Vepartment of Materials Engineering Ind Chemistry

aculty of Civil Engineering

Building materials

Building Materials

Lecture 2

Basic physical properties

= related to **mass** and **volume** of the material

- matrix density
- bulk density
- porosity
- granulometry
- fineness

aculty of

J

E E E

Building

Mass

Choice of suitable scales:

- capacity (max. range)
- readability

Faculty of Civil Engineering

Mechanical, digital

- analytical (readability 10⁻⁴ g, capacity to 200g)
- milligram (0,01 g)

Engineerin

Vaterial

Civil Engineering

aculty of

- laboratory (0,1 0,2 g, 200 1000 g)
- commercial (2 5 g, 5 25 kg)
- industrial (hundreds of kg

Department of Materials Engineering and Chemistry

Solids:

din

Bu

- Calculation based on dimensions
- Immersion in liquid
 - graduated cylinder
 - pycnometre
 - hydrostatic scales

Liquids:

- volumetric flask
- pipette
- burette

⁻aculty of Civil Engineering

spartment of Materials Engineering d Chemistry

Faculty of Civil Engineering

Building materials

Bulk density X

Density (matrix density)

[kg.m⁻³]

Engineerin Materials ⁻aculty of Civil Engineering

Density **Bulk density** (specific gravity) m m ρν $V_s + V_p$ m... mass of material m... mass of material V_s... volume of solid V_s ... volume of solid material material V_p... volume of voids in material

Bulk density x Density

AAC

(aerated autoclaved concrete) concrete

ρ = 2400 kg.m⁻³ ρ = 2500 kg.m⁻³

 $\rho_V = 500 \text{ kg.m}^{-3} \rho_V = 2400 \text{ kg.m}^{-3}$

aculty of Civil Engineering

Bulk density determination

- mass m by weighing
- volume (V_s+V_p)
 - -counting from sizes (regular shape)
 - -in graduated cylinder
 - -by hydrostatical balance

<u>Civil</u> Engineering

Department of Materials Engineering and Chemistry

Department of Materials Engineerin and Chemistry

Bulk density determination: By hydrostatical balance

Archimedes principle:

"Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object."

→ from that difference the volume of the displaced water can be count (its density is known)

→ mass of material, weighted under water is lower than that weighted in the air

 $\rho_{H_2O} = \frac{m}{V}$

volume of displaced water = volume of material

Civil Engineering

aculty of

Bulk density determination: By hydrostatical balance

m

$$H_{20} = \frac{m}{V} \rightarrow \qquad V = V_{H_20} = \frac{m}{\rho_{H_20}}$$

$$V = \frac{m_{in\,air} - m_{in\,water}}{\rho_{H_2 0}}$$

$$\rho_V = \frac{m_{in\,air}}{V} = \frac{m_{in\,air}}{m_{in\,air} - m_{in\,water}} \rho_{H_2 O}$$

Bulk density determination: By hydrostatical balance

$$\rho_a = \rho_W \frac{M_4}{M_1 - (M_2 - M_3)}$$

- M₁ mass of the sample in the air
 wet and dryed on the surface (aggregates)
 dry (concrete)
- M₂ mass of the sample incl. the basket under water
- M₃ mass of the empty basket under water
- M_4 mass of dry sample
 - ρ_w water density at testing temperature

Department of Materials Engineerin Ind Chemistry

Civil Engineering

aculty of

J J

Bulk density of fresh concrete

• EN 12350-6:2009 Testing fresh concrete. Density

Department of Materials Engineering Ind Chemistry

⁻aculty of Civil Engineering

Faculty of Civil Engineering

Building materials

Bulk density of building materials

Specific gravity (matrix density) determination

Mass m by weighing

Volume V_s by pycnometer

 material have to be finely grounded to avoid pores !

Department of Materials Engineerin and Chemistry

Civil Engineering

aculty of

- (glass) bottle with a close-fitting stopper with a capillary tube through it allowing excess liquid to escape
- the volume of the liquid in the pycnometer is always the same
- allows repeated obtaining a given volume of liquid with a high accuracy

Department of Materials Engineering Ind Chemistry

Faculty of Civil Engineering

Building materials

Determination of density by pycnometric method

 $m_1 m_2 m_3 m_4$

$$\rho = \frac{(m_2 - m_1) \times \rho_k}{(m_2 - m_1) + m_4 - m_3}$$

Helium pycnometer

• the size of helium atoms is very small

PYCNOMATIC

- helium, under precisely-known pressure, is used to fill small voids within a specimen
- the volume change of helium in a constant volume chamber allows determination of solid volume

М

V_r = Reference volume

Vs = Sample volume

V_c = Cell volume

M = Manometer

٧c

Vs

aculty of Civil Engineering

Department of Materials Engineering

and Chemistry

materials

Density of building materials

<u>Civil Engineering</u>

aculty

Porosity

ratio of the volume of the pores to the total volume of the material

$$p = 1 - \frac{V_S}{V} = 1 - \frac{\rho_v}{\rho}.$$
 (100)

usually expressed as a percentage

⁻aculty of Civil Engineering

Types of pores

• closed • open

 $p = p_{closed} + p_{open}$

Properties related to porosity

- Water absorption \rightarrow frost resistance
- Gas and liquid transport
- Acoustic absorptivity
- Thermal conductivity
- Mechanical properties strength

bu

Pore size distribution

Mercury porosimetry

- the intrusion of a mercury at high pressure into a pores
- the pressure needed to fill the pores increases with decreasing pore diameters

Pore diameter/µm

Engineerin aculty of Civil Engineering 0 emist

<u>Materials</u>

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

ater

Properties of loose materials

- Loose material = solid material divided into many small particles
 - an assembly of solid particles that is large enough for the statistical mean of any property to be independent of the number of particles

ateria

aculty of Civil Engineering

Void ratio

- volume of voids (between particles of a loose material) and the total volume
- the amount of void space depends on gradation, particle shape and texture, and compactness (rate of compaction)

Compacting

Uncompacted material - the volume of voids in an uncompacted (unconsolidated) material

Compacted material the volume of voids in a fully/partially compacted (f/p consolidated) material

Materials Engineering ⁻aculty of Civil Engineering emist

0

Loose (bulk) density

 $\rho_L = \frac{m}{V_S + V_P + V_V}$

- in the uncompacted state
- in the consolidated state (compacted)

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Loose (bulk) density determination

• Standard container (volume according maximum particle size) + tamping rod

Procedure:

- Loose weight:
 - fill the container
 - struck off the surplus
- Compact weight:
 - fill the container in equal layers
 - each layer being subjected to strokes with the tamping rod
 - struck off the surplus

Department of Materials Engineerin and Chemistry

Civil Engineering

aculty of

Aggregates

- granular material used in construction
- inorganic rocklike material
- various sizes and shapes
- particle size < 125 mm

and Chemistry

Material

Size, gradation

Gradation = the particle size distribution

- amount of various particle sizes present in an aggregate
 - determined by sieve analysis
 - expressed as the percentage by mass passing a specified set of sieves

Department of Materials Engineeri and Chemistry

Engineering

Faculty of Civil Engineering

Building materials

Standard sieves (EN 933-2)

125 mm 63 mm 31,5 mm 16 mm 8 mm **4** mm 2 mm 1mm 0,500 mm 0250 mm 0,125 mm 0,063 mm

Faculty of Civil Engineering

Building materials

aculty of Civil Engineering

Building materials

Sieve analysis

 dividing up a material into size fractions by passing it through sieves with decreasing apertures

Aggregate size (fraction) (EN 933-1)

 designation of aggregate in terms of lower (d) and upper (D) sieve sizes expressed as d/D*

 16/64 aggregate will be that aggregate which passes the 64 mm sieve and is retained on the 16 mm sieve

* this designation accepts the presence of some particles which are retained on the upper sieve (**oversize**) and some which pass the lower sieve (**undersize**)

Sieve analysis - definitions

- Individual retained the mass or percentage retained on one sieve after test
- Cumulative retained

 sum of the mass or
 percentages retained on
 the sieve and on all
 coarser sieves

Cumulative passing

 sum of the mass or percentage passing the sieve (e.g. sum of the retained on all finer sieves and pan)

Engineering

Particle size distribution curve

 graphical listing of the amount of particles according to particle size ranges

- continuous line
 - axe X sieve size (particle size)
 - axe Y cumulative passing (percent passing by weight)

Department of Materials Engineerin and Chemistry

Civil Engineering

aculty of

terials

lding ma

Example:

Aggregate, fraction 2/16 - 1000 g

 After sieve analysis these retained were obtained:

Sieve	Individual retained		Cumulative retained	Cumul. passing
aperture size	g	%	%	%
64	0	0	0	100
32	50	5	5	95
16	100	10	15	85
8	250	25	40	60
4	400	40	80	20
2	100	10	90	10
1	0	0	90	10
0,5	50	5	95	5
< 0,5 (pan)	50	5	100	0

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

⁻aculty of Civil Engineering

Building materials

Particle size distribution curve oversize 15 % 100 [%] 100 passing 95 90 40 % particles 85 80 bigger than Cumulative 70 mm 60 60 50 fraction 1/2 omitted 40 60 % particles (gap grading) 30 smaller than 20 20 8 mm 10 10 10 undersize 10 % 0 0.5 32 2 16 64 8

missing fraction – horizontal line

Particle size [mm]

vertical line – never!

Fineness modulus

- to determining the degree of uniformity of the aggregate gradation
- single number
- obtained by adding the total percentages of material in a sample that are coarser than each of a specified series of sieves (cumulative percentages retained) and dividing the sum by 100.

 $= \frac{\sum \text{ cumulative retained on specified sieves [%]}}{100 \%}$

Engineering

epartment of Materials Engined Id Chemistry

aculty of Civil Engineering

Building materials

Fineness modulus EN 12620

Specified sieves: 4 - 2 - 1 - 0,5 - 0,25 - 0,125

$FM = \frac{\sum[(\rangle 4) + (\rangle 2) + (\rangle 1) + (\rangle 0, 5) + (\rangle 0, 25) + (\rangle 0, 125)]}{100}$

1 < FM < 6

• the bigger FM is, the coarser is aggregate

nd Chemistry aculty of Civil Engineering

daterial

Building materials

Fines

- = particle size fraction which passes the 0.063 mm sieve
- several methods for determining (washing, sand equivalent test, methylene blue test, air jet sieving)
- maximum value:
 - fine aggregate < 3 %
 - coarse aggregate < 1.5 %
- higher content of fines:
 - higher consumption of cement
 - lower strength

Shape and texture of particles

Particles:

shape – rounded, angular, elongated, flat

surface – smooth, rough (abraded)

Engineering

aculty

 particles are flaky (flat) when their thickness is less than 0.6 of their mean size

- special sieves with elongated apertures
- the flakiness index the weight of the flakey aggregate as a percentage of the aggregate tested

Building motoria

Civil Engineering

aculty

Shape index (EN 933-4)

- a ratio between the weight of particles with L/E > 3 and weight of all measured particles in percents.
 - shape ratio L/E the length L and the thickness E of each particle
 - L/E > 3 non-cubic particles

elongation index

Department of Materials Engineerir and Chemistry

<u>Civil</u> Engineering

Faculty of Civil Engineering

Building materials

Shape ratio L/E

Faculty of Civil Engineering

- describes fineness
- total surface area per unit of mass
- units: m²/ kg (cm²/g)
- the higher the specific surface is, the finer material will be

Materials Engineerin

Civil Engineering

aculty of

Specific surface

cube 2 x 2 x 2 cm each face is 4 cm² 6 faces x 4 m² = 24 cm² 8 cubes 1 x 1 x 1 cm each face is 1 cm² 6 faces x 1m² x 8 cubes = 48 cm²

• if each of the resulting cubes was divided similarly, the surface area would increase 16 times more

Department of Materials Engineering Ind Chemistry

Civil Engineering

aculty of

Department of Materials Engineering Faculty of Civil Engineering d Chemistry

materia

Specific surface of some materials

Specific surface area, m²/kg

Specific surface determination

- (sieving)
- gas permeability
 - air permeability (Blaine method)
 - used for cement
- gas adsorption
 - "BET" method
 - the physical adsorption of gas molecules on a solid surface

Civil Engineering

aculty of

Air permeability method

Fine material

 the specific surface is derived from the resistance to flow of air through a porous bed of the powder

aculty of Civil Engineering

Faculty of Civil Engineering

Blain apparatus

Blain apparatus

Ermittlung der spezifischen Oberfläche von Zement

Determining the specific surface area of cement

U

Position of the liquid at the time T

partment of Materials Engineering d Chemistry

⁻aculty of Civil Engineering

Specific surface calculation

 $S = \frac{K}{\rho} \times \frac{\sqrt{e^3}}{(1-e)} \times \frac{\sqrt{t}}{\sqrt{0,1\eta}}$

- e porosity of the bed(usually e = 0,500)
- t measured time [s]
- ρ cement density [g.cm⁻³]
- η air viscosity at the test temperature [Pa.s]

Civil Engineering

aculty of

Department of Materials Engi Ind Chemistry

Apparatus calibration

 apparatus must be calibrated, using a known standard material

$$K = S_0 \times \rho_0 \times \frac{(1-e)}{\sqrt{e^3}} \times \frac{\sqrt{0.1\eta_0}}{\sqrt{t_0}}$$

- ρ_0 density of the reference cement [g.cm⁻³]
- to measured time [s]
- η_0 air viscosity at the test temperature [Pa.s]

- cements and similar materials
- described by the specific surface
- finer cement offers a greater surface area for hydration and hence faster the development of strength
- specific surface of common cements:

250 – 350 m²/ kg

(2500 - 3500 cm²/g)

Jepartment of Materials Engineeri Ind Chemistry

Engineering

Faculty of Civil Engineering

Faculty of Civil Engineering

Building materials

Mechanical properties

Solid materials

- structural rigidity
- resistance to changes of shape or volume
- atoms are tightly bound to each other

Atomic vibration in crystalline solid

epartment of Materials Engineering nd Chemistry

aculty of Civil Engineering

BC

Building materials

Mechanical properties

- material's behavior when force is applied
- characteristics such as the strength and resistance to deformation

aculty of Civil Engineering

Mechanical properties

- deformation properties (before destruction)
- strength properties (at the moment of break)

Faculty of Civil Engineering

Type of loading

 stress is a measure of the internal forces which are a reaction to external forces

[N] ≠ [Pa]

¥

Isaac Newton

Blaise Pascal

Department of Materials Engineering ind Chemistry

Civil Engineering

aculty of

Faculty of Civil Engineering

Building materials

Compressive stress

$S = 0,005 \ x \ 0,005$ = 0,000025 m^2

1 psi = 6 894,76 Pa

Engineering Materials 0

Faculty of Civil Engineering

Building materials

Strength properties

Department of Materials Engineering Ind Chemistry

aculty of Civil Engineering

Building materials

Strength

- ability to withstand an applied load without failure
- the **maximum stress** sustained by a material loaded to failure

Strength

According the way of obtaining: -theoretical (structural) -technical -statistical

aculty of Civil Engineering

m

Х

Civil Engineering

aculty of

Theoretical strength

- Counted from the number and strength of the bonds between atoms
- defects in the crystal lattice real strength is distinctively lower (ca 1000x)

Technical strength

 from the testing of the real material sample

 material have to be homogenous
 test samples in the appropriate shape (cylinder strength, cubic strength...)

<u>Civil</u> Engineering

- shaping from the material
 - cutting, carving, drilling
- directly made in the required shape – cubes, cylinders..
- whole products
 - bricks, blocks

aculty of Civil Engineering

Department of Materials Engineerin Ind Chemistry

aculty of Civil Engineering

Building materials

Statistical strength

 from the single samples properties the property of the whole population can be estimated by the

statistical methods

" The only statistics you can trust are those you falsified yourself."

attributed to Winston Churchill

aculty of Civil Engineering

aculty of Civil Engineering

Statistics - terminology

- Random experiment any experiment of which result cannot be precisely predicted
- Population representative sample of larger group of individuals with one or more characteristics in common
- Random sample a small random portion of the entire population selected in such a way that every member of the sample has equal probability of being chosen

Statistical evaluation of strength

- Only part of the population is tested random sample
- From the results of random sample can be estimated a corresponding parameter of the population
- Typical population has normal distribution (Gaussian function)

Materials Engineering tment of emistr

Faculty of Civil Engineering

J Ē ilding

aculty of Civil Engineering

Building materials

Gaussian curve

 the narrower and higher the curve is, the more statistically homogenous the data

- from testing of random sample the distribution curve could not be made
- the more numerous the random sample is, the closer to the curve the histogram is

Building materials

Department of Materials Engineering and Chemistry

Civil Engineering

aculty of

Engin **Materials Civil Engineering** aculty of

4, 8, 6 Values: 2, 5, 11 $\overline{\mathbf{X}} = \mathbf{6}$ Mean $\overline{\mathbf{X}} = \mathbf{6}$ -4,-1,+5 **Deviations** -2,+2,0Sum of deviations 16, 1, 25 **Deviations square** 4, 4, 0 Sum of squares 42 8 2.67 14 Variance Standard 1.63 3.74 deviation

Statistical parameters

Statistical parameters

eria

5

Materials Engineering

bartment of Chemistry **Faculty of Civil Engineering**

variance standard deviation

mean

- measure of variability or diversity of a data set
- low standard deviation-
 - the data points tend to be very close to the mean

- high standard deviation
 - the data points are spread out over a large range of values

Engineering

J

Suilding

⁻aculty of Civil Engineering

Normal distribution

• symetrical

- +s to -s : 68.26 % of area
- +2s to -2s : 95.6 % of area
- +3s to –3s : 99.7 % of area

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

-1.645 s

+1.645 s

 the value of the strength, for which can be statistically guaranteed, that 95 % of whole production will have the same or higher value of the strength

guaranteed strength

aculty of Civil Engineering