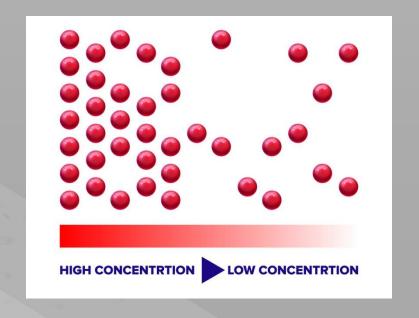


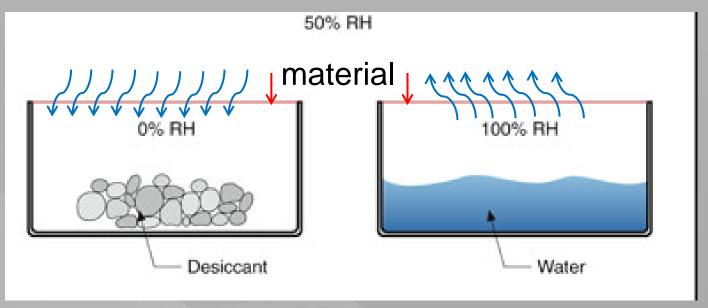
Building Materials


Lecture 5

Diffusion properties

Diffusion

- gases, vapor
- spread of particles through random motion from regions of higher concentration to regions of lower concentration
- Important for:
 - vapor barriers
 - radon barriers
 - rehabilitation renders
 - paints
 - passive houses

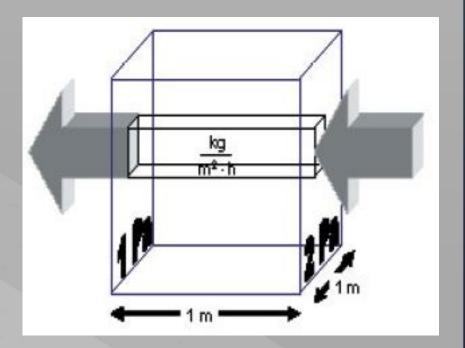

Water vapor transport

Important properties:

- the water vapor diffusion coefficient δ
- the resistance to water vapor diffusion factor µ
- the water vapor diffusion equivalent air layer thickness S_d

Water vapor permeability test

- dry cup method wet cup method


mass increase

mass decrease

Water vapor diffusion - coefficient δ

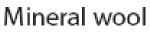
 the amount of water vapor [kg] which diffuses through a layer of material which is 1 m thick and has an area of 1 m² at a partial water vapor pressure difference of 1 Pa in 1 hour

units: [kg/m.h.Pa]

Resistance to water vapor diffusion - factor μ

- the ratio of the water vapor diffusion coefficient of the air δ_L to the value δ_{mat} of the material
 - a measure for the vapor tightness of a material (how many times greater the resistance to transmission of a layer of the material is compared to a static layer of air of the same thickness)

μ -value of some materials


Material	μ -value
Reinforced concrete	90
AAC (autoclaved aerated concrete)	6
Masonry of full bricks	7
Steel (plate)	600 000
Window glass	10 000
Gypsum board	12
Gypsum fibre board	10 -15
Wooden fiber plates	10
Hydrophobic plywood	60 - 100
Mineral wool	2
OSB (oriented strand board)	30
EPS (expanded polystyrene)	40
XPS (extruded polystyrene foam)	170 - 200

Equivalent air layer thickness S_d

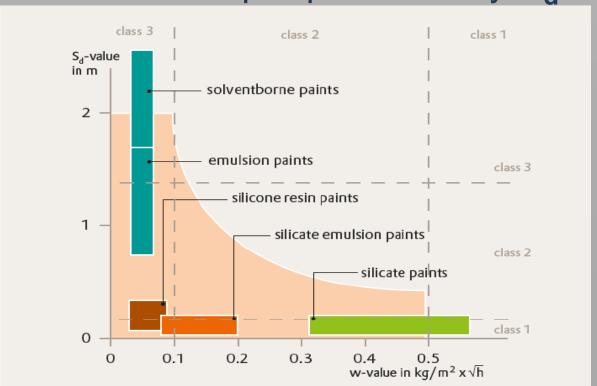
$$S_d = \mu \cdot s [m]$$

the thickness of a static layer of air in meters, which displays the same resistance to water vapor transmission as the building material in the thickness s with the resistance to water vapor transmission value μ

$$\mu \approx \! 3; \, s = 100 \; mm$$

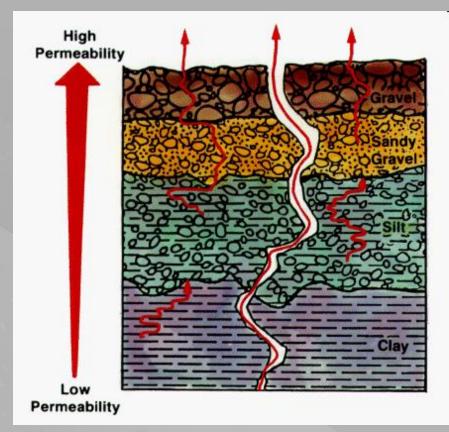
Polyurethane $\mu \approx 100$; s = 100 mm

$$S_{d} = 0.3 \text{ m}$$


$$S_d = 10 \text{ m}$$

- Sd ≤ 0.5 m => diffusionopen materials
- 0.5 m < Sd => diffusionblocking materials
- Sd ≥ 1500 m ≥ 1500 m =>
 diffusion-proof materials

Diffusion of coatings


Künzel's facade protection theory:

 protection and breathability of coating are influenced by water absorption capacity w and the water vapor permeability S_d

Soil permeability

- ability of soil to transmit water and air
- important in the areas with radon risk

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Faculty of Civil Engineering

uilding materials

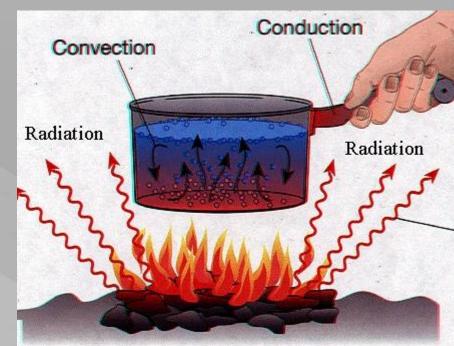
Thermal properties

Interaction heat - material

 If the surroundings of the material has different temperature than the material, the thermal energy is transferred

Types of interaction:

- 1. The properties of material influence the transmission of heat
- 2. Thermal energy influences the properties of material

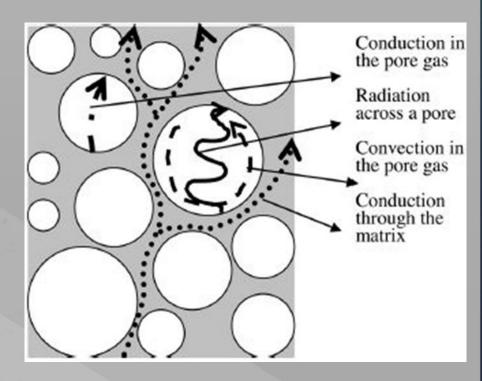

Heat transport

- conduction solids, gases, liquids
 - the transfer of heat within a substance, molecule by molecule
- convection gases, liquids

- heat transfer by the mass movement of a fluid in

the vertical direction

- radiation gases
 - heat is transfered through wave energy



Heat transport

 In the porous materials the heat is transferred by combination of all types of heat transport

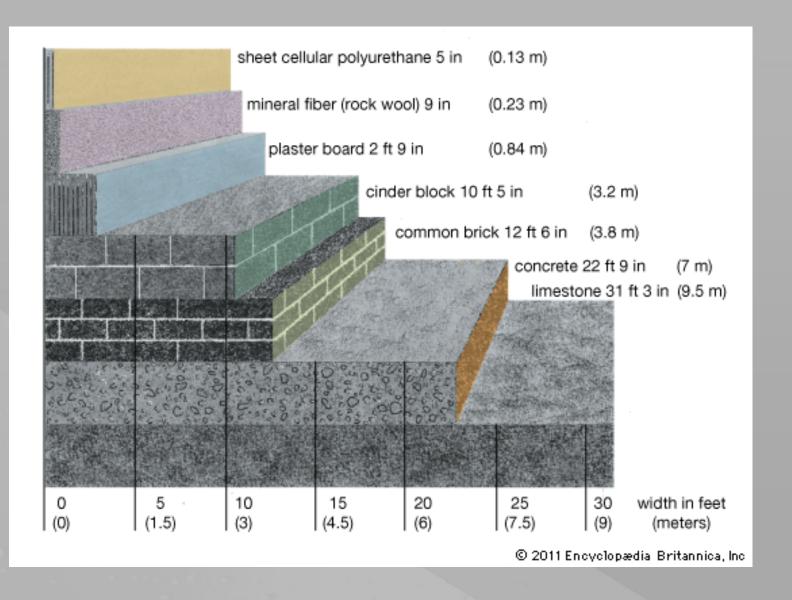
Depends on:

- porosity
- structure
- temperature
- material type

Thermal conductivity

a material's ability to conduct heat

(coefficient of) thermal conductivity


Thermal conductivity

- the quantity of heat transmitted, due to unit temperature gradient, in unit time under steady conditions in a direction normal to a surface
- λ (K-value)
- units SI: [W/m.K]
 - imperial units: [Btu/hr.ft.F] (1 Btu/hr.ft.F = 1.730735 W/m.K)
- the lower λ, the better insulator
 - (thermal insulating materials λ < 0,15 W/m.K)
- range λ : 10⁻² 10² W/m.K

Faculty of Civil Engineering

Thermal conductivity - comparison

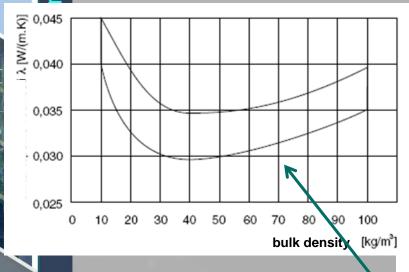
Thermal conductivity **Basic facts**

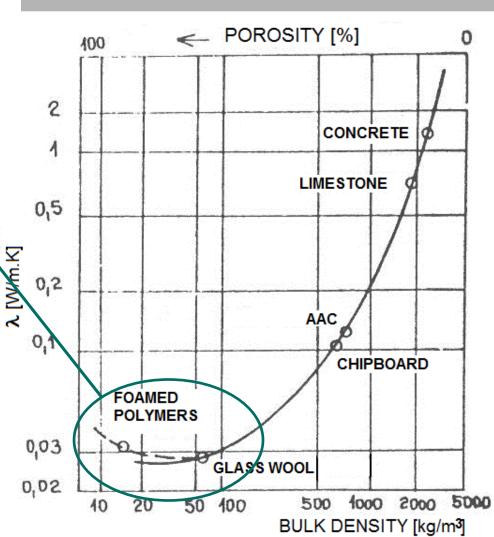
- Organic materials are better insulators than inorganic m.
- Crystalline materials are better conductors than amorphous m.
- Materials with lower bulk density are usually better insulators.
- Metals are very good conductors.
- Anisotropic materials have different conductivity in different directions.



Thermal conductivity

Depends on:


- chemical composition
- structure
- porosity (bulk density)
- moisture
- temperature


Influence of porosity on thermal conductivity

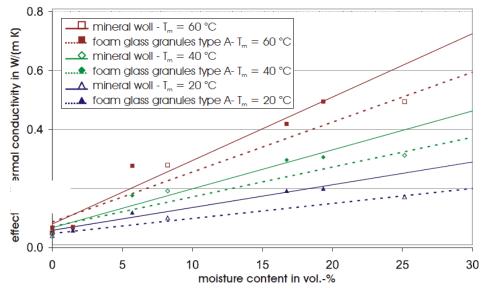
- $\lambda_{AIR} = 0.025 \text{ W.m}^{-1}.\text{K}^{-1}$
- the higher the amount of air in the material (porosity), the lower bulk density and thermal conductivity is
- size of pores is limited (best 0,1 1 mm)
 (because of capillarity)

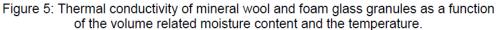
Porosity x thermal conductivity

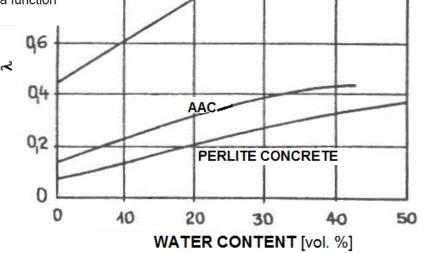
EPS

Department of Materials Engineering and Chemistry
Faculty of Civil Engineering

Influence of moisture on thermal conductivity

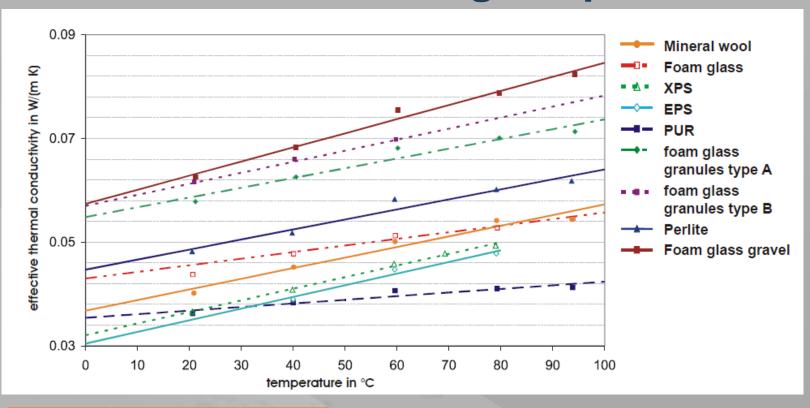

 λ_{water} app. 25 x higher than λ_{air}





- moisture significantly reduces the thermal insulating ability of materials
- very small pores are liable to wetting (capillarity) - the best size of pores in insulating materials: 0,1 - 1 mm

Moisture x thermal conductivity



BRICK

Influence of temperature on thermal conductivity

λ increases with rising temperature

$$\lambda_t = \lambda_0 + 0.0025t$$
 (for t = 0 - 100°C)

Thermal insulating materials overview

- fibrous mineral and glass fibers
 - wood wool (excelsior)
 - cellulose fibers
 - recycled paper fibers
 - straw (bales, loose)

porous particles

- expanded clay aggregate
- expanded perlite
- ash
- cinders

Thermal insulating materials

- shaped
- lightweight concretes (with lightweight aggregates, pervious c., aerated concretes)

- diatomite

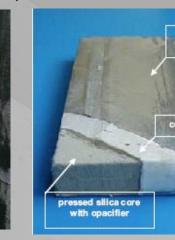
foamed

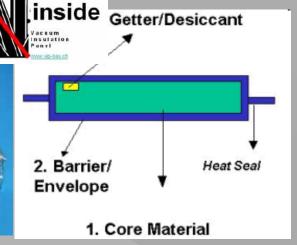
- foamed polymers (PU,PS, phenolic foam)
- cellular glass

Thermal insulating materials

other

- cork (expanded)
- wood
- wood-based materials (fiber board, particle board)


- lamb wool



Best insulation?

- vacuum
- "VIP" = Vacuum Insulated Panel
- a nearly gas-tight enclosure surrounding a rigid core, from which the air has been evacuated
- $\lambda = 0.004 0.008 \text{ W/m} \cdot \text{K}$

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

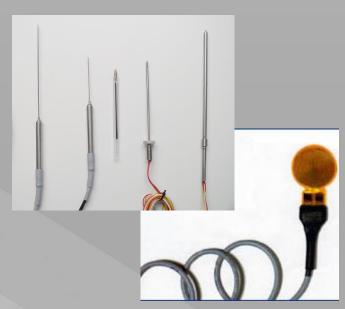
Building materials

Thermal conductivity measuring

- steady-state methods the temperature of the measured material does not change with time
- transient (non steady-state) methods a measurement during the process of heating up

Steady state - a situation in which all variables are constant in spite of ongoing processes that strive to change them. For an entire system to be at steady state, i.e. for all state variables of a system to be constant, there must be a flow through the system

Thermal conductivity measuring


Steady-state methods:

- Guarded hot plate
- Divided bar
- Hot box

Transient methods:

- Hot wire
- Plane source
- Needle probe
- Laser flash method

Faculty of Civil Engineering

Thermal conductivity measuring

Thermal conductivity determination

Steady state method:

$$\lambda = \frac{q \times d}{T_1 - T_2}$$

$$q = \frac{Q}{A}$$

of heat passing through a unit area of the sample in unit time [W/m²]

d average thickness of sample [m]

T₁ temperature of warm side of the sample [K]

T₂... temperature of cold side of the sample [K]


Q quantity of heat passing through a base area of

the sample [W]

A base area of the sample [m²]

Guarded hot plate

- placing a solid sample of fixed dimension between two temperature-controlled plates
- one plate is heated while the other plate is cooled, and their temperatures are monitored until they are constant

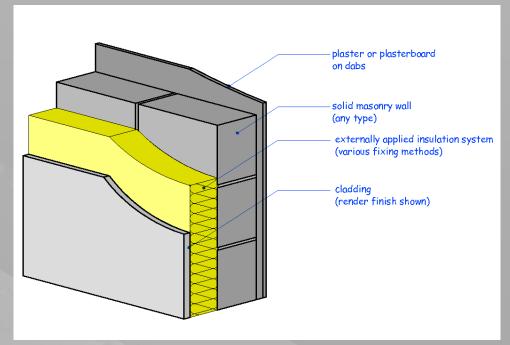
uilding materials

Department of Materials Engineering and Chemistry Faculty of Civil Engineering

erials	Material λ	[W.m ⁻¹ .K ⁻¹]	1
mat	Copper	~370	
ing	Aluminium	~200	
	Carbon steel	~50	
• •	Concrete	~1,4	
	• Glass	~0,75	
	• Brick	~0,7	
	• Water (20° C, quiet)	~0,60	
	• Wood	. ~0,15	S
	Mineral fibers	~0,05	nal
	Polystyrene foamed	~0,035	ern ulat
	 Air (dry, quiet) 	0,025	thermal insulations
	Argon (quiet)	~0,015	

Thermal resistance R-value

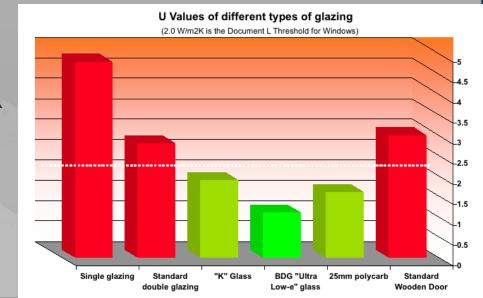
 $R = d /\lambda [(m^2 \cdot K) / W]$


- directly proportional to the thickness of the material
- for construction, not material
- can be used for masonry blocks

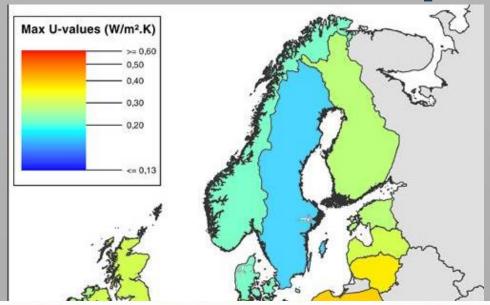
 $R = 0.65 \, (m^2 \, K)/W$

Thermal resistance

multi-layered construction: the R-values of the individual layers are summed



 $R_{total} = R_{outside air film} + R_{render} + R_{insulation} + R_{brick} + R_{plaster} + R_{inside air film}$


Thermal transmittance U-value

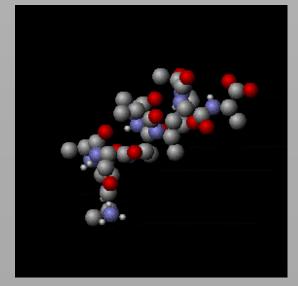
- the measure of the rate of heat loss through a material
- incorporates the thermal conductance of a structure along with heat transfer due to convection and radiation

U-value = 1/R[W / $m^2 \cdot K$]

U-value in Europe

Rank	Country	Walls	Country	Roof	Country	Floor	Country	Windows
1	Sweden	0.3	Sweden	0.2	Sweden	0.2	Finland	1.9
2	Finland	0.4	Denmark	0.3	Denmark	0.4	Austria	2.3
3	Denmark	0.5	Finland	0.3	Finland	0.4	Denmark	2.4
4	Czech Republic	0.8	Czech Republic	0.6	Germany	0.8	Sweden	2.5
5	Austria	0.9	Austria	0.6	Czech Republic	0.9	Germany	2.7
6	Germany	0.9	Ireland	0.7	Belgium	0.9	Czech Republic	2.7
7	UK	1.0	Germany	0.7	France	1.0	France	3.1
8	Netherlands	1.1	UK	1.1	Ireland	1.0	Netherlands	3.2
9	France	1.2	Netherlands	1.2	Austria	1.0	Belgium	3.8
10	Ireland	1.2	France	1.3	UK	1.2	Ireland	3.8
11	Belgium	1.5	Belgium	1.6	Netherlands	1.3	UK	3.9

Specific heat capacity c


- = specific heat
- the amount of heat required to change
 1 kg of substance's temperature by a 1

K

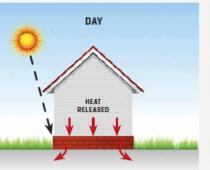
units: [J.kg⁻¹.K⁻¹]

Depends on:

- temperature
- moisture: $c = c_0 + 0.42 \text{ w}_m$

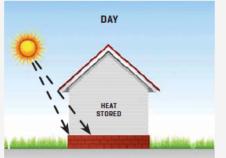
Specific heat of some materials

Material	C [kJ.kg ⁻¹ .K ⁻¹]
asphalt	0,92
concrete	0,88
brick	0,84
glass	0,84
copper	0,39
granite	0,79
gypsum	1,09
water	4,18
wood to fibers	0,42



Heat accumulation

Thermal mass of building


 absorbs thermal energy when the surroundings has higher temperature than the material and give thermal energy back when the surroundings are cooler

SUMMER SUN CONTROL AND THERMAL MASS

WINTER SUN CONTROL AND THERMAL MASS

Interior thermal control

Phase - change materials (PCM)

- materials with very high latent heat storage capacities
- best melting point for building purposes about 25 °C
- heat is absorbed or released when the material changes from solid to liquid and vice versa

Materials:

- paraffin
- fatty acids
- salt hydrates

Heat storage

Environmental temperature rises

Phase changing material becomes liquid

Managed temperature remains constant

Heat release

Environmental temperature falls

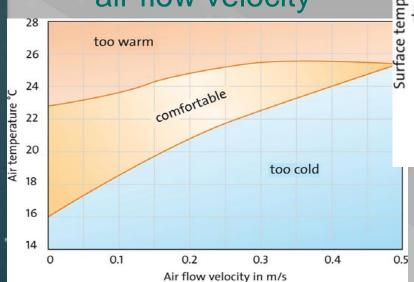
Phase changing material becomes solid

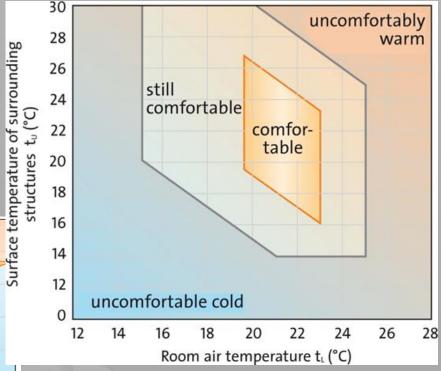
Managed temperature remains constant

Thermal effusivity

 determines the interfacial temperature when two semi-infinite objects at different temperatures touch

$$\mathbf{b} = \sqrt{\lambda . \mathbf{c}. \rho_{V}}$$


- units: [W.s^{0,5}.m⁻².K⁻¹]
- · the higher b is, the colder sensation gives the material



Thermal comfort

- the condition of mind which expresses satisfaction with the thermal environment
- affected by

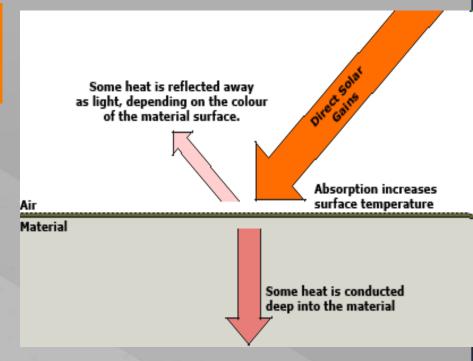
 - air temperaturetemp. of surrounding surfaces
 - air flow velocity

Reflectivity

the ability of a surface to reflect radiation

• light reflectivity - the percentage light reflected from a surface at a given wavelength.

Heat reflection and absorption


- reflection ρ
- absorption α

$$\alpha + \rho = 1$$

Heat reflectance:

$$R = \frac{\alpha}{\text{incident heat}}$$

- black body R =1
- white R = 0.5

Solar absorptivity

Solar Absorptivity Chart for Selected Colours

Code	Colour	Absorptivity
6068	Black	0.94
6062	Dark Brown	0.91
6154	Metro Brown	0.89
6073	Dark Green	0.89
6072	Charcoal	0.89
6084	Navy Blue	0.87
6079	Heron Blue	0.85
6078	Green	0.84
6067	Slate Blue	0.8
6082	Regent Grey	0.75
6071	Stone Grey	0.6

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Change of the materials by temperature

Thermal expansion

linear

 $\Delta L = \alpha L_0 \Delta T$

ΔL ... dimension change (elongation) [m]

α coefficient of thermal expansion [K-1]

linear dimension (length) [m]

ΔT.... temperature change [K]

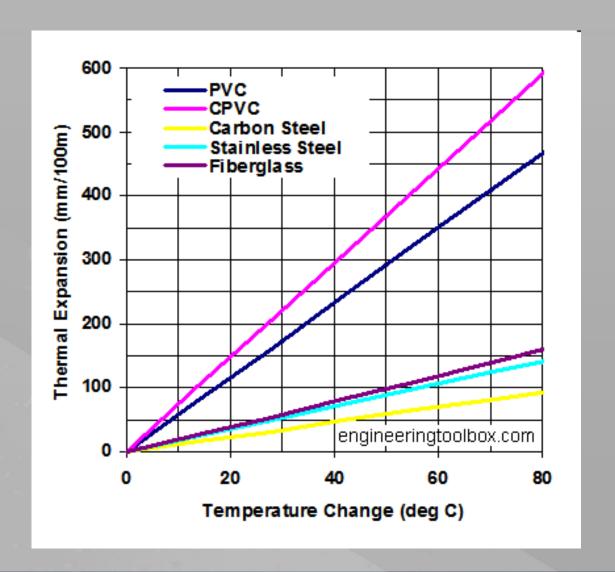
Thermal expansion

• volumetric t. e. $\gamma \cong 3\alpha$

Values of α :

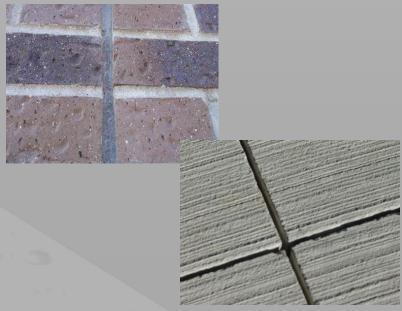
common materials... $\alpha = 6 - 16.10^{-6} \text{ K}^{-1}$

 α concrete = α steel = 10 –12.10⁻⁶ K⁻¹

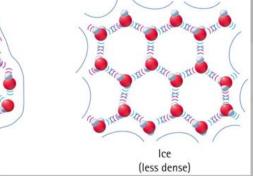

Steel, concrete - 1m, temperature change 50 K:

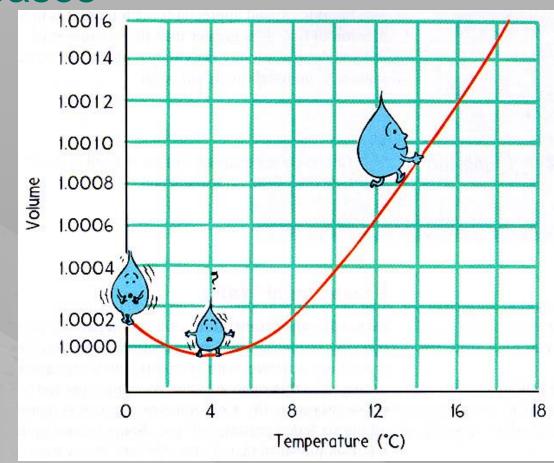
 $\Delta L = (10.10^{-6}).1000.50 = 5.10^{-1} = 0.5 \text{ mm/1 m}$

Faculty of Civil Engineering


Thermal expansion of different materials

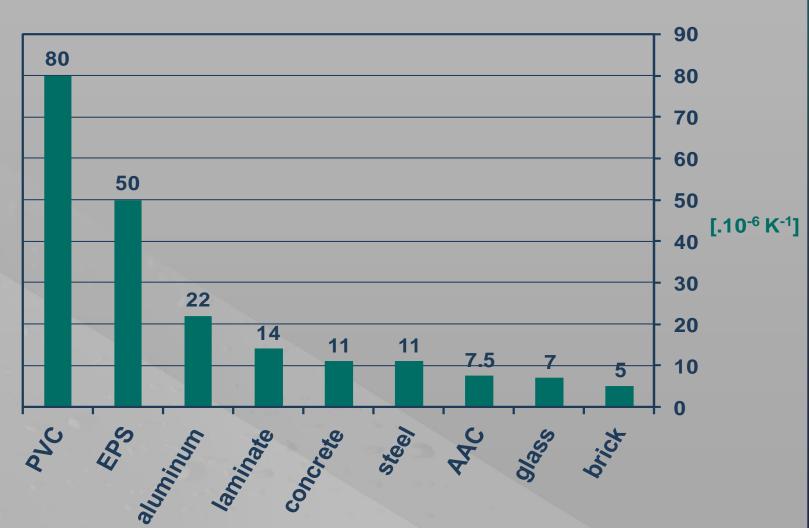
Thermal expansion in buildings

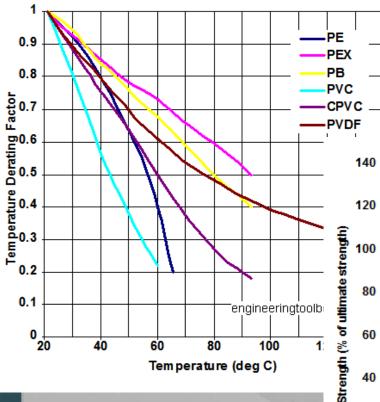



Materials Engineering

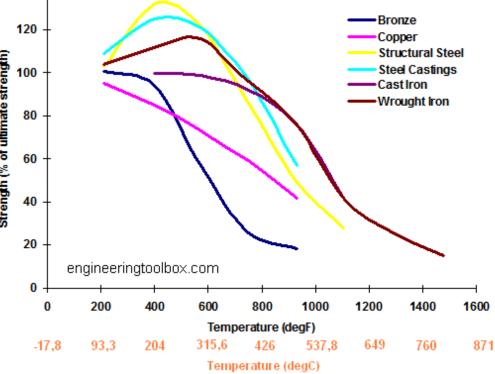
Density anomaly of water

 from 0°C to 3,99°C the volume of the water decreases





Faculty of Civil Engineering and Chemistry


Coefficient of thermal expansion

Influence of heat on the mechanical properties

the change of strength, modulus of elasticity

Fire resistance

 reaction of the materials and constructions to the fire

Dangerous effects of fire

big heat

deformation of materials

(loss of strength)

 falling of burning droplets

- smoke
- toxic fumes

Fire development

Flashover - a dramatic increase in the rate of heat release and smoke production (typically occurs when the combustion gases reach a temperature of around 600°C)

Flash point

 the lowest temperature at which the vapor formed above a pool of a combustible liquid can be ignited in air

Fire point

the lowest temperature at which, on further heating beyond the flash point, the sample will support combustion for 5 seconds

used for fuels **CLEVELAND OPEN CUP** Oil sample is poured into cup. **FLASH POINT** Thermometer is placed in the oil and the oil is heated. The test flame is passed over the cup at every 2°C increase in sample temperature. When the sample vapors ignite momentarily in air, the Flash Point temperature is reached. When the sample vapors sustain combustion for at least five seconds, the Fire Point temperature is reached. **FIRE POINT**

Flammable and combustible liquids

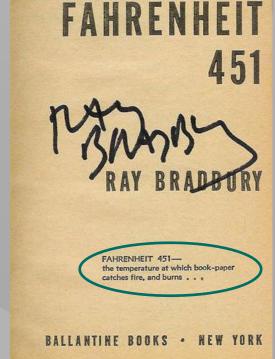
susceptibility to ignition

Hazard classification for flammable liq	uids
---	------

Class	Flash point	Boiling point	Examples		
I-A	below 73°F (23°C)	below 100°F (38°C)	diethyl ether, pentane, ligroin, petroleum ether		
I-B	below 73°F (23°C)	at or above 100°F (38°C)	acetone, benzene, cyclohexane, ethanol		
I-C	73-100°F (24-38°C)		p-xylene		

Hazard classification for combustible liquids

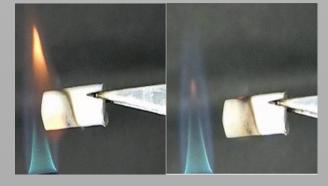
II	101-140°F (39-60°C)	 diesel fuel, motor oil, kerosene, cleaning solvents
III-A	141-199°F (61-93°C)	 paints (oil base), linseed oil, mineral oil
III-B	200°F (93°C) or above	 paints (oil base), neatsfoot oil



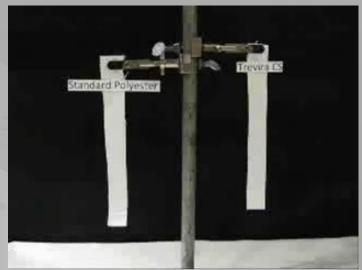
Autoignition temperature (kindling point)

 the lowest temperature where a substance will auto-ignite and combust in normal atmospheric conditions without any external

influences.

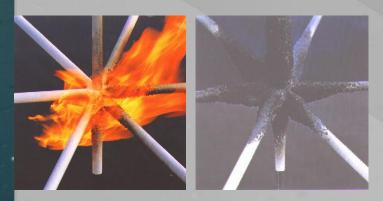


Self- extinguishing materials


the inability to support flame after the source

of the flame is withdrawn

some polymers (EPS, ..)



Flame retardants

- chemicals used in thermoplastics, thermosets, textiles and coatings that inhibit or resist the spread of fire
 - a protective non-flammable layer around a combustible material
 - a chemical reaction releasing water vapors
 - layer of carbon char
 - intumescent layers

Flammability (combustibility)

- how easily material will burn or ignite, causing fire or combustion
- older national standards

Degree of combustibility (DIN 4102, BS 476):

- A1 100 % noncombustible (concrete, brick)
- A2 98 % noncombustible (gypsum plaster)
- **B1** difficult to ignite (often self-extinguishing)
- **B2** normal combustibility (wood)
- B3 easy to ignite (PU foam)

Reaction to fire

EN 13501 –1 Fire classification of construction products and building elements

determines whether a material fuels a fire

7 classes : A1, A2, B, C, D, E, F

Euroclass	Contribution to fire	
A1	Non Combustible	
A2	Limited Combustible No Flashover	
В	No Flashover	9
С	Flashover after 10 minutes	
D	Flashover before 10 minutes	
Е	Flashover before 2 minutes	
F	No Performance Determined	

Faculty of Civil Engineering

Reaction to fire

Class	Reaction to Fire	Flashover in the Room Corner reference test	Additional criteria tested for
A1	No contribution to a fire	No	None (insignificant smoke release with no flaming droplets or particles expected)
A2	No significant contribution to fire growth	No	Production of smoke & flaming droplets or particles
В	Very limited contribution to fire growth	No	Production of smoke & flaming droplets or particles
С	Limited contribution to flashover	Flashover after 10 min	Production of smoke & flaming droplets or particles
D	Contribution to flashover	Flashover between 2 to 10 min	Production of smoke & flaming droplets or particles
E	Significant contribution to flashover	Flashover before 2 min	Production of flaming droplets or particles (Smoke release is expected to be substantial)
F	Not tested or incapable of achieving Class E	No performance determined	

Reaction to fire – additional classification

Smoke:

- s1 very limited amount of smoke developed
- s2 limited amount of smoke developed
- s3 no demands to the amount of smoke developed

Burning droplets:

- d0 no burning droplets or particles
- d1 limited amount of burning droplets or particles

- d2 no demand to the amount of burning droplets or

particles

Reaction to fire

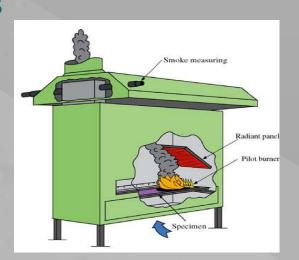
What does a classification look like?

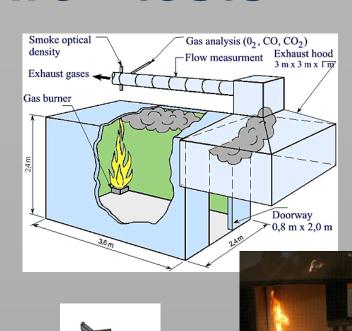
The main part of a classification is its letter; A1, A2, B, C, D, E and F. A1 represents the highest level of performance. F represents the lowest level of "No performance determined".

There is a smoke classification, of s1, s2 and s3. s1 represents the highest level of performance. s3 represents the lowest level of performance.

 B_L -s3,d0

There may or may not be a subscript next to the letter. A subscript "fl" means the product has been classified for use as a flooring. A subscript "L" means the product has been classified for use as a linear pipe thermal insulation product. The absence of a subscript means the product is for use on walls or ceilings.


There is a classification for flaming droplets and particles during the tests, of d0 to d2. d0 represents the highest level of performance. d2 represents the lowest level of performance.


Bioguard Plain A2-s1, d0

Bioguard Acoustic | A2-s1, d0

Reaction to fire - tests

- SBI test single burning item
- small flame test
 - flame spread within 20 -60 s
- RP test radiant panel
 - floorings

Class A1 without testing:

- **Expanded clay**
- **Expanded perlite**
- **Expanded vermiculite**
- Mineral wool
- Cellular glass
- Concrete
- Aggregate concrete (dense and lightweight mineral aggregates, excluding integral thermal insulation)
- Autoclaved aerated concrete units
- Fibre cement
- Cement
- Lime
- Blast furnace slag/pulverized fly ash (PFA)

Reaction to fire

Class	Performance description		rio and heat ack	Examples of products
A1	No contribution to fire	Fully developed fire in a room	At least 60 kW/m ²	Products of natural stone, concrete, bricks, ceramic, glass, steel and many metallic products
A2	66	66	66	Products similar to those of class A1, including small amounts of organic compounds
В	Very limited contribution to fire	Single burning item in a room	40 kW/m ² on a limited area	Gypsum boards with different (thin) surface linings Fire retardant wood products
С	Limited contribution to fire		44	Phenolic foam, gypsum boards with different surface linings (thicker than in class B)
D	Acceptable contribution to fire	· ·	w	Wood products with thickness ≥ about 10 mm and density ≥ about 400 kg/m ³ (depending on end use)
E	ee	Small flame attack	Flame height of 20 mm	Low density fibreboard, plastic based insulation products
F	No performance requirements	ā		Products not tested (no requirements)

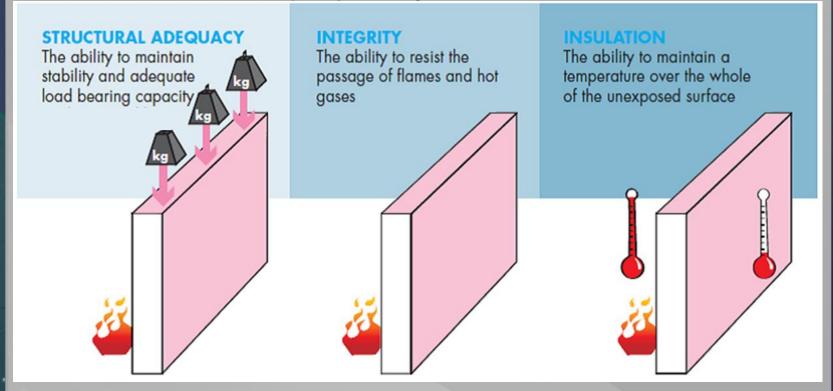
Fire resistance

- how well a building component (for a stated period of time) can hold back the fire and prevent it from penetrating from one room to another
- based on the time during which construction elements accomplish their function in case of an unstoppable, fully developed fire

Fire classification of construction, not material!

Faculty of Civil Engineering

Reaction to fire x Fire resistance



Buildings Park RELET Constructions MATARIAN MATERIAL MATE

Fire resistance criteria

- R = load bearing capacity
- E = integrity (capacity to remain intact)
- I = insulation (capacity to maintain a defined

Fire resistance criteria

- R the structural element should not collapse or deflect beyond the permitted levels when subjected to the applied load
- **E** the integrity of the room must be maintained. No breakthrough of flames is permitted.
- I the temperature on the non-exposed side of the structural element must not rise more than 140° C above ambient as an average measurement and no more than 180° C at any one location.

Classification of building components

Load beari	Load bearing building components							
REI - time	the time span where all three criteria, load bearing capacity, integrity and insulation are fulfilled							
RE - time	the time span where the two criteria, load bearing capacity and integrity, are fulfilled							
R - time	the time span where the criteria load bearing capacity is fulfilled.							

Non load	Non load bearing building components						
EI - time	I - time time span where the two criteria, integrity and insulation, are fulfilled						
E - time	the time span where the criteria integrity is fulfilled						

 REI 120 – all three criteria must be fulfilled for 120 minutes

Fire resistance of construction

cement-bonded particleboard

		FIRE		THI	CKNESS	S OF TWO-SID	ED COAT OF CE	TRIS® BOARDS	(mm)		
	RESISTANCE 1		E 1	wit	th air ga	ip ²	with mineral wool ³				
				COAT	COAT GAP COAT		COAT	INSULATION	COAT		
		El 30		16	-	16		_			
		El 45		10 + 10	-	10 + 10	12	60	12		
		El 60		12 + 12	-	12 + 12	16	60	16		
		El 90		18 + 16	-	18 + 16	12 + 12	60	12 + 12		
Ĭ		El 120		18 + 12 + 12	-	18 + 12 + 12	16 + 16	60	16 + 16		
		EI 180	80 To be assessed		18 + 12 + 12	60	18 + 12 + 12				

Fire characteristics of load-bearing peripheral wall on wooden skeleton, height up to 3 m

FIRE RESISTANCE 1	CONST	RUCTION COMPO	FIRE EXPOSURE		
FIRE RESISTANCE	Exterior coat	Exterior coat Mineral board ² Interior coat			
REI 60 D3	CETRIS® 14	120	Knauf® GKF 12.5	External fire (exposed CETRIS® board	
REW 60 D3 ³			Kildul- GKF 12.5	Internal fire (exposed KNAUF board)	

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

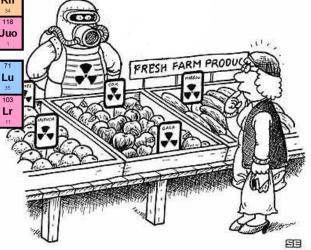
Building material

Other properties

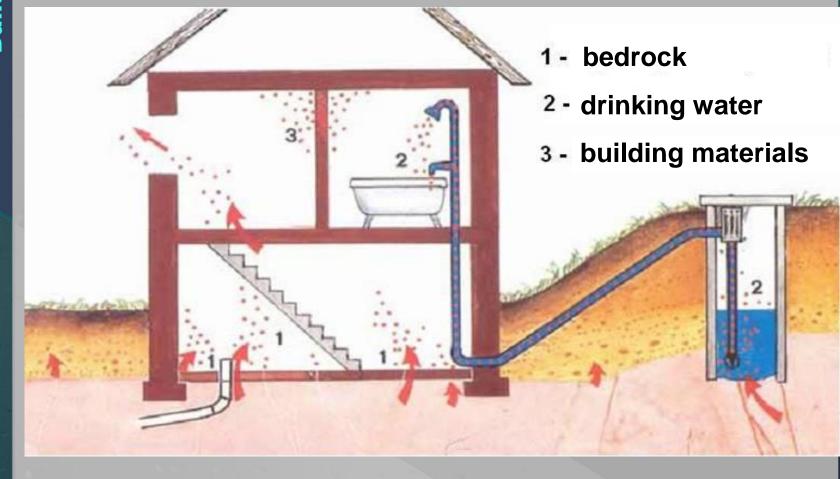
Actinides

Radioactivity

natural radioactivity of materials


Periodic Table of the Radioactive Elements

1A		http://chemistry.about.com 8A								8A							
1	1					Half-life of Most Stable Isotope					otope	©2011	Todd Hel	menstine	9		2
н						Stable About Chemistry						He					
6	2A		Atomic	Number				h _{1/2} > 10 ⁶ years			ЗА	4A	5A	6A	7A	8	
3	4							10		_{1/2} < 10 ⁶		5	6	7	8	9	10
Li	Ве		Syn	nbol						< 10 ³ yr		В	С	N	О	F	Ne
8	10									$_{12}$ < 10^3 y		11	13	14	14	16	19
11	12		# of Is	otopes						1 day		13	14	15	16	17	18
Na	Mg									nown		Ai	Si	P	S	CI	Ar
1Va 18	21	3B	4B	5B	6B	7B		8B		1B	2B	22	23	22	21	22	22
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
23	23	20	24	23	25	25	28	26	31	28	30	27	28	29	29	29	31
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Xe
29	33	33	32	33	33	33	33	34	33	38	36	38	38	36	37	36	38
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва		Hf	Ta	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
40	39	Lanthanides	35	34	33	35	35	36	37	36	38	32	33	35	33	33	34
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	first day	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo
34	33	Actinides	13	12	10	10	8	- 6	7	5	4	4	4	2	6	unknown	1
	1		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
5	Lanthar	ides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Υb	Lu
	Lantina		34	35	33	34	31	33	33	32	31	31	33	32	31	32	35
			90	00	01	02	02	04	06	06	07	0.0	00	100	101	102	102


Am

Cm

⁴⁰K, ²²⁶Ra, ²²⁸Th

Sources of radioactivity in the building

Radioactive materials

Radioactive could be (but not necessary!) e.g.:

- aggregate from uranium ores
- blast–furnace slag
- cinder
- coal fly ash
- phosphogypsum

Asbestos is not radioactive!

Radioactivity of building materials

- ²²⁶Ra mass activity concentration [Bq.kg⁻¹]
- activity concentration index I [unitless]

$$I = \frac{a_K}{3000} + \frac{a_{Ra}}{300} + \frac{a_{Th}}{200}$$

where a_K, a_{Ra}, a_{Th} are radium, thorium and potassium activity concentrations in material

Activity concentration

Activity concentration range (Bq/kg) of common building materials.

Building material	²²⁶ Ra [Bq/kg]	²³² Th [Bq/kg]	⁴⁰ K [Bq/kg]
Concrete	18 - 67	3 - 43	16 - 1100
Light weight concrete	10 - 60	6 - 66	51 - 870
Bricks	7 - 140	8 - 127	227 - 1140
Gypsum	1 - 67	0.5 - 190	22 - 804
Cement	13 - 107	7 - 62	48 - 564

Activity concentration range (Bq/kg) of selected covering building materials.

Building material	²²⁶ Ra [Bq/kg]	²³² Th [Bq/kg]	⁴⁰ K [Bq/kg]
Ceramics	25 - 193	29 - 66	320 - 1049
Granite	ND - 160	ND - 354	24 - 2355
Tiles	33 - 61	45 - 66	476 - 788
Marble	1 - 63	0.4 - 142	9 - 986

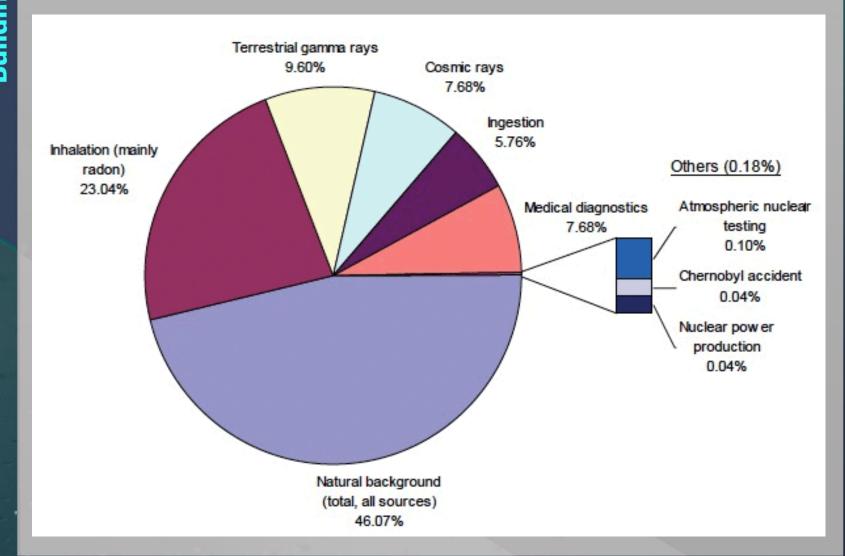
Radioactivity of building materials

- most countries with reference levels for radioactive elements in building materials apply activity indices or maximum permissible/recommended concentrations
- some countries one reference level for Ra²²⁶
- other countries level for each Ra²²⁶, Th²³² and K⁴⁰
- in most of the countries the levels are enforced, only in Norway are the reference levels advisory

Reference Levels for Radioactive **Elements in Building Materials**

Czech Republic:

- enforced level: 150-200 Bq/kg materials in buildings where people could stay more than 1000 h/year (depending on the type of material); 1000 Bq/kg for materials in other buildings.
- advisory level: 80-120 Bq/kg in buildings where people normally stay more than 1000 h/year; 300-500 Bq/kg for materials in other buildings



Reference Levels for Radioactive **Elements in Building Materials**

	Type of building material	Example
0,5	materials used in bulk amount	bricks, cement, concrete, gypsum
1	raw materials	aggregates, stones, clay
2	materials used in "small" amount	ceramic tiles

Faculty of Civil Engineering

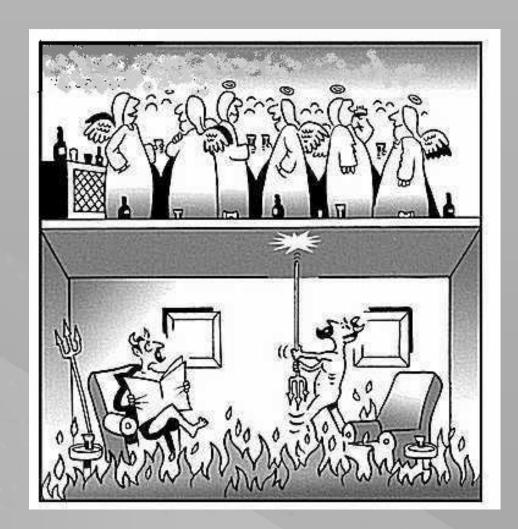
Doses from radiation sources

Radon

- colorless, odorless, tasteless gas
- radioactive product of decay uranium or thorium
- half-life 3,8 days → radon daughters (solids Po, Pb, Bi) stick to surfaces such as dust particles in the air
- if contaminated dust is inhaled, these particles can stick to the airways of the lung and increase the risk of developing lung cancer

Radon in houses

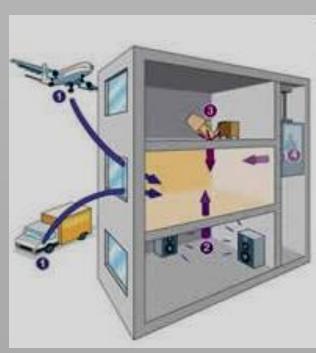
- Cracks in solid floors
- Construction joints
- Cracks in walls
- Gaps in suspended floors
- Gaps around service pipes
- Cavities inside walls
- The water supply


Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Acoustic properties



Noise sources

 Outside air-borne noises: road, rail or air traffic

- Inside air-borne noises: conversations, hi-fi, TV...
- Impact: movement of people or furniture, falling objects...
- Equipment noises: lift, taps, mechanical ventilation, heating or air conditioning installation.

Faculty of Civil Engineering

Noise level

140 DECIBELS

Immediate danger to hearing Gunshot, Jet engine at take-off

110 DECIBELS

Risk of hearing damage in 30 minutes Snowmobile from driver's seat

100 DECIBELS Risk of hearing damage in 2 hours Chainsaw, Stereo headphones

90 DECIBELS

Risk of hearing damage in 8 hours Lawn mower, Truck traffic

NOISE THERMOMETER

125 DECIBELS Pain threshold Air raid siren, Firecracker

115 DECIBELS

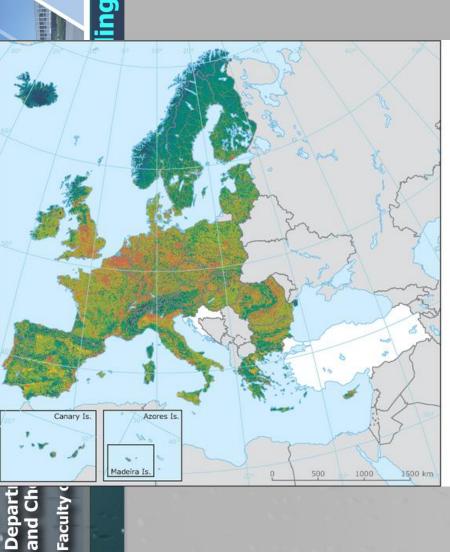
Risk of hearing damage in 15 minutes Baby's cry, Stadium football game

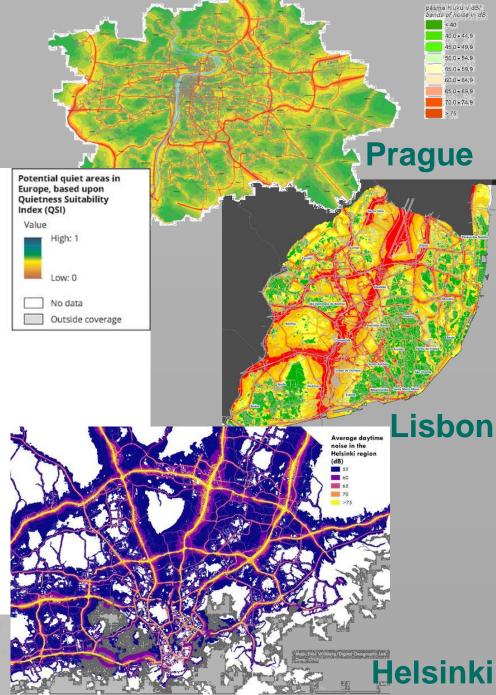
105 DECIBELS

Risk of hearing damage in 1 hour Jackhammer, Helicopter

95 DECIBELS

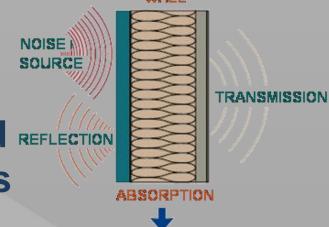
Risk of hearing damage in 4 hours Motorcycle, Power Saw


85 DECIBELS Beginning of OSHA regulations


30 DECIBELS Faint sound Whisper

Noise maps

Legenda / Legend


Basic acoustic parameters

Acoustic absorptivity

 sound energy is reduced when sound waves pass through a medium or strike a surface - the incident sound that strikes a material is not reflected back

Reverberation

• the collection of reflected REFLECTION sounds from the surfaces

Sound absorption coefficient

how much of the sound is absorbed in the

material

$$\alpha = \frac{\textbf{I}_{a}}{\textbf{I}_{i}}$$

I_a sound intensity absorbed [W/m²]

.... incident sound intensity [W/m²]

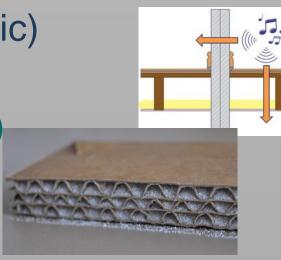
Material	α
Plaster walls	0.01 - 0.03
Unpainted brickwork	0.02 - 0.05
Painted brickwork	0.01 - 0.02
3 mm plywood panel	0.01 - 0.02
6 mm cork sheet	0.1 - 0.2
Hardwood	0.3
100 mm mineral wool	0.65
Persons, each	2.0 - 5.0

Acoustic constructions

- against sound reflection materials with good sound absorptivity
 - soft, pliable, porous materials
- against sound transmission sound insulating materials

- materials with high surface density

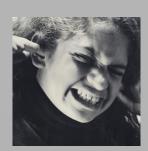
Noise insulation


Airborne noise (voices, music)

 materials with high surface density (mass per unit area)

- min 350 kg.m⁻²

 padding or cushioning - soft, sound absorbing materials (carpets, mineral wool)



Acoustic comfort

- good sound environment
 - lower sound level
 - an acoustic ceiling with high absorption factor
 - reduced sound propagation
 - increased speech intelligibility
 - combination absorbers which enhance early reflections and minimize late reflections
 - appropriate reverberance
 - the room volume, the amount of absorbing material and the position of absorbers and

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Chemical properties

- Chemical reactions in materials:
 - processing (setting and hardening , foaming...)
 - materials (in)compatibility
 - ageing
 - corrosion (degradation) (inorganic materials, metals, biocorrosion...)

Materials incompatibility

Metals:

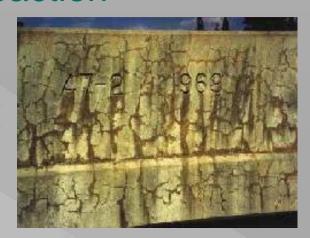
- galvanic corrosion (dissimilar metal corrosion)
 - contact of two metals with different electrical potentials
- aluminum + alkali environment
- copper + low pH water,aggressive soils
- steel + gypsum

Materials incompatibility

Plastics:

- EPS + solvents (in the paints)
- PVC + formaldehydes

phenolic foam (acid pH) + steel



	ABS	ABS/PC	CP	PA	PBT	PC	PC/PBT	PE	PEEK	PEI	PET	PMMA	POM	ЬР	PPO	PPS	PS	PVC	SAN
ABS	X	X							-			X					0	0	0
ABS/PC	х	Х				X	0					0							
LCP			х																
PA				X															
PBT					X		0			0									
PC		Х				X	0					X			0				
PC/PBT		0			0	0	X					0							
PE								X											
PEEK									X										
PEI					0					x									
PET											х								
PMMA	X	0				X	0					X							0
POM													X						
PP							0. 1							х					
PPO						0									X		X		0
PPS																X			
PS	0														X		X		0
PVC	0																	X	
SAN	0											0			0		0		х

Materials incompatibility

Cement, concrete:

- cement + wood
 - sugar content in the wood
- concrete + glass fibers
- cement + some type of aggregates
 - ASR alkali-silica reaction

Corrosion

- the deterioration of a material due to interaction with its environment
- the disintegration of an engineered material into its constituent atoms due to chemical reactions with its surroundings
- metals atmospheric corrosion
- non-metal materials -
 - ceramic
 - plastics
 - concrete
 - glass
 - biodegradation

Corrosion of non-metal materials (degradation)

Ceramic

- refractory materials + wood combustion
- bricks + flue gases

- decalcification(water without minerals)
- leaching
- sulphates
- bacteria

Biodegradation

Caused by:

- microorganism
- fungi
- insects
- birds
- plants
- rodents

Biodegradation is natural process!

Biodegradation - examples

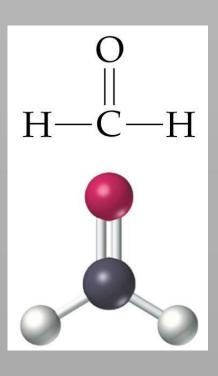
- wood + fungi (dry rot -Merulius Lacrymans)
- wood + insects (old house borer - Hylotrupes Bajulus)
- nitrifying bacteria on the asbestos-cement roofs
- sulphur oxidizing bacteria on concrete

Biodegradation - examples

- stone + lichen
- building + plants
- termites + thermal insulation

Biodegradation - examples

insulated facade + woodpeckers


rodents

Hygienic properties

- pollutants in air (styrene, formaldehyde, plasticizers in PVC)
- contact with the skin (biocides, paints)
- respirable fibers (asbestos, glass)

The higher amount of pollutants can be caused by more accurate measuring methods, not in reality!

Environmental safety

- low energy consumption at production
- the renewable resources
- recycling possibility
- low liquidation costs

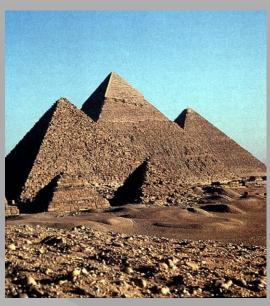
 PVC – bad recyclability, toxicity at incineration

Durability of materials

 ability to be used over a desired period

Factors affecting durability:

- age
- maintenance
- high temperature
- UV radiation
- load
- chemical attacks
- weathering actions (frost)



Life span of buildings

- 40 100 years industrial buildings
- 50 100 y. residential buildings
- 70 500 y. bridges and monuments
- special causes: 2 5
 millennia nuclear waste disposals

Durability of buildings and materials

•		Expected durability of building materials							
	Yrs.	Easily replaceable	Replaceable with some effort	Unreplace- able					
short	10	10	10	10					
middle	25	10	25	25					
normal	50	10	25	50					
long	100	10	25	100					
	short middle normal	short 10 middle 25 normal 50	buildingYrs.Easily replaceableshort10middle25normal50	buildingmaterialsYrs.Easily replaceable with some effortshort1010middle251025normal501025					

Durability of some materials

Roofing

Ceramic tiles

100 years

Concrete tiles

100 years

Steel sheets

50 years

Asphalt shingle

less than 50 years

Waterproof insulation

asphalt felts

15 years

modified bitumen membranes

100 years

(exp.)

rubber membrane

70 years

PVC membrane

25 years