Department of Materials Engineering Ind Chemistry

⁻aculty of Civil Engineering

Building materials

Building Materials

Lecture 9

Concrete Continuation

als

materi

bul

E

Department of Materials Engineering

and Chemistry

Faculty of Civil Engineering

In aggressive environment:

- decalcification
- leaching
- sulfate attack
- chlorides
- bacterial corrosion
- seawater

carbonation – steel corrosion

Engineering

aculty

Concrete degradation

decalcification

- distilled water (e.g. from condensed steam) can wash out calcium content in concrete, leaving the concrete in brittle condition
- leaching
 - flowing water may dissolve various minerals present in the hardened cement paste or in the aggregates
- chlorides
 - calcium chloride and (to a lesser extent) sodium chloride leach calcium hydroxide and cause chemical changes in Portland cement, leading to loss of strength

Civil Engineering

Sulphate attack

external

 penetration of sulfates in solution into the concrete from outside

internal

- a soluble source incorporated into the concrete at the time of mixing
- the soluble sulphate salts react with C_3A in concrete \rightarrow ettringite is formed $3CaO\cdotAl_2O_3\cdot CaSO_4\cdot 31H_2O$
- the volume of the resulting ettringite is greater than the volume of the original substances \rightarrow internal pressures which fracture the concrete \rightarrow loss of concrete strength

Engineering

Sulphate attack

4.1 Conventional sulfate attack associated with expansive ettringite formation in a concrete prism (RHS) and non-degraded control prism (LHS). Photograph reproduced from CEB Design Guide, *Durable Concrete Structures*, London, Thomas Telford, 1989.

Time of exposition in sulphate solution [days]

Faculty of Civil Enginee

d Chemistr

Materials

epartment of

materials

Sulphate attack

Concrete carbonation

- a chemical reaction between carbon dioxide in the air with calcium hydroxide and hydrated calcium silicate in the concrete needs moisture
 → decrease of alkalinity under pH = 10
- \rightarrow corrosion of steel reinforcement

Engineering

 atmospheric CO₂ can penetrate concrete and react with Ca(OH)₂ in the cement paste to form CaCO₃ and this reaction reduces the pH of the concrete to around 9

$$(Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O))$$

- water is required for the reaction to proceed

- if the pores of the concrete are filled with water, the diffusion of CO_2 is slowed

→ carbonation does not occur in dry environment and under water

Department of Materials Engin and Chemistry

<u>Engineering</u>

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Corrosion of steel reinforcement

Engi **Materia**

aculty of Civil Engineering

Corrosion of steel reinforcement

- fresh concrete is highly alkaline (pH > 12) (presence of the hydroxides of sodium, potassium and calcium produced during the hydration reactions)
- in alkaline environment steel is passivated (covered by a stable protective oxide film)
 → no corrosion of the reinforcement can

occur

Corrosion of steel reinforcement

- when pH of concrete decreases under 9,5
 (by carbonation) corrosion starts
 - $2Fe+1,5O_2+H_2O = 2FeO(OH)$ 2,5 x higher volume than Fe

Speed of carbonation process

- c. occurs progressively from the outside surface of the concrete exposed to atmospheric CO₂, but does so at a decreasing rate because the CO₂ has to diffuse through the pore system, including the already carbonated surface zone of concrete
- depth of carbonation: $D = K.\sqrt{t}$
 - K... the carbonation coefficient (depends on the quality of the concrete, concentration of CO_2 and its diffusivity through the concrete)

t ... exposure time

Department of Materials Engineering and Chemistry

Civil Engineering

Depth of carbonation

- test by spraying a color pH indicator (phenolphthalein) on a cross section of concrete (at pH > 9,8 purple)
- after 1 year depth ca 4 8 mm
- after 60-70 years 30 60 mm

partment of Materials Engineering d Chemistrv

Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Specification of concrete

 technical requirements given to the producer in terms of performance or composition by specifier (= person or body establishing the specification) for the fresh and hardened concrete

 the specifier of the concrete shall ensure that all the relevant requirements for concrete properties are included in the specification given to the producer

Engineering

Example of concrete specification

C 30/37 - XC4 - CI0,20 - D_{max}32 - C3

Example: Pumped concrete for ground slab in ground water area

Specification conforming to EN 206-1 (designed concrete)

Concrete conforming to EN 206-1

C 30/37 -

XC 4

CI 0.20

Pumpable

- compressive strength class
 - exposure class
 - chloride content class
- maximum nominal upper Dmax 32 (max. particle \emptyset) \longrightarrow aggregate size C3 (degree of compactability) < consistence class

Civil Engineering

aculty of

Compressive strength class C 30/37- XC4 - Cl0,20 - D_{max}32 - C3

C(30)(37)

- at 28 days
- cylinders ø 150 mm, height 300 mm

f_{ck.cub} - minimum characterictic compressive cube strength

- at 28 days
- 150 mm cubes

Civil Engineering

aculty of

Compressive strength classes

Compressive strength class	f _{ck, cyl} (cylinder) N/mm²	f _{ck, cube} (cube) N/mm²
C 8/10	8	10
C 12/15	12	15
C 16/20	16	20
C 20/25	20	25
C 25/30	25	30
C 30/37	30	37
C 35/45	35	45
C 40/50	40	50
C 45/55	45	55
C 50/60	50	60
C 55/67	55	67 <u>–</u>
C 60/75	60	75 ອີຊ
C 70/85	70	85 E
C 80/95	80	95 5 20
C 90/105	90	105 .ම ^හ
C 100/115	100	115 -

Faculty of Civil Engineering

erials

Ĕ

ding

E

Exposure classes C 30/37 - (XC4) - Cl0,20 - D_{max}32 - C3

related to environmental actions

Engineerin

Materials

Civil Engineering

aculty of

EN 206 – Concrete specification Exposure classes

CLASS DESIGNATION:	DESCRIPTION OF THE ENVIRONMENT:	No. of sub- classes
XO	No risk of corrosion (inside buildings with very low air humidity)	1
XC	Corrosion of the reinforcement induced by carbonation	4
XD	Corrosion of the reinforcement induced by chlorides other than from sea water	3
XS	Corrosion of the reinforcement induced by chlorides from sea water	3
XF	Freeze-thaw attack with or without de-icing agents	4
XA	Chemical attack	3

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

as

J

Ba

ding

20

epartment of Materials Engineering d Chemistr

Faculty of Civil Engineering

materials

ding

X0 - no risk of corrosion or attack

Class designation	Description of the environment	Informative examples where exposure classes may occur
	No risk of corrosion or attack	
X 0	For concrete without reinforce- ment or embedded metal: all exposures, except where there is freeze/thaw, abrasion or chemical attack	Concrete inside buildings with low air humidity
	For concrete with reinforcement or embedded metal: very dry	XO Non-aggressive Soil (otherwise XA?)

and Chemistry Faculty of Civil Engineering

<u>Materials Engineering</u>

partment of

Building materials

EN 206 – Concrete specification Exposure classes - carbonation

XC

Class designation	Description of the environment	Informative examples where exposure classes may occur
	Corrosion induced by carbonatic	on
X C 1	Dry or permanently wet	Concrete inside buildings with low air humidity. Concrete permanently submerged in water
X C 2	Wet, rarely dry	Concrete surfaces subject to long-term water contact; many foundations
X C 3	Moderate humidity	Concrete inside buildings with moderate or high air humidity; external concrete sheltered from rain
X C 4	Cyclic wet and dry	Concrete surfaces subject to water contact, not within exposure Class X C 2

Exposure classes - freeze/thaw attack XF

cyclic freezing and thawing of unbound water in concrete

Material

Engineering

Exposure classes - freeze/thaw attack XF

Class designation	Description of the environment	Informative examples where exposure classes may occur
	Freeze/thaw attack with or with	out de-icing agents
X F 1	Moderate water saturation, without de-icing agent	Vertical concrete surfaces exposed to rain and freezing
X F 2	Moderate water saturation, with de-icing agent	Vertical concrete surfaces of road structures exposed to freezing and airborne de-icing agents
X F 3	High water saturation, without de-icing agent	Horizontal concrete surfaces exposed to rain and freezing
X F 4	High water saturation, with de-icing agent	Road and bridge decks exposed to de-icing agents; concrete surfaces exposed to direct spray containing de-icing agents and freezing

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Π

J

Exposure classes – chemical attack XA

- leaching of calcium hydroxide
- ingress of harmful substances, such as sulfates or nitrates

Materials Engineering

Faculty of Civil Engineering

Class designation	Description of the environment	Informative examples where exposure classes may occur				
	Chemical attack					
X A 1	Slightly aggressive chemical environment according to Table 2.2.2	Concrete in treatment plants; slurry containers				
X A 2	Moderately aggressive chemical environment according to Table 2.2.2	Concrete components in contact with sea water; components in soil corrosive to concrete				
ХАЗ	Highly aggressive chemical environment according to Table 2.2.2	Industrial effluent plants with effluent corrosive to concrete; silage tanks; concrete structures for discharge of flue gases				

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Exposure classes examples

EN 206 – Concrete specification

Requirements for each exposure class

The requirements for each exposure class shall be specified in terms of:

- permitted types and classes of constituent materials
- maximum water/cement ratio
- minimum cement content
- minimum concrete compressive strength class (optional)

and if relevant

• minimum air-content of the concrete

<u>Engineering</u>

Recommended limiting values for composition and properties of concrete

	Exposure clas	ses																
	No risk of	No risk of Carbonation-induce corrsion or corrosion attack		arbonation-induced			Chloride-induced corrosion				Freeze/thaw attack				Aggressive			
	corrsion or attack				Sea water			Chloride other than from sea water						chemical environments				
	XO	XC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
Maximum w/c	-	0.65	0.60	0.55	0.50	0.50	0.45	0.45	0.55	0.55	0.45	0.55	0.55	0.50	0.45	0.55	0.50	0.45
Minimum strength class	C12/15	C20/ 25	C25/ 30	C30/ 37	C30/ 37	C30/ 37	C35/ 45	C35/ 45	C30/ 37	C30/ 37	C35/ 45	C30/ 37	C25/ 30	C30/ 37	C30/ 37	C30/ 37	C30/ 37	C35/ 45
Minimum cement content (kg/m³)	-	260	280	280	300	300	320	340	300	300	320	300	300	320	340	300	320	360
Minimum air content (%)	-	-	-	-	-	-	-	-	-	-	-	-	4.0 ^a	4.0ª	4.0 ^a	-	-	-
Other requirements													Aggre accord EN 12 suffici thaw	gate in dance v 620 wi ent free resistar	vith th eze/ nce	Sulph ceme	ate resi nt ^b	sting
Where the cone for which freez	crete is not air e ze/thaw resistar	ntrained nce for th	, the pe ne relev	rformar ant exp	nce of c osure c	oncrete class is	should proven	be test	ed acco	ording to	o an app	ropria	te test n	nethod	in comp	arison	with a c	concrete

Moderate or high sulphate resisting cement in exposure Class XA2 (and in exposure Class XA1 when applicable) and high sulphate resisting cement in exposure Class XA3.

C 30/37 - XC4 - Cl0,20 - D_{max}32 - C3

 the chloride content of a concrete, expressed as the percentage of chloride ions by mass of cement, shall not exceed the value for the selected class

Concrete use	Chloride content class ^a	Maximum chloride content by mass of cement ^b
Not containing steel reinforcement or other embedded metal with the exception of corrosion resisting lifting devices	CI 1.0 -	1.0%
Containing steel reinforcement or other	CI 0.20	0.20%
embedded metal	CI 0.40	0.40%
Containing prestressing steel reinforcement	CI 0.10	0.10%
	CI 0.20	0.20 %

Civil Engineering

aculty of

Maximum nominal upper aggregate size D_{max} C 30/37 - XC4 - Cl0,20 - D_{max}32 - C3

- D_{max}:
- max. 1/3 to 1/2 of the narrowest dimension of a concrete member
 - columns max.1/4
 - horizontal slabs max.1/2
- 1/3 of diameter of pump hose
- max. 1,3 times of bar cover
- spacing between bars 5 mm

use of the largest possible maximum size

Department of Materials Engineerin and Chemistry

<u>Engineering</u>

uilding materia

Classification by consistence

- C 30/37 XC4 Cl0,20 D_{max} 32 (C3)
- the workability of concrete
 - consistence
 - the behaviour of the fresh concrete during mixing, handling, delivery and placing, during compaction and surface smoothing
 - unlike workability, the consistence of the fresh concrete can be measured
- S slump
- F flow
- V VeBe
- C compaction

Department of Materials Engineer Ind Chemistry

Civil Engineering

aculty of

SLUMP

Slump classes S

Abrams cone

Ø20cm

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

a N

P L

mat

ding

Bul

16

Class	Flow diameter in mn	
-1 1	\leq 340	
-2	350 to 410	
=3	420 to 480	
=4	490 to 550	
-5	560 to 620	
-61	≥ 630 UTCM-0060, 0063 Control of the second sec	

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

erials

mai

ding

EN 206 – Concrete specification 1 Vebe classes V lding ma Class Vebe time in seconds V0 1 \geq 31 Bul V1 30 to 21 V2 20 to 11 V3 10 to 6 V4 2 up F4 V4 ø 100 mm tir 300 *ś* 200 **儿** BETON

Department of Materials Engineering

and Chemistry

Faculty of Civil Engineering

Compaction classes C

Department of Materials Engineering Ind Chemistry

Faculty of Civil Engineering

J
Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Concrete mix proportion design

- 1. definition of requirements (influence of environment, type of construction, load)
- 2. choice of components (cement type, aggregates gradation, admixtures)
 - workability is determined for the type of work
 - the maximum aggregate size is chosen
 - air content is determined from durability requirements
 - the w/c is selected to satisfy strength and durability
- 3. design of composition
- 4. experimental verification of design

epartment of Materials Engineer nd Chemistry

Civil Engineering

Basic principles for design

- the mix should be workable
- as little cement as possible should be used
- as little water as possible should be used
- coarse and fine aggregate should be proportioned to achieve a dense mix
- the nominal maximum size of aggregate should be as large as possible
- the water-to-cement ratio will determine the compressive strength

Engineering

Civil Engineering

ilding materials

Experimental verification of design

- 1. determination of consistence (workability)
- 2. change of composition for demanded consistence
- 3. determination of strength
- 4. change of composition for demanded strength without influence on the workability
- 5. determination of definitive composition

⁻aculty of Civil Engineering

Concrete mix proportion design

According empirical amount of water

1. Find w/c for chosen cement type and demanded strength.

Concrete mix proportion design

2. Determinate amount of water in 1m³ for chosen consistence and aggregate size

3. Calculate m_c from amount of water and w/c

consistence	Aggregates granulometry											
	wA ₈	B ₈	C_8	$\left(A_{16}\right)$	B ₁₆	C ₁₆	A32	B ₃₂	C ₃₂	A_{63}	B ₆₃	C ₆₃
C 0	160	178	197	139	160	183	133	152	171	123	139	163
S 1	166	184	205	145	166	189	137	158	177	127	145	169
\$2	176	194	217	155	176	200	145	167	188	135	155	180
S 3	192	212	135	170	192	217	159	181	207	148	170	197
S 4	204	227	250	181	204	232	171	197	223	159	181	211

Department of Materials Engineering and Chemistry

Engineering

Civi

aculty of

Civil Engineering

aculty of

Concrete mix proportion design

4. Determinate the volume of other constituents according the equation:

 $\mathbf{m}_{c} + \mathbf{m}_{v} + \mathbf{m}_{k}$ 100 $\rho_w \rho_a$ ρ_c Air content (%) **cement** ($\rho_{q} = 3100 \text{ kg.m}^{-3}$) **water** ($\rho_w = 1000 \text{ kg.m}^{-3}$) aggregates (ρ_a = 2650 kg.m⁻³) additions (ρ_p = 2100 kg.m⁻³

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Concrete types

plain (non reinforced) concrete reinforced concrete prestressed concrete fiber-reinforced c. lightweight c. ($\rho_V < 2000 \text{ kg}.\text{m}^3$) high-performance and special concretes - self-compacting - high-strength c. - waterproof c. - sprayed c. - fair-faced c. - colored c

aculty of Civil Engineering

Faculty of Civil Engineering

Building materials

Reinforced and prestressed concrete

Department of Materials Engineerin Ind Chemistry

aculty of Civil Engineering

Building materials

Reinforced concrete

- combining plain concrete and reinforcing steel
- the system behaves as a unit

Joseph Monier 1823-1906

- good bond between steel and concrete
- thermal compatibility ($\alpha_t \cong 12.10^{-6} \text{ K}^{-1}$)
- good material tolerance

ind Chemistry aculty of Civil Engineering

Engli

Material

Reinforcing steel

• bars

J

1

3uildin

Materials Engineering

L OF

iment (iemistr Faculty of Civil Engineering

• grids

• fibers

strands, cables (prestressing)

Prestressed concrete

 compressive stresses induced by highstrength steel tendons in a concrete member before loads are applied, will balance the tensile stresses imposed in the member during service

Department of Materials Engineeri and Chemistry

Civil Engineering

aculty of

9

Engi

Material

Civil Engineering

to to

aculty

Prestressed concrete

- pre-tensioned concrete
 - concrete is cast around already tensioned tendons

Engineerin

Materials

Engineering

Civil

aculty of

Prestressed concrete

post-tensioned

 applying compression after pouring concrete and the curing process (*in situ*)

Capital Gate, Abu Dhabi

Opera, Sydne

Incheon Bridge, South Corea

Morandi Bridge, Genoa

CN Tower, Toronto

epartment of Materials Engineering nd Chemistry

Faculty of Civil Engineering

aculty of Civil Engineering

Building materials

Lightweight concretes

- bulk density < 2000 kg.m³
 - pervious
 - lightweight aggregates
 - foamed

Lightweight concretes

- + less need for structural steel reinforcement
- + smaller foundation requirements
- + better fire resistance
- + better thermal properties
- usually lower strength
- higher cost
- higher shrinkage
- higher water absorption

Pervious concretes

 little or no fine aggregate and just enough cementitious paste to coat the coarse aggregate particles while preserving the interconnectivity of the voids

Properties:

- compressive strength 1-10 MPa
- bulk density 900 -1400 kg.m³
 - very high permeability

void

grain

Department of Materials Engineerir and Chemistry

Civil Engineering

aculty of

din

⁻aculty of Civil Engineering

Pervious concrete

- pavements
 - drainage
 - noise reduction
- noise protection walls

aculty of Civil Engineering

Concretes with lightweight aggregates

Lightweight aggregates:

- natural (pumice, scoria, volcanic cinders, tuff, and diatomite)
- thermal treatment of natural raw materials (clay, slate, shale, perlite)
- from industrial by-products (fly ash, slag)

aculty of Civil Engineering

Concretes with lightweight aggregates - LWAC

- compressive strength similar to normal concretes (up to 45 MPa)
- $\rho_v = 1000 2000 \text{ kg.m}^3$

- high-strength lightweight concretes (HSLW) – strength up to 90 MPa
- aggregates require
 wetting prior to use
- worse pumping
- worse finishing

ind Chemistry aculty of Civil Engineering

Materia

Concretes with organic aggregates

- wood particles (need mineralization)
- natural fibers (hemp, sisal, bamboo, coir)
- foamed plastics (EPS, PP)

Cellular concretes

foamed concrete

- mixing of concrete with in advance prepared foam
- foam is prepared in foam generator
- aerated autoclaved concrete – AAC
 - foaming agents, which generates gas in concrete due to chemical reaction

Engineering

Civil

aculty of

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

epartment of Materials Engineering nd Chemistry

Faculty of Civil Engineering

Building materials

High performance concretes

High performance concrete - HPC

concrete that meets special performance and uniformity requirements that cannot always be obtained using conventional ingredients, normal mixing procedures, and typical curing practices

Characteristics:

- ease of placement and consolidation without affecting strength
- long-term mechanical properties
- early high strength
- volume stability
- longer life in severe environments

Civil Engineering

aculty of

Self- consolidating concrete SCC

- highly flowable, non-segregating concrete that spreads into place, fills formwork, and encapsulates even the most congested reinforcement, all without any mechanical vibration
- developed in 1980s Japan
- strength and durability same as conventional concrete

Faculty of Civil Engineering

Building materials

Self- consolidating concrete SCC

Self- consolidating concrete

increased amount of

- fine material (i.e. fly ash or limestone filler)
 - superplasticizers

epartment of Materials Engineering nd Chemistry

[±]aculty of Civil Engineering

High-strength concrete - HSC

- compressive strength
 - 60- 90 MPa HSC
 - 100-180 MPa UltraHSC
- highly impermeable
 the curing is very important
- brittle
 - high strength and increased stiffness
- low water content (< 0.38)
 - some cement grains act as aggregate grains (not all of the cement can be hydrated)

Burj Khalifa, 828 m

Department of Materials Engineeri and Chemistry

Civil Engineering

aculty of

Components:

- portland cement
- latent hydraulic and pozzolanic materials
 - large quantities (5% 20%)
- superplasticizers
- high strength aggregates with a suitable particle surface (angular), reduced particle size (< 32 mm)
- admixtures to ensure maximum deaeration
- w/c ~ 0,28

Civil Engineering

aculty

erials

APC – Advanced Permormance Composites Musashi Kosugi Towers, Tokio

Component	Amount / 1 m ³ of concrete	
Cement with silica fume	1024 kg	Mid Sky Tower (MS Tower)
Fine aggregates	436 kg	Station Forest Tower (SF Tower)
Coarse aggregates	840 kg	
Mixing water	155 I	
Polypropylene fibres	2 kg	
Steel fibers	40 kg	
Superplasticizers	PC	

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

e T

Bu

APC - Musashi Kosugi Towers, Tokio

- compressive strength: 150 MPa
- w/c ratio: 0.15
- flow diameter: 600 mm
- air content: 2%

Department of Materials Engineering and Chemistry

⁻aculty of Civil Engineering

Department of Materials Engineering Ind Chemistry

Faculty of Civil Engineering

Building materials

Special concretes

Waterproof concrete

- reduced capillary porosity
 - suitable particle-size distribution
 - low w/c ratio
 - additional sealing of the voids with pozzolanic reactive material
 - careful and correct compaction of the concrete

Engineering

aculty

a mixture of cement, aggregate and water projected pneumatically from a nozzle into place to produce a dense homogeneous mass.

- wet process (Shotcrete)
 - the concrete mix is supplied in the wet form and is pumped to the spraying nozzle where accelerating agent is added
- dry process (Gunite)
 - material is conveyed in a dry or semi dry state using compressed air to the nozzle where water is added

Department of Materials Engi and Chemistry

Civil Engineering

aculty

Sprayed concrete

Advantages

- high strength, low permeability, high durability
- reduction in formwork saving time and money
- high early strength gain
- low water / cement ratio
- good adhesion and bond strengths

Department of Materials Enginee and Chemistry

Engineering

Civil

aculty of

Bui

Department of Materials Engineering and Chemistry

aculty of Civil Engineering

Fair faced concrete

- smooth concrete surface
- uniform appearance
 - low-void (max. proportion of voids 0,3 0,6 % of test surface)

Rules:

- suitable concrete mix
 - suitable aggregates
- good formwork
 - absolutely impervious
- right quantity of a release agent
- suitable placement method
- correct installation
 - compaction, placing, prevention of bleeding
- thorough curing

Engineerin

Materials

aculty of

Light transmitting concrete

- Litracon
- 4 % optical fibers
- $\rho_v = 2100 2400 \text{ kg}.\text{m}^3$

- compressive strength 50 MPa
- price: t.100 mm 2140 € / m²

Engineerin

Materials

aculty of Civil Engineering

materi

Buildin

Concrete blocks and ceiling

- masonry blocks
- ceiling elements

Faculty of Civil Engineering

Building materials

Concrete tiles

- roof tiles
- floor tiles

Faculty of Civil Engineering

Faculty of Civil Engineering

Building materials

Mortars

Mortars

 binder + <u>fine</u> aggregates + (additives) + water

Use:

- masonry mortars

- plastering and rendering m.
- laying adhesives, grouts, screeds

Manufacture:

- site made
- factory made
- semi-finished

Department of Materials Engineerin and Chemistry

Civil Engineering

aculty of

uilding materi

Mortar components

Binder:

- clay
- cement
- cement + lime
- lime
- gypsum
- gypsum + lime

Additives:

plastificating a., fibers, pigments

Aggregates

- sand
- blast furnace slag
- ash
- perlite
- polystyrene

⁻aculty of Civil Engineering

din

Masonry mortars

site-made

=< 6

- sand : cement : hydrated lime =
- sand : cement = (4 : 1)

Civil Engineering

Suilding materials

Masonry mortars - definitions

- general purpose (G)
 - satisfies general requirements, without special characteristics
 - prescribed and/or designed
- thin layer (T)
 - a maximum aggregate particle size of 2 mm
- lightweight (L)
 - a dry bulk density below 1400 kg/m³

Faculty of Civil Engineering

Building materials

Brick laying – horizontal joints

Rendering mortars

- site-made exceptionally (restoring works)
- factory made
 - lime, cement, lime-cement EN 998-1– gypsum EN 13279

aculty of Civil Engineering

- general purpose (GP)
- lightweight (LW)
 - a dry hardened bulk density of less than 1300 kg/m³
- colored (CR)
- one coat for external use (OC)
- thermal Insulating (T)
- renovation (R)
 - for use on moist masonry walls containing soluble salts

Civil Engineering

aculty of

Clay renders

- clay + sand + (fibers)
 - outer restoring works
 - inner also in modern interiors (moisture regulation)

aculty of Civil Engineering

Bu

Materials Engineering

ment of

aculty of Civil Engineering

bull

Classical and one coat renders

 classical render – 15mm (primer, undercoat, fini-

(primer, undercoat, finicoat)

- one coat renders 4-8 mm
 - gypsum
 - lime-cement
 - acrylic
 - silicone
 - silicate

aculty of Civil Engineering

Thermal insulating mortars

- masonry mortars
 - $(\lambda = 0, 2 0, 6 \text{ W.m}^{-1}.\text{K}^{-1})$
 - thermal insulating masonry
- plaster ($\lambda = 0.09 0.12 \text{ W.m}^{-1}.\text{K}^{-1}$)
 - worse effect than (ca 1/4) than ETICS *
- lightweight aggregates(perlite burned clay aggregates, polystyrene) or foaming

* External Thermal Insulating Composite System

Faculty of Civil Engineering

Faculty of Civil Engineering

Building materials

Autoclaved products

- curing of products in special vessels (autoclaves), with an environment of steam with high pressure and temperature
- hydrothermal hardening of silicate materials (temperature ca 180 °C and pressure 0,8 MPa)
- after 16 -18 hours materials obtain the final strength
- after curing in autoclave non-hydraulic binders became hydraulic (quartz sand reacts with calcium hydroxide to form calcium silica hydrate)

Civil Engineering

Faculty of Civil Engineering

Building materials

Autoclaves for AAC manufacture

Faculty of Civil Engineering

Building materials

Aerated autoclaved concrete - AAC

and Chemistry ⁻aculty of Civil Engineering

Materials Engineerin

to

Aerated autoclaved concrete

Composition:

- binder (lime, cement)
- silicate materials
 - sand white AAC
 - ash grey AAC
- gas forming (foaming) admixture
 - Al powder, Al paste
- water

aculty of Civil Engineering

Aerated autoclaved concrete

Foaming:

Buildi

• 2 AI + 3 Ca(OH)₂ + 6 H₂O \rightarrow 3 CaO . Al₂O₃. 6H₂O + 3 H₂ \rightarrow foaming gas

Faculty of Civil Engineering

Building materials

AAC manufacture

AAC - products

blocks

Ē

ding

BC

Materials Engineering

partment of d Chemistry Faculty of Civil Engineering

- lintels
- ceiling elements
- panels
 - walls
 - partitions
 - floors
- chimney elements

AAC - properties

- compression strength classification:
 - 1,5; 2; 2,5; 3; 3,5; 4; 4,5; 5; 6; 7 (MPa)
- bulk density classification:
 - 300 (250 300); 350; 400; 450; 500; 550;..... 950; 1000 (kg/m³)
- $\lambda = 0.11 0.17$ W.m⁻¹.K⁻¹
- water absorptivity \cong 15 %

Vaterial **Civil Engineering**

aculty

AAC - advantages

- + less amount of mortar
- + good thermal efficiency
- + easy sawing and cutting
- + light weight
- + easy rendering
- + price

aculty of Civil Engineering

Materials Engineerin

10

aculty of Civil Engineering

BU

AAC - disadvantages

- high expedition moisture
- long drying
- lower compressive strength
- creeping (cracks)
- volume changes with moisture

AAC - reinforcing

- after autoclave curing there is no $Ca(OH)_2 \rightarrow AAC$ is not alkalic
- → anticorrosive protection of reinforcing steel is necessary !
- acrylic paint, stainless steel

Material

Autoclaved products Sand lime masonry elements

•

materi

ding

Materials Engineering

epartment of | nd Chemistry ⁻aculty of Civil Engineering

•

teri

mal

ding

Materials Engineering epartment of d Chemistry

Faculty of Civil Engineering

Sand lime masonry elements

- quicklime
 - 1 : 10 12
- sand
- water
- pigments

Sand lime masonry elements

- under the action of the high-pressure steam the lime attacks the particles of sand, and a chemical compound of water, lime and silica is produced which forms a strong bond of calcium silicate hydrates with the particles of sand
- compressive strength
 - $R_{c} = 15 40 MPa$
- good frost resistance
- $\rho_v = 1300 2000 \text{ kg.m}^{-3}$
- $\lambda = 0,9 \text{ W.m}^{-1}.\text{K}^{-1}$

Department of Materials Engineering and Chemistry

Civil Engineering

materials

ding

Bu

Sand lime masonry elements

- bricks
- blocks
 - full or hollow
 - smooth sides or interlocking grooves
- wall tiles
- lintels

ANARA DIG MANY

Faculty of Civil Engineering

⁻aculty of Civil Engineering

Sand lime masonry elements advantages

- + high dimensional accuracy
- + smooth surface
- + good frost resistance
- + good fire resistance
- + rendering is not necessary
- + good resistence against chemicals
- + labor saving
- + good thermal accumulation

aculty of Civil Engineering

Sand lime masonry elements disadvantages

- price

τ

- efflorescence
- higher thermal conductivity
- difficult removal of graffiti

Autoclaved products Fibre cement

Department of Materials Engineering

Faculty of Civil Engineering

and Chemistry

Fibre cement

Components:

• cement

formerly asbestos fibers (Eternit)
 – prohibited (health risk)

now:

- cellulose fibers
- syntetic fibers (PVA)
- water
- sand or microfillers
- additives (pigments)

Department of Materials Engineering and Chemistry

Civil Engineering

aculty

Faculty of Civil Engineering

Building materials

Fibre cement manufacture

epartment of Materials Engineering nd Chemistry

Faculty of Civil Engineering

Building materials

Fibre cement products

- roofing
 - slates
 - corrugated sheets

J

mai

lding

Faculty of Civil Engineering

Fibre cement products

cladding

- internal (fire protection, partition walls, ceilings)
- external (siding)

Building stone

"Of course, it's still a complete mystery as to how the ancients even managed to MOVE these massive stones..."

nd Chemistry

<u>Materials Engineering</u>

partment of

Faculty of Civil Engineering

als

materi

ding

E

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Building stone

Building stone

- all kinds of solid rocks, which
 have suitable properties to be
 used in construction works
- rocks must have certain physical and chemical properties based on their mineralogical and petrographic composition, structure, texture, secondary alterations, etc.

dimension stones > 125 mm (x aggregates < 125 mm)

Civil Engineering

⁼aculty of Civil Engineering

L la

Some properties of common rocks

Type of rock	Porosity (%)	Density pcf (kg/m ³)	Compressive strength ksi (MPa)	Modulus of elasticity ksi (MPa) × 10 ⁻³
Granite	0–2	165 (2650)	15-35 (103-241)	6-10 (41.3-68.9)
Limestone	0.5-30	168 (2700)	5-35 (34.4-241)	4-14 (27.6-96.5)
Marble	0-1.5	175 (2750)	10-30 (68.9-206.7)	4-14 (27.6-96.5)
Sandstone	1-20	160 (2580)	7-30 (48.2-206.7)	1-7.5 (6.9-51.7)
Slate	-	170 (2740)	—	_
Shale	2-30	140 (2255)		_

• igneous

 $-R_c$ = 120- 400 MPa, ρ_v = 2500 - 3000 kg.m⁻³

- sedimentary
 - $-R_c = 50 150 \text{ MPa}, \rho_v = 2000 2800 \text{ kg.m}^{-3}$

Stone extracting

quarry

Ð

mai

lding

- broaching (channeling)
 - holes, wedges
- blasting
 - explosives

Faculty of Civil Engineering

Stoneworking

cutting

eria

mat

-

20

- carving
- surface finishing

Faculty of Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Granit processing

Faculty of Civil Engineering

Building materials

Surface finishes

bush-hammered Pineappled

Chiseled

Swan

Antiqued

natural

Granite

Mechanical properties:

- high compressive strength
- hard surface
- difficult to work with
- can be polished

Appearance:

- medium to coarse texture
- pink to dark gray or even black
- small porosity
- Use:

•)

• external walls, flooring tiles, kerbs, paving stones, stairs

blue Yellow rock Rosa Beta Lemon Id

Verde – Sea Wawe – Star Galaxy – Tis

Department of Materials Engineer and Chemistry

Engineering

aculty

Basalt

Mechanical properties:

- high compressive strength
- very hard surface
- difficult to work with

Appearance:

- fine grained
- black, dark gray, greenish black

Use:

bg

- external walls, floors, cobblestones
- aggregates
- products from melted basalt

epartment of Materials Engineerin 1d Chemistry

Civil Engineering

aculty of

Sandstone

Mechanical properties:

- · easy to work with
- only particularly resistant to weather

Appearance:

 sand grains (0.05-2mm) cemented together

- the color varies from red, green, yellow, gray and white
 Use:
- decorative stones, flooring, paving, garden architecture

Jepartment of Materials Engineerin Ind Chemistry

Civil Engineering

aculty of

Limestone

Mechanical properties:

- easy to work with
- soft
- acid sensitive
- low porosity

Appearance:

- often a sandy color but sometimes it can be gray, greenish, or blackish
- Use:
- flooring, wall cladding
- raw material for cement, lime...

Traver

1e...

aculty of Civil Engineering

Engi

Material

Engineering

culty

Mechanical properties

- easy to work with
- easy to polish
- not resistant to acids

Appearance

a wide variety of colors

Use:

- interior decoration, statues
- cladding, floors (interior)

Slate

Mechanical properties:

- can be split into thin layers
- extremely low water absorption
- good weather resistance
- **Appearance:**
- color mostly gray
- Use:
- cladding, flooring tiles
- roof tiles slates

epartment of Materials Engineering od Chemistry

aculty of Civil Engineering

 natural stone or rock that has been selected and fabricated (trimmed, cut, drilled, ground) to specific sizes or shapes

Types:

- quarried (ruble) stone
- dressed stone
 - rough stone that has to be adjusted to fit a shape
- cut stone

Civil Engineering

aculty of

Rubble stone

- broken stone, of irregular size, shape and texture
- scrap left over from quarrying and processing
- may be roughly shaped into blocks, but it is not finished
- rubble stone walls
- fill
- stepping stones
- cyclopean masonry

Civil Engineering

aculty of

Stonemasonry

- rubble masonry
 - roughly dressed stones are laid in a mortar
 - quarried stone should be used

- ashlar masonry
 - stone masonry using cut stones
 - ashlar blocks
 - small ashlar

ng m

stone veneer

- protective and decorative covering of walls
- relatively small thickness and weight
- slipform stonemasonry
 - a reinforced concrete wall with stone facing in which stones and mortar are built up in courses within reusable slipforms

Civil Engineering

aculty of

aculty of Civil Engineering

E

e T

Another building stone types

- kerbs
- paving stones
 cubes, cobblestones
- stone cladding
- stairs

Ē

Idin

Gabion

- gabbia (it.) = big cage
- retaining walls
- slopes stabilization
- architectural elements

aculty of Civil Engineering

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Stone roofing

Artificial stone

- binder (white and/or grey cements or polymer resin), manufactured or natural sands, carefully selected crushed stone or well graded natural gravels and mineral coloring pigments
- manufactured s., cast stone, enginéered stone

din

Bu

Cast basalt

- compressive strength 300 450 MPa
- hardness 8 (Mohs)
- outstanding wear and weather resistance

⁻aculty of Civil Engineering

Mineral fibers

EN 13162 – insulation material having a woolly consistency, manufactured from molten rock, slag or glass

- boards or slabs (λ = 0,035 0,045 W.m⁻¹.K⁻¹, ρ_V = 35 - 220 kg.m⁻³)
- rolls ($\lambda \cong$ 0,04 W.m⁻¹.K^{-1,} ρ_V = 70 kg.m⁻³)
- batts, mats ($\lambda \simeq 0.04 \text{ W.m}^{-1}$.K⁻¹, $\rho_V = 100-120 \text{ kg.m}^{-3}$)
- free wool

Department of Materials Engineerin and Chemistry

Engineering

culty of

Faculty of Civil Engineering

Building materials

Mineral fibers use

- thermal insulations
- acoustic insulations
- fire proofing

NOBAS

Asbestos

- silicate minerals (serpentine, amphibole, chrysotile, crocidolite) with long, (1:20) thin fibrous crystals
- fire resistant, strong, elastic
- asbestos cement (roofing, boards, pipes)
- plasters, paints, sealants

Civil Engineering

aculty of

Asbestos

- prolonged inhalation of asbestos fibers can cause serious illnesses, (cancer mesothelioma, asbestosis)
- \rightarrow banned in EU
- → difficult liquidation!

Engineering

acuity