete

Apollonius from Perga (262-190 BC)



aculty of Civil Engineering

Aggregates gradation

Particle-size distribution has an impact on:

- bulk density and strength of concrete
- workability (consolidation, finishability, and pumpability)
- cost

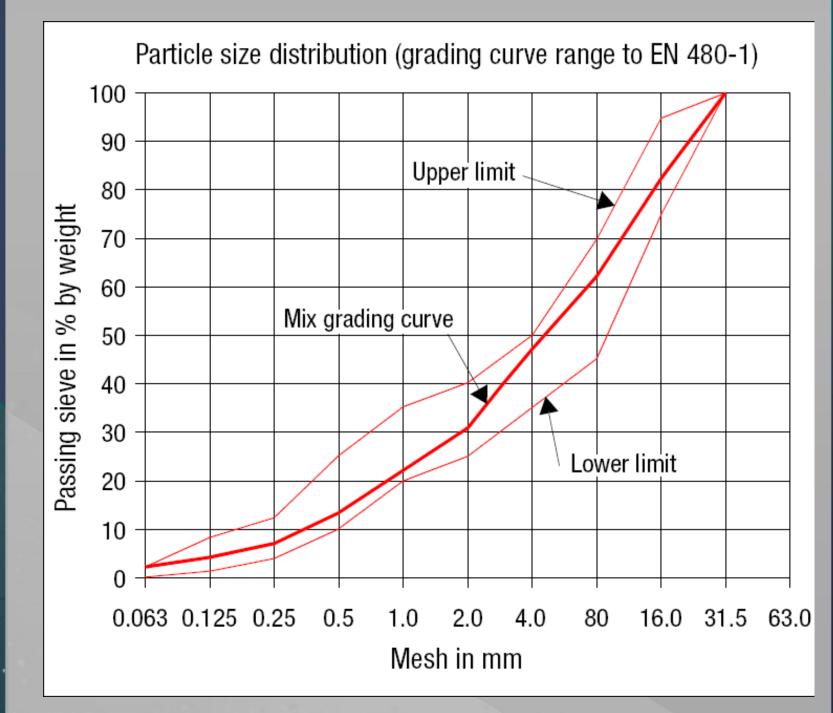
ateria

<u>Civil</u> Engineering

aculty

Ideal gradation

Fuller equation


 $\mathbf{y}_{\mathbf{i}} = 100 \sqrt{\frac{\mathbf{d}_{\mathbf{i}}}{\mathbf{D}}}$

- Bolomey, EMPA, Kenedy, Hummel, Valete • two fractions minimally, better three $\langle F: C = 1: (1,5-2) \rangle$

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

aculty of Civil Engineering

Physical properties (EN 12620)

- resistance to fragmentation of coarse aggregate
 - Los Angeles coefficient
 - resistance to impact
- resistance to wear micro-Deval
- resistance to polishing and abrasion
- particle density and water absorption
- bulk density
- durability
 - freeze/thaw resistance
 - volume stability drying shrinkage
 - alkali-silica reactivity

Freeze/thaw resistance

Freeze-thaw Percentage loss of ma	Category F			
≤ 1 ≤ 2 ≤ 4 > 4 No requirement	F ₁ F ₂ F ₄ F _{Declared} F _{NR}			
Environmental conditions	Climate		STOR	
	Mediterranean	Atlantic	Continental ^a	
Frost free or dry situation	Not required	Not required	Not required	
Partial saturation, no salt	Not required	F_4 or MS_{35}	F_2 or MS_{25}	
Saturated, no salt	Not required	F_2 or MS_{25}	F_1 or MS_{18}	
Salt (seawater or road surfaces)	F_4 or MS_{35}	F_2 or MS_{25}	F_1 or MS_{18}	
Airfield surfacings	F_2 or MS_{25}	F_1 or MS_{18}	F_1 or MS_{18}	

^a The Continental category could also apply to Iceland, parts of Scandinavia and to mountainous regions where severe winter weather conditions are experienced.

Faculty of Civil Engineering

Chemical properties (EN 12620)

- chlorides
- sulfur containing compounds
 - acid-soluble sulfate
 - total sulfur
- other constituents
 - constituents which alter the rate of setting and hardening of concrete – organic substances
 - constituents which affect the volume stability of air-cooled blastfurnace slag
- carbonate content of fine aggregates for concrete pavement surface courses

Engineering

- chlorides may dissolve in the mixing water and promote corrosion of steel
- maximum chloride content is expressed as percentage of water-soluble chloride ion content by mass of combined aggregate
 - plain concrete 0,15 %
 - reinforced concrete 0,06 %
 - prestressed concrete 0,03 %

of Civil Engineering

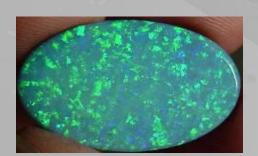
Sulfur content in aggregates

- total sulfur content expressed as percentage by mass of the aggregate
 max. 1% (2 % for blastfurnace slag)
- **sulfides** (FeS₂, PbS) source of sulfates
- sulfates (CaSO₄, PbSO₄) sulfate corrosion

Aggregate	Acid soluble sulfate content Percentage by mass	Category AS	
Aggregates other than air- cooled blastfurnace slag	≤ 0,2 ≤ 0,8 > 0,8	$egin{array}{c} AS_{0,2} \ AS_{0,8} \ AS_{ ext{Declared}} \end{array}$	
	No requirement	$AS_{\rm NR}$	
Air-cooled blastfurnace slag	≤ 1,0 > 1,0	$AS_{1,0}$ $AS_{ ext{Declared}}$	
	No requirement	$AS_{ m NR}$	

Organic impurities in aggregates

- humus content (decaying vegetation), fulvo acids (humic acids)
 - retarding effect on cement
 - colorimetric tests (NaOH, KOH)



- comparison with standard color
- sugars influence on setting and hardening – decrease of strength
- carbonate content
 - lignite and coal particles may cause brown stains and/or popouts to appear at the surface

Alkali - silica reaction

- certain aggregates can react with alkaline hydroxides present in the pore fluids of concrete
- under adverse conditions and in the presence of moisture this can lead to expansion and subsequent cracking or disruption of the concrete - ASR
- less common is alkali-carbonate reaction

Ē

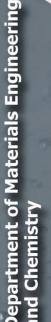
S S

Alkali-silica reaction - ASR

- occurs over time in concrete between the highly alkaline cement paste and reactive non-crystalline (amorphous) silica
- formation of a swelling gel of calcium silicate hydrate (CSH gel)

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering


Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Faculty of Civil Engineering

J Building

ma

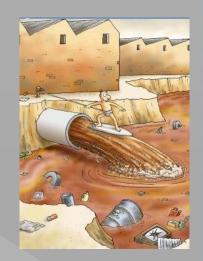
•

mixing water

-hydration -workability

curing water

Water



potable water

- suitable for use in concrete without testing
- water recovered from processes in the concrete industry
 - normally suitable for use in concrete, but shall conform to the requirements of standard
- water from underground sources
- natural surface water and industrial waste water
 - both suitable for use in concrete, but shall be tested
- sea water or brackish water
 - may be used for concrete without reinforcement or other embedded metal
 - not suitable for the production of reinforced or prestressed concrete
- sewage water
 - not suitable for use in concrete

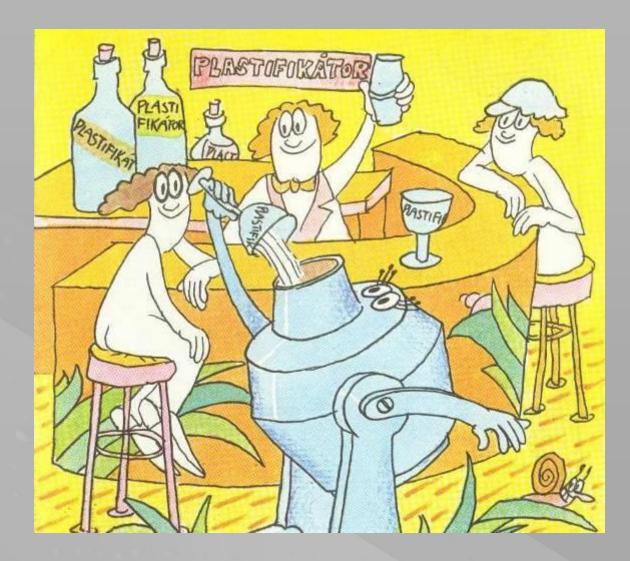
Engineering

Water - cement ratio

- in standard concrete: w/c = 0,35 0,8
- minimum for hydration 0,23 l/1 kg of cement
- low w/c ratio
 - higher strength and durability
 - the mix difficult to we

→ more water is used than it is necessary for reaction with cement

Department of Materials Engineering and Chemistry


Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

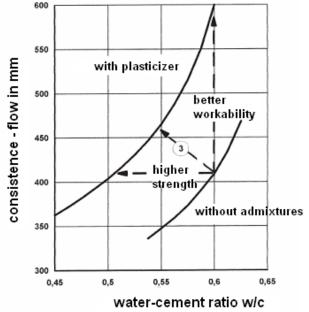
Admixtures

Admixtures

EN 934-2:

ateria

- material added during the mixing process of concrete in small quantities related to the mass of cement (0,2 – 5 %) to modify the properties of fresh or hardened concrete
- mostly liquid



Admixture types (EN 934-2)

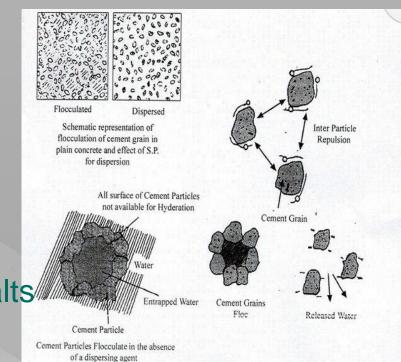
- water reducing/plasticizing
- high-range water reducing/superplasticizing
- water retaining
- water resisting
- air entraining
- set accelerating
- hardening accelerating
- set retarding
- dual function admixtures
 - set retarding/water reducing/plasticizing
 - set retarding/high-range water reducing/superplasticizing
 - set accelerating/water reducing/plasticizing

Plasticizing and superlasticizing admixtures

- Enables the water content of a given concrete mix to be reduced without affecting the consistence, or increases the workability without changing the water content, or achieves both effects
 - reduction (5% -12%) (plasticizer)
 reduction ≥ 12% (superplasticizer)

Department of Materials Engineerin and Chemistry

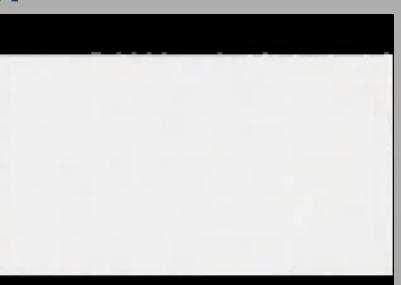
aculty of Civil Engineering


⁻aculty of Civil Engineering

Plasticizing/Water reducing admixtures

 admixture is adsorbed on to the cement particles and lowers the inter particular attraction so that flocs of cement break up

- lignosulphonate
- carbohydrates


Superplasticizers

increased fluidity

- flowing, self-leveling, self-compacting concrete
- penetration and compaction round dense reinforcement

reduced W/C ratio:

- very high early streng
 very high later age str
 reduced shrinkage (erreduced cement conterreduced cement conterreduced durability by
 - permeability and diffu

Department of Materials Engineerin and Chemistry

aculty of Civil Engineering

- Sulphonated melamine formaldehyde condensates (SMF)
 - 16–25% water reduction, little or no retardation \rightarrow very effective at low temperatures
- Sulphonated naphthalene formaldehyde condensates (SNF)
 - 16-25% water reduction.
 - tend to increase the entrapment of larger, unstable air bubbles
- Polycarboxylate ether superplasticizers (PCE)
 - 20-35%+ water reduction
 - relatively expensive

Engineering

aculty of

Building materials

Air-entraining admixtures

- introduces a specific quantity of small, evenly distributed air voids during the mixing process which remain in the concrete after it hardens
 - < 0.5 mm, typically 0.01 0.02 mm
 - surfactants natural wood resins, animal and vegetable fats and oils, water soluble soaps
 - for every 1% of additional air entrained the concrete strength fall by 5 to 6%
- increase durability against freeze/thaw effect
- increase cohesion in the mix reducing bleed water and segregation of the aggregate

- slow the rate of cement hydration, preventing the cement from setting before it can be placed and compacted
- increase in initial (≥ 90 min) and final setting times (≤ 360 min)
- mainly used in hot conditions and climates
- sucrose and other polysaccharides, citric acid, tartaric acid, salts of boric acid, salts of phosphoric, poly-phosphoric and phosphonic acid

Engineering

- set accelerators reduces the time to initial set, with an increase in initial strength
- hardening accelerators accelerate the initial strength with or without an effect on the setting time.

Used

- in cold conditions
- where early stripping of shuttering or very early access to pavements is required

Engineering

Stabilizing admixtures

- against bleeding
- bleeding:
 - emergence of water on the surface caused by separation of the concrete
 - often a result of defects in fines in the aggregate and in low cement or high water containing mixes

Bleeding of fresh concrete is the inherent property which denotes an occurrence of engulfing out of water from the concrete to the surface of the concrete.

Civil Engineering

aculty of

Other admixtures

- corrosion inhibiting
- shrinkage reducing
- water resisting to prevent absorption
- gas formers, foamers lightweight concrete
- fungicidal
- anti-washout / underwater admixtures
- pumping aids
- bonding

Fig. 6-1. Liquid admixtures, from left to right: antiwashout admixture, shrinkage reducer, water reducer, foaming agent, corrosion inhibitor, and air-entraining admixture. (69795)

Civil Engineering

aculty of

- if more than one admixture is added, their compatibility must be verified by specific testing
- if the total quantity of liquid admixture is > 3
 I/m³ of concrete, the water quantity must be included in the w/c calculation
- permitted dosage \leq 5% by weight of the cement (the effect of a higher dosage on the performance and durability of the concrete must be verified)
 - low dosages < 0.2 % are only allowed if they are dissolved in part of the mixing water

Civil Engineering

Additions

- finely divided material used in concrete in order to improve certain properties or to achieve special properties
 - nearly inert additions (type I)
 - pozzolanic or latent hydraulic additions (type II)
- added to concrete in significant proportions (around 5–20 %)
- type II additions may be taken into account in the concrete composition

Civil Engineering

Additions

Type I - nearly inert additions

- pigments, rock flours (quartz dust, powdered limestone)
- improving of the grading curve, stability and fluidity

Type II - pozzolanic materials

- natural pozzolans, fly ash, silica fume, blast furnace slag, calcined clay, rice husk ash
- replacing part of cement, improving pumpability, enhancing early strength development and durability, resistance to abrasion, impact and chemical attack

Civil Engineering

aculty of

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

In aggressive environment:

- decalcification
- leaching
- sulfate attack
- chlorides
- bacterial corrosion
- seawater

carbonation – steel corrosion

Engineering

aculty

Concrete degradation

decalcification

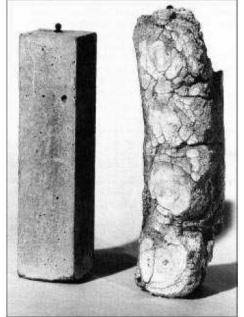
- distilled water (e.g. from condensed steam) can wash out calcium content in concrete, leaving the concrete in brittle condition
- leaching
 - flowing water may dissolve various minerals present in the hardened cement paste or in the aggregates
- chlorides
 - calcium chloride and (to a lesser extent) sodium chloride leach calcium hydroxide and cause chemical changes in Portland cement, leading to loss of strength

Civil Engineering

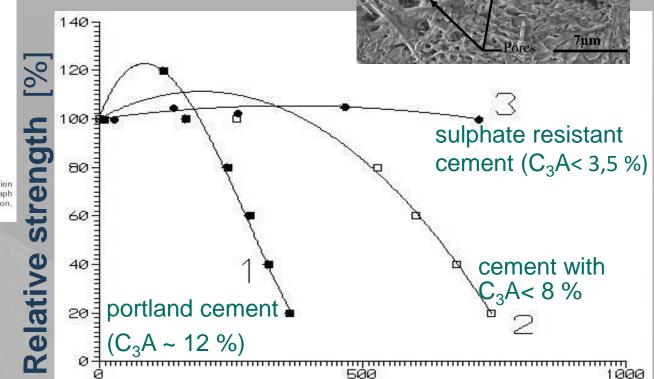
Sulphate attack

external

 penetration of sulfates in solution into the concrete from outside


internal

- a soluble source incorporated into the concrete at the time of mixing
- the soluble sulphate salts react with C_3A in concrete \rightarrow ettringite is formed $3CaO\cdotAl_2O_3\cdot CaSO_4\cdot 31H_2O$
- the volume of the resulting ettringite is greater than the volume of the original substances \rightarrow internal pressures which fracture the concrete \rightarrow loss of concrete strength


Engineering

Sulphate attack

4.1 Conventional sulfate attack associated with expansive ettringite formation in a concrete prism (RHS) and non-degraded control prism (LHS). Photograph reproduced from CEB Design Guide, *Durable Concrete Structures*, London, Thomas Telford, 1989.

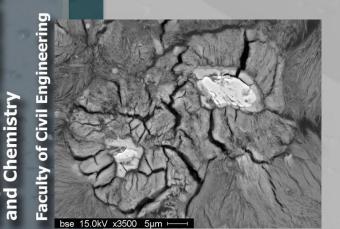
Time of exposition in sulphate solution [days]

Faculty of Civil Enginee

d Chemistr

Materials

epartment of


materials

Sulphate attack

Concrete carbonation

- a chemical reaction between carbon dioxide in the air with calcium hydroxide and hydrated calcium silicate in the concrete - needs moisture
 → decrease of alkalinity under pH = 10
- \rightarrow corrosion of steel reinforcement

Engineering

 atmospheric CO₂ can penetrate concrete and react with Ca(OH)₂ in the cement paste to form CaCO₃ and this reaction reduces the pH of the concrete to around 9

$$(Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O))$$

- water is required for the reaction to proceed

- if the pores of the concrete are filled with water, the diffusion of CO_2 is slowed

→ carbonation does not occur in dry environment and under water

Department of Materials Engin and Chemistry

<u>Engineering</u>

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

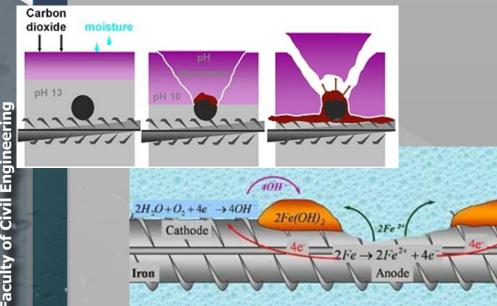
Corrosion of steel reinforcement

Engi **Materia**

aculty of Civil Engineering

Corrosion of steel reinforcement

- fresh concrete is highly alkaline (pH > 12) (presence of the hydroxides of sodium, potassium and calcium produced during the hydration reactions)
- in alkaline environment steel is passivated (covered by a stable protective oxide film)
 → no corrosion of the reinforcement can


occur

Corrosion of steel reinforcement

- when pH of concrete decreases under 9,5 (by carbonation) corrosion starts
 - $2Fe+1,5O_2+H_2O = 2FeO(OH)$ 2,5 x higher volume than Fe

Speed of carbonation process

- c. occurs progressively from the outside surface of the concrete exposed to atmospheric CO₂, but does so at a decreasing rate because the CO₂ has to diffuse through the pore system, including the already carbonated surface zone of concrete
- depth of carbonation: $D = K.\sqrt{t}$
 - K... the carbonation coefficient (depends on the quality of the concrete, concentration of CO_2 and its diffusivity through the concrete)
 - t ... exposure time

Civil Engineering

Depth of carbonation

- test by spraying a color pH indicator (phenolphthalein) on a cross section of concrete (at pH > 9,8 purple)
- after 1 year depth ca 4 8 mm
- after 60-70 years 30 60 mm

spartment of Materials Engineering d Chemistry

Engineering