Building Materials

Lecture 2

Basic physical properties

= related to mass and volume of the material

- matrix density
- bulk density
- porosity
- granulometry
- fineness

Scales

Mechanical , digital

- analytical (readability $10^{-4} \mathrm{~g}$, capacity to 200g)
- milligram (0,01 g)
- laboratory (0,1-0,2 g, 200-1000 g)
- commercial (2-5 g, 5-25 kg)
- industrial (hundreds of kd

Size

Length measuring devices: calibrable

- Steel rule
- Steel measuring tape
- Calliper
- Micrometer
- Sieves

Solids:

- Calculation based on dimensions
- Immersion in liquid
- graduated cylinder
- pycnometre
- hydrostatic scales

Liquids:

- volumetric flask
- pipette
- burette

Bulk density X (matrix density)

[kg.m³]

Bulk density

Density

(specific gravity)

$$
\rho=\frac{m}{V_{s}}
$$

$\rho_{v}=\overline{V_{s}+V_{p}}$

$$
V_{s}+V_{p}
$$

Department of Materials Engineering
and Chemistry
Faculty of Civil Engineering
m... mass of material
$\mathrm{V}_{\mathrm{s}} \ldots$ volume of solid material

Bulk density \mathbf{x} Density

AAC

(aerated autoclaved concrete)
concrete

$$
\begin{aligned}
& \rho=2400 \mathrm{~kg} \cdot \mathrm{~m}^{-3} \quad \rho=2500 \mathrm{~kg} \cdot \mathrm{~m}^{-3} \\
& \rho_{\mathrm{V}}=500 \mathrm{~kg} \cdot \mathrm{~m}^{-3} \quad \rho_{\mathrm{V}}=2400 \mathrm{~kg} \cdot \mathrm{~m}^{-3}
\end{aligned}
$$

Bulk density determination

m
 $\rho_{\mathrm{V}}=\overline{V_{\mathrm{s}}+\mathrm{V}_{\mathrm{p}}}$

- mass m by weighing
- volume ($\mathbf{V}_{\mathrm{S}}+\mathbf{V}_{\mathrm{p}}$)
- counting from sizes (regular shape)
-in graduated cylinder
-by hydrostatical balance

Bulk density determination: By hydrostatical balance

 Archimedes principle: „Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object."\rightarrow from that difference the volume of the displaced water can be count (its density is known)
\rightarrow mass of material, weighted under water is lower than that weighted
$\rho_{\mathrm{H}_{2} \mathrm{O}}=\frac{m}{V}$ in the air
volume of displaced water = volume of material

Bulk density determination: By hydrostatical balance

$$
\rho_{\mathrm{H}_{2} \mathrm{O}}=\frac{m}{V} \rightarrow \quad V=V_{\mathrm{H}_{2} \mathrm{O}}=\frac{m}{\rho_{\mathrm{H}_{2} \mathrm{O}}}
$$

$$
V=\frac{m_{\text {in air }}-m_{\text {in water }}}{\rho_{\mathrm{H}_{2} \mathrm{O}}}
$$

$$
\rho_{V}=\frac{m_{\text {in air }}}{V}=\frac{m_{\text {in air }}}{m_{\text {in air }}-m_{\text {in water }}} \rho_{\mathrm{H}_{2} \mathrm{O}}
$$

Bulk density determination: By hydrostatical balance

$$
\rho_{a}=\rho_{W} \frac{M_{4}}{M_{1}-\left(M_{2}-M_{3}\right)}
$$

- \mathbf{M}_{1} mass of the sample in the air
-wet and dryed on the surface (aggregates) -dry (concrete)

- \mathbf{M}_{2} mass of the sample incl. the basket under water
- \mathbf{M}_{3} mass of the empty basket under water
- \mathbf{M}_{4} mass of dry sample
- ρ_{w} water density at testing temperature

Bulk density of fresh concrete

- EN 12350-6:2009 Testing fresh concrete. Density

Bulk density of building materials

Specific gravity (matrix density) determination

$$
\rho=\frac{\mathrm{m}}{\mathrm{~V}_{\mathrm{s}}}
$$

- Mass m by weighing
- Volume V_{s} by pycnometer
- material have to be finely grounded to avoid pores !

Pycnometer

- (glass) bottle with a close-fitting stopper with a capillary tube through it allowing excess liquid to escape
- the volume of the liquid in the pycnometer is always the same
- allows repeated obtaining a given volume of liquid with a high accuracy

Determination of density by pycnometric method

$$
\rho=\frac{\left(m_{2}-m_{1}\right) \times \rho_{k}}{\left(m_{2}-m_{1}\right)+m_{4}-m_{3}}
$$

Helium pycnometer

- the size of helium atoms is very small
- helium, under precisely-known pressure, is used to fill small voids within a specimen
- the volume change of helium in a constant volume chamber allows determination of solid volume

Density of building materials

Porosity

- ratio of the volume of the pores to the total volume of the material

$$
p=1-\frac{V_{S}}{V}=1-\frac{\rho_{v}}{\rho} \cdot(100)
$$

- usually expressed as a percentage

Properties related to porosity

- Water absorption \rightarrow frost resistance
- Gas and liquid transport
- Acoustic absorptivity
- Thermal conductivity
- Mechanical properties - strength

Pore size distribution

Mercury porosimetry

- the intrusion of a mercury at high pressure into a pores
- the pressure needed to fill the pores increases with decreasing pore diameters
- $400 \mathrm{MPa} \rightarrow \varnothing 1,5 \mathrm{~nm}$

Properties of loose materials
Loose material = solid material divided into many small particles

- an assembly of solid particles that is large enough for the statistical mean of any property to be independent of the number of particles

Void ratio

- volume of voids (between particles of a loose material) and the total volume
- the amount of void space depends on gradation, particle shape and texture, and compactness (rate of compaction)

Compacting

Uncompacted material

- the volume of voids in an uncompacted (unconsolidated) material

Compacted material the volume of voids in a fully/partially compacted (f / p consolidated) material

Loose (bulk) density determination

- Standard container (volume according maximum particle size) + tamping rod

Procedure:

- Loose weight:
- fill the container
- struck off the surplus
- Compact weight:
- fill the container in equal layers
- each layer being subjected to strokes with the tamping rod
- struck off the surplus

Aggregates

- granular material used in construction
- inorganic rocklike material
- various sizes and shapes
- particle size < 125 mm

Size, gradation

Gradation $=$ the particle size distribution

- amount of various particle sizes present in an aggregate
- determined by sieve analysis
- expressed as the percentage by mass passing a specified set of sieves

Standard sieves (EN 933-2)

125 mm 63 mm $31,5 \mathrm{~mm}$ 16 mm 8 mm
4 mm
2 mm
1 mm
$0,500 \mathrm{~mm}$ 0250 mm
0,125 mm $0,063 \mathrm{~mm}$

Sieve analysis

- dividing up a material into size fractions by passing it through sieves with decreasing apertures

Aggregate size (fraction) (EN 933-1)

- designation of aggregate in terms of lower (d) and upper (D) sieve sizes expressed as d/D*
- 16/64 aggregate will be that aggregate which passes the 64 mm sieve and is retained on the 16 mm sieve
* this designation accepts the presence of some particles which are retained on the upper sieve (oversize) and some which pass the lower sieve (undersize)

Sieve analysis - definitions

- Individual retained - the mass or percentage retained on one sieve after test
- Cumulative retained
- sum of the mass or percentages retained on the sieve and on all coarser sieves
- Cumulative passing
- sum of the mass or percentage passing the sieve (e.g. sum of the retained on all finer sieves and pan)

Particle size distribution curve

- graphical listing of the amount of particles according to particle size ranges

sieve size [mm]

- continuous line

Example: Aggregate, fraction 2/16-1000 g

- After sieve analysis these retained were obtained:

Sieveaperture size	Individual retained	
	g	\%
64	0	0
32	50	5
16	100	10
8	250	25
4	400	40
2	100	10
1	0	0
0,5	50	5
<0,5 (pan)	50	5

Cumulative retained	Cumul. passing
$\%$	$\%$
0	100
5	95
15	85
40	60
80	20
90	10
90	10
95	5
100	0

Particle size distribution curve

- missing fraction - horizontal line

Particle size [mm]

Fineness modulus

- to determining the degree of uniformity of the aggregate gradation
- single number
- obtained by adding the total percentages of material in a sample that are coarser than each of a specified series of sieves (cumulative percentages retained) and dividing the sum by 100 .

$$
\mathrm{FM}=\frac{\sum \text { cumulative retained on specified sieves [\%] }}{100 \%}
$$

Fineness modulus EN 12620

Specified sieves: 4-2-1-0,5-0,25-0,125

$$
\mathrm{FM}=\frac{\Sigma[(\rangle \mathbf{4})+(\rangle \mathbf{2})+(\rangle \mathbf{1})+(\rangle \mathbf{0}, \mathbf{5})+(\rangle \mathbf{0}, \mathbf{2 5})+(\rangle \mathbf{0}, \mathbf{1 2 5})]}{\mathbf{1 0 0}}
$$

$1<\mathrm{FM}<6$

- the bigger FM is, the coarser is aggregate

Fines

$=$ particle size fraction which passes the 0.063 mm sieve

- several methods for determining (washing, sand equivalent test, methylene blue test, air jet sieving)
- maximum value:
- fine aggregate < 3 \%
- coarse aggregate < 1.5%
- higher content of fines:
- higher consumption of cement
- lower strength

Shape and texture of particles

Particles:

- shape - rounded, angular, elongated,

- surface - smooth, rough (abraded)

Flakiness index

(EN 933-3)

- particles are flaky (flat) when their thickness is less than 0.6 of their mean size
- special sieves with elongated apertures
- the flakiness index - the weight of the flakey aggregate as a percentage of the aggregate tested

Shape index (EN 933-4)

a ratio between the weight of particles with L/E > 3 and weight of all measured particles in percents.

- shape ratio L / E - the length L and the thickness E of each particle
- L/E > 3 - non-cubic particles
- elongation index

Specific surface

- describes fineness
- total surface area per unit of mass
- units: $\mathrm{m}^{2 /} \mathrm{kg}\left(\mathrm{cm}^{2} / \mathrm{g}\right)$
- the higher the specific surface is, the finer material will be

Specific surface

cube $2 \times 2 \times 2 \mathrm{~cm}$
each face is $4 \mathrm{~cm}^{2}$ 6 faces $\mathrm{x} 4 \mathrm{~m}^{2}=24 \mathrm{~cm}^{2}$

8 cubes $1 \times 1 \times 1 \mathrm{~cm}$ each face is $1 \mathrm{~cm}^{2}$
6 faces $\times 1 \mathrm{~m}^{2} \times 8$ cubes $=48 \mathrm{~cm}^{2}$

- if each of the resulting cubes was divided similarly, the surface area would increase 16 times more

Specific surface of some materials

Specific surface area, $\mathrm{m}^{2} / \mathrm{kg}$

Specific surface determination

- (sieving)
- gas permeability
- air permeability (Blaine method)
- used for cement
- gas adsorption
- „BET" method
- the physical adsorption of gas molecules on a solid surface

Air permeability method

Fine material

- the specific surface is derived from the resistance to flow of air through a porous bed of the powder

Blain apparatus

Blain apparatus

Ermittlung der spezifischen Oberfläche von Zement

Determining the specific surface area of cement

Position of the liquid at the time T

Specific surface calculation

$$
S=\frac{\mathrm{K}}{\rho} \times \frac{\sqrt{e^{3}}}{(1-e)} \times \frac{\sqrt{t}}{\sqrt{0,1 \eta}}
$$

- K apparatus constant
- e porosity of the bed (usually e $=0,500$)
- t measured time [s]

- ρ cement density $\left[\mathrm{g} . \mathrm{cm}^{-3}\right]$
- η air viscosity at the test temperature [Pa.s]

Apparatus calibration

- apparatus must be calibrated, using a known standard material

$$
K=\mathrm{S}_{0} \times \rho_{0} \times \frac{(1-e)}{\sqrt{e^{3}}} \times \frac{\sqrt{0,1 \eta_{0}}}{\sqrt{t_{0}}}
$$

- S_{0} specific surface of the reference cement $\left[\mathrm{cm}^{2} \cdot \mathrm{~g}^{-1}\right]$
- ρ_{0} density of the reference cement [g.cm ${ }^{-3}$]
- t_{0} measured time [s]
- η_{0} air viscosity at the test temperature [Pa.s]

Fineness of grinding

- cements and similar materials
- described by the specific surface
- finer cement offers a greater surface area for hydration and hence faster the development of strength
- specific surface of common cements:

$$
250-350 \mathrm{~m}^{2} / \mathrm{kg}
$$

(2500-3500 cm²/g)

Mechanical properties

Solid materials

- structural rigidity
- resistance to changes of shape or volume
- atoms are tightly bound to each other

Atomic vibration in crystalline solid

Mechanical properties

- material's behavior when force is applied - characteristics such as the strength and resistance to deformation

Mechanical properties
deformation properties (before destruction)

- strength properties (at the moment of break)

Force x Stress

- stress is a measure of the internal forces which are a reaction to external forces

Force $\mathrm{F} \neq$ stress σ

$[\mathrm{N}] \neq[\mathrm{Pa}]$

Isaac Newton

Blaise Pascal

Compressive stress

Units of stress

SI units: Pascal

$$
\mathrm{Pa}=\frac{\mathrm{N}}{\mathrm{~m}^{2}}
$$

Imperial units: pound-force per square inch

$$
\mathrm{psi}=\frac{\mathrm{lbf}}{\mathrm{in}^{2}}
$$

$$
\mathrm{ksi}=1000 \cdot \mathrm{psi}
$$

$$
1 \text { psi = } 6894,76 \mathrm{~Pa}
$$

Strength properties

Strength

- ability to withstand an applied load without failure
- the maximum stress sustained by a material loaded to failure

Strength

According the way of obtaining: -theoretical (structural) -technical -statistical

Technical strength

- from the testing of the real material sample
- material have to be homogenous
-test samples in the appropriate shape (cylinder strength, cubic strength...)

Statistical strength

- from the single samples properties the property of the whole population can be estimated by the statistical methods

Statistics

", The only statistics you can trust are those you falsified yourself."
attributed to Winston Churchill

Statistics - terminology

- Random experiment - any experiment of which result cannot be precisely predicted
- Population - representative sample of larger group of individuals with one or more characteristics in common
- Random sample - a small random portion of the entire population selected in such a way that every member of the sample has equal probability of being chosen

Statistical evaluation of strength

- Only part of the population is tested random sample
- From the results of random sample can be estimated a corresponding parameter of the population
- Typical population has normal distribution (Gaussian function)

Normal distribution

- for the whole population

Frequency
mean
Measured value

Gaussian curve

- the narrower and higher the curve is, the more statistically homogenous the data

Histograme

- from testing of random sample the distribution curve could not be made
- the more numerous the random sample is, the closer to the curve the histogram is

Normal and other distribution

- normal distribution

- non-symmetrical

Statistical parameters

Values:	$\mathbf{4 , 8 , 6}$	$\mathbf{2 , 5 , 1 1}$
- Mean	$\overline{\mathbf{x}}=\mathbf{6}$	$\overline{\mathrm{x}}=\mathbf{6}$
Deviations	$-2,+2,0$	$-4,-1,+5$
Sum of deviations	0	0
Deviations square	$4,4,0$	$16,1,25$
Sum of squares	8	42
- Variance	2.67	14
- Standard	1.63	3.74

Statistical parameters

mean

variance

standard deviation

Standard deviation s

- measure of variability or diversity of a data set
- low standard deviation
- the data points tend to be very close to the mean
- high standard deviation
- the data points are spread out over a large range of values

Guaranteed strength

the value of the strength, for which can be statistically guaranteed, that 95 \% of whole production will have the same or higher value of the strength

guaranteed strength

