

Building Materials

Lecture 9

Department of Materials Engineering and Chemistry Faculty of Civil Engineering

Concrete Continuation

Concrete degradation

In aggressive environment:

- decalcification
- leaching
- sulfate attack
- chlorides
- bacterial corrosion
- seawater

carbonation - steel corrosion

Concrete degradation

decalcification

 distilled water (e.g. from condensed steam) can wash out calcium content in concrete, leaving the concrete in brittle condition

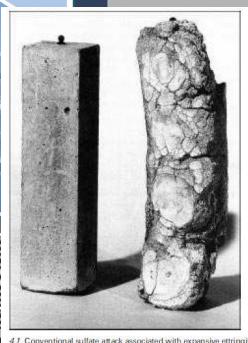
leaching

 flowing water may dissolve various minerals present in the hardened cement paste or in the aggregates

chlorides

 calcium chloride and (to a lesser extent) sodium chloride leach calcium hydroxide and cause chemical changes in Portland cement, leading to loss of strength

Sulphate attack

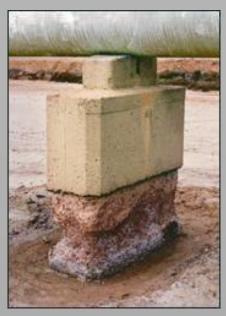

- external
 - penetration of sulfates in solution into the concrete from outside
- internal
 - a soluble source incorporated into the concrete at the time of mixing
- the soluble sulphate salts react with
 C₃A in concrete → ettringite is formed

3CaO·Al₂O₃·CaSO₄·31H₂O

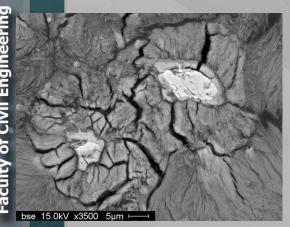
 the volume of the resulting ettringite is greater than the volume of the original substances → internal pressures which fracture the concrete → loss of concrete strength

and Chemistry

Sulphate attack


4.1 Conventional sulfate attack associated with expansive ettringite formation in a concrete prism (RHS) and non-degraded control prism (LHS). Photograph reproduced from CEB Design Guide, *Durable Concrete Structures*, London, Thomas Telford, 1989.

140 120 100 strength sulphate resistant cement (C₃A< 3,5 %) 80 60 40 cement with C₃A< 8 % 20 portland cement ≥ $(C_3A \sim 12 \%)$


Time of exposition in sulphate solution [days]

Sulphate attack

Concrete carbonation

- a chemical reaction between carbon dioxide in the air with calcium hydroxide and hydrated calcium silicate in the concrete - needs moisture
- → decrease of alkalinity under pH = 10
- -> corrosion of steel reinforcement

Concrete carbonation

 atmospheric CO₂ can penetrate concrete and react with Ca(OH)₂ in the cement paste to form CaCO₃ and this reaction reduces the pH of the concrete to around 9

$$(Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O)$$

- water is required for the reaction to proceed
- if the pores of the concrete are filled with water, the diffusion of CO₂ is slowed
- → carbonation does not occur in dry environment and under water

Corrosion of steel reinforcement

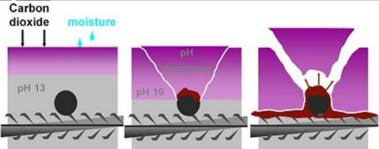
Corrosion of steel reinforcement

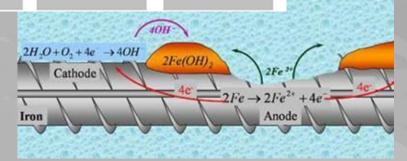
fresh concrete is highly alkaline (pH > 12) (presence of the hydroxides of sodium, potassium and calcium produced during the hydration reactions)

 in alkaline environment steel is passivated (covered by a stable protective oxide film)

→ no corrosion of the reinforcement can

occur




Corrosion of steel reinforcement

when pH of concrete decreases under 9,5 (by carbonation) corrosion starts

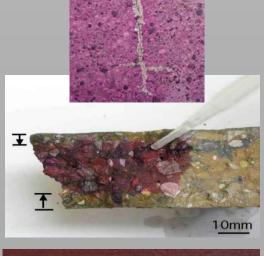
$$2Fe+1,5O_2+H_2O = 2FeO(OH)$$

2,5 x higher volume than Fe

Speed of carbonation process

 c. occurs progressively from the outside surface of the concrete exposed to atmospheric CO2, but does so at a decreasing rate because the CO2 has to diffuse through the pore system, including the already carbonated surface zone of concrete

• depth of carbonation: $D = K.\sqrt{t}$


$$D = K.\sqrt{t}$$

K... the carbonation coefficient (depends on the quality of the concrete, concentration of CO₂ and its diffusivity through the concrete)

t ... exposure time

Depth of carbonation

- test by spraying a color pH indicator (phenolphthalein) on a cross section of concrete (at pH > 9,8 purple)
- after 1 year depth ca 4 8 mm
- after 60-70 years 30 60 mm

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Specification of concrete

- technical requirements given to the producer in terms of performance or composition by specifier (= person or body establishing the specification) for the fresh and hardened concrete
- the specifier of the concrete shall ensure that all the relevant requirements for concrete properties are included in the specification given to the producer

Example of concrete specification

C 30/37 - XC4 - CI0,20 - D_{max}32 - C3

Example: Pumped concrete for ground slab in ground water area

Specification conforming to EN 206-1 (designed concrete)

Concrete conforming to EN 206-1

C 30/37 — compressive strength class

XC 4 exposure class

Dmax 32 (max. particle \emptyset) \longrightarrow maximum nominal upper

C3 (degree of compactability) aggregate size

consistence class

ulty of Civil Engineeri

Pumpable

Compressive strength class

C 30/37 - XC4 - Cl0,20 - D_{max}32 - C3

- f_{ck,cyl} minimum characterictic
 compressive
 cylinder strength
- at 28 days
- cylinders ø 150 mm, height 300 mm

- f_{ck,cub} minimum characterictic
 compressive
 cube strength
- at 28 days
- 150 mm cubes

<u>Materials Engineering</u>

Compressive strength classes

Compressive	f _{ck, cyl} (cylinder)	f _{ck, cube} (cube)
Compressive strength class C 8/10	N/mm²	N/mm²
C 8/10	8	10
C 12/15	12	15
C 16/20	16	20
C 20/25	20	25
C 25/30	25	30
C 30/37	30	37
C 35/45	35	45
C 40/50	40	50
C 45/55	45	55
C 50/60	50	60
C 55/67	55	67 <u>~</u>
C 60/75	60	75 E &
C 70/85	70	85 👱 😇
C 80/95	80	67 75 85 95 105 105 115
C 90/105	90	105 .≅ ర
C 100/115	100	115

Exposure classes

C 30/37 - (XC4) - CI0,20 - D_{max}32 - C3

related to environmental actions

Faculty of Civil Engineering

EN 206 – Concrete specification

Exposure classes

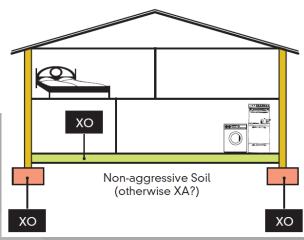
CLASS DESIGNATION:	DESCRIPTION OF THE ENVIRONMENT:	No. of sub- classes
XO	No risk of corrosion (inside buildings with very low air humidity)	1
XC	Corrosion of the reinforcement induced by carbonation	4
XD	Corrosion of the reinforcement induced by chlorides other than from sea water	3
XS	Corrosion of the reinforcement induced by chlorides from sea water	3
XF	Freeze-thaw attack with or without de-icing agents	4
XA	Chemical attack	3

X0 - no risk of corrosion or attack

Class designation

Description of the environment

Informative examples where exposure classes may occur


No risk of corrosion or attack

X 0

For concrete without reinforcement or embedded metal: all exposures, except where there is freeze/thaw, abrasion or chemical attack

For concrete with reinforcement or embedded metal: very dry

Concrete inside buildings with low air humidity

Exposure classes - carbonation XC

EN 206 – Concrete specification

Class designation	Description of the environment	Informative examples where exposure classes may occur				
	Corrosion induced by carbonation	on				
X C 1	Dry or permanently wet	Concrete inside buildings with low air humidity. Concrete permanently submerged in water				
X C 2	Wet, rarely dry	Concrete surfaces subject to long-term water contact; many foundations				
X C 3	Moderate humidity	Concrete inside buildings with moderate or high air humidity; external concrete sheltered from rain				
X C 4	Cyclic wet and dry	Concrete surfaces subject to water contact, not within exposure Class X C 2				
9.00						

Exposure classes - freeze/thaw attack XF

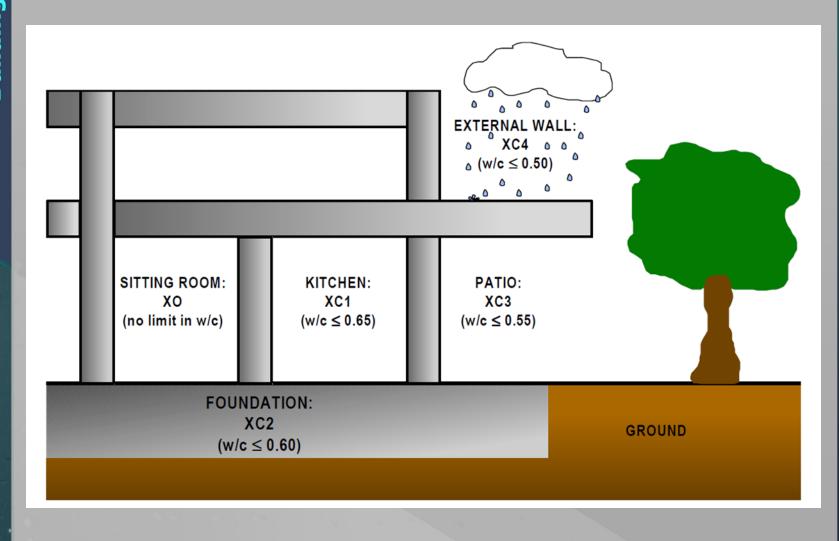
cyclic freezing and thawing of unbound water in concrete

Materials Engineering

Exposure classes - freeze/thaw attack XF

Class designation	Description of the environment	Informative examples where exposure classes may occur						
	Freeze/thaw attack with or with	Freeze/thaw attack with or without de-icing agents						
X F 1	Moderate water saturation, without de-icing agent	Vertical concrete surfaces exposed to rain and freezing						
X F 2	Moderate water saturation, with de-icing agent	Vertical concrete surfaces of road structures exposed to freezing and airborne de-icing agents						
X F 3	High water saturation, without de-icing agent	Horizontal concrete surfaces exposed to rain and freezing						
X F 4	High water saturation, with de-icing agent	Road and bridge decks exposed to de-icing agents; concrete surfaces exposed to direct spray containing de-icing agents and freezing						

Exposure classes – chemical attack XA


- leaching of calcium hydroxide
- ingress of harmful substances, such as sulfates or nitrates

Class designation	Description of the environment	Informative examples where exposure classes may occur
	Chemical attack	
X A 1	Slightly aggressive chemical environment according to Table 2.2.2	Concrete in treatment plants; slurry containers
X A 2	Moderately aggressive chemical environment according to Table 2.2.2	Concrete components in contact with sea water; components in soil corrosive to concrete
X A 3	Highly aggressive chemical environment according to Table 2.2.2	Industrial effluent plants with effluent corrosive to concrete; silage tanks; concrete structures for discharge of flue gases

Faculty of Civil Engineering

Exposure classes examples

Requirements for each exposure class

The requirements for each exposure class shall be specified in terms of:

- permitted types and classes of constituent materials
- maximum water/cement ratio
- minimum cement content
- minimum concrete compressive strength class (optional)

and if relevant

minimum air-content of the concrete

Recommended limiting values for composition and properties of concrete

rsion or o			induce	ed	Chlori	de-indi	reed co	rrocio				- /41	- 44 1		Δ	!		
	corrosi	ion			No risk of Carbonation-induced Chloride-induced corrosion							Freeze/thaw attack				Aggressive		
	corrsion or corrosion attack				Sea water Chloride other from sea water				an				chemical environments					
)	KC1	XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1(XF2	XF3	XF4	XA1	XA2	XA3	
(0.65	0.60	0.55	0.50	0.50	0.45	0.45	0.55	0.55	0.45	0.55	0.55	0.50	0.45	0.55	0.50	0.45	
			C30/ 37	C30/ 37	C30/ 37	C35/ 45	C35/ 45	C30/ 37	C30/ 37	C35/ 45	C30/ 37	C25/ 30	C30/ 37	C30/ 37	C30/ 37	C30/ 37	C35/ 45	
2	260	280	280	300	300	320	340	300	300	320	300	300	320	340	300	320	360	
-	-	-	-	-	-	-	-	-	-	-	-	4.0 a	4.0ª	4.0 a	-	-	-	
												accord EN 126 sufficie	lance v 620 wit ent free	th eze/			sting	
	/15 (2 2 2	/15 C20/ 25 260	715 C20/ C25/ 25 30 260 280	C20/ C25/ C30/ 25 30 37 260 280 280 — — —	C20/ C25/ C30/ C30/ 25 30 37 37 260 280 280 300	C20/ C25/ C30/ C30/ C30/ 25 30 37 37 37 37 260 280 280 300 300	C20/ C25/ C30/ C30/ C30/ C35/ 25 30 37 37 37 45 260 280 280 300 300 320 	C20/ 25 C25/ 30 C30/ 37 C30/ 37 C35/ 37 C35/ 45 C35/ 45 260 280 280 300 300 320 340	C20/ 25 C25/ 30 C30/ 37 C30/ 37 C35/ 37 C35/ 45 C35/ 45 C30/ 45 C35/ 45 C30/ 37 260 280 280 300 300 320 340 300 — — — — — — — —	C20/ C25/ C30/ C30/ C30/ C35/ C35/ C30/ C30/ 25 30 37 37 37 45 45 45 37 37 260 280 280 300 300 320 340 300 300	C20/ 25 C25/ 30 C30/ 37 C30/ 37 C35/ 37 C35/ 45 C30/ 45 C30/ 45 C30/ 37 C35/ 37 C30/ 37 C35/ 45 260 280 280 300 300 320 340 300 300 320 - - - - - - - - - - - -	C20/ 25 C25/ 30 C30/ 37 C30/ 37 C30/ 37 C35/ 45 C30/ 45 C30/ 37 C30/ 37 C30/ 45 C30/ 37 C30/ 37 C30/ 45 C30/ 37 C30/ 37 C30/ 45 C30/ 37 C30/ 37 <t< td=""><td>C20/ C25/ C30/ C30/ C30/ C35/ C35/ C30/ C30/ C35/ C30/ C25/ 25 30 37 37 37 45 45 37 30 260 280 280 300 300 320 340 300 300 320 300 300 300 300 300 300 30</td><td> C20/ C25/ C30/ C30/ C30/ C35/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C25/ C30/ 25 30 37 37 45 45 37 37 45 37 30 37</td><td> C20/ C25/ C30/ C30/ C30/ C35/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C25/ C30/ C30/ C35/ C30/ C25/ C30/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C30/ C30/ C35/ C30/ C30/ C35/ C30/ C30/ C30/ C35/ C30/ C30/ C30/ C30/ C35/ C30/ C30/ C30/ C30/ C30/ C30/ C30/ C30</td><td>C20/ C25/ C30/ C30/ C30/ C35/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C30/ C30/ C30/ C30/ C30/ C30/ C30</td><td>C20/ C25/ C30/ C30/ C30/ C35/ C35/ C35/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C30/ C30/ C30/ C30/ C30/ C30/ C30</td></t<>	C20/ C25/ C30/ C30/ C30/ C35/ C35/ C30/ C30/ C35/ C30/ C25/ 25 30 37 37 37 45 45 37 30 260 280 280 300 300 320 340 300 300 320 300 300 300 300 300 300 30	C20/ C25/ C30/ C30/ C30/ C35/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C25/ C30/ 25 30 37 37 45 45 37 37 45 37 30 37	C20/ C25/ C30/ C30/ C30/ C35/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C25/ C30/ C30/ C35/ C30/ C25/ C30/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C30/ C35/ C30/ C30/ C30/ C35/ C30/ C30/ C35/ C30/ C30/ C30/ C35/ C30/ C30/ C30/ C30/ C35/ C30/ C30/ C30/ C30/ C30/ C30/ C30/ C30	C20/ C25/ C30/ C30/ C30/ C35/ C35/ C30/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C30/ C30/ C30/ C30/ C30/ C30/ C30	C20/ C25/ C30/ C30/ C30/ C35/ C35/ C35/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C35/ C30/ C30/ C30/ C30/ C30/ C30/ C30/ C30	

Evnneura classes

for which freeze/thaw resistance for the relevant exposure class is proven.

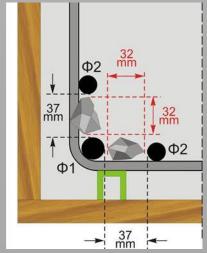
Moderate or high sulphate resisting cement in exposure Class XA2 (and in exposure Class XA1 when applicable) and high sulphate resisting cement in exposure Class XA3.

Chloride content Cl

C 30/37 - XC4 - CI0,20 - D_{max}32 - C3

 the chloride content of a concrete, expressed as the percentage of chloride ions by mass of cement, shall not exceed the value for the selected class

Concrete use	Chloride content class ^a	Maximum chloride content by mass of cement b
Not containing steel reinforcement or other embedded metal with the exception of corrosion- resisting lifting devices	Cl 1.0 -	1.0 %
Containing steel reinforcement or other	CI 0.20	0.20 %
embedded metal	CI 0.40	0.40 %
Containing prestressing steel reinforcement	CI 0.10	0.10 %
	CI 0.20	0.20 %


Maximum nominal upper aggregate size D_{max}

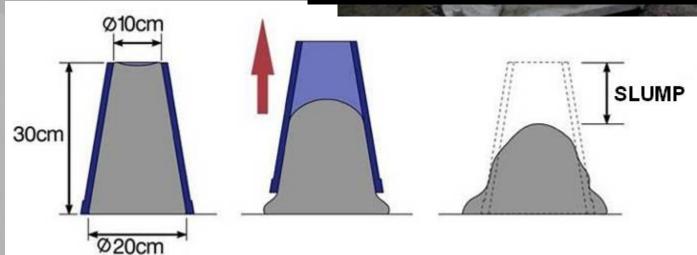
C 30/37 - XC4 - Cl0,20 - D_{max}32 - C3

D_{max}:

- max. 1/3 to 1/2 of the narrowest dimension of a concrete member
 - columns max.1/4
 - horizontal slabs max.1/2
- 1/3 of diameter of pump hose
- max. 1,3 times of bar cover
- spacing between bars 5 mm

Classification by consistence

C 30/37 - XC4 - CI0,20 - D_{max}32 (C3)


- the workability of concrete
- consistence
 - the behaviour of the fresh concrete during mixing, handling, delivery and placing, during compaction and surface smoothing
 - unlike workability, the consistence of the fresh concrete can be measured
- · S slump
- F flow
- V VeBe
- · C compaction

Slump classes S

Abrams cone

Class	Slump in mm
S1	10 to 40
S2	50 to 90
S3	100 to 150
S4	160 to 210
S5 ¹	≥ 220

F6 ¹

EN 206 – Concrete specification

Flow classes F

Class	Flow diameter in mm
F1 ¹	≤ 340
F2	350 to 410
F3	420 to 480
F4	490 to 550
F5	560 to 620

V4 ²

Vebe classes V

Class	Vebe time in seconds
V0 ¹	≥ 31
V1	30 to 21
V2	20 to 11
V3	10 to 6

Ø 100 mm tir

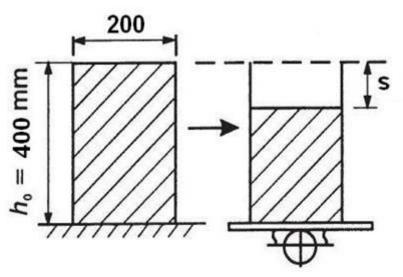
Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Compaction classes C

Class De	gree of compactability
----------	------------------------


 $C0^{1} \ge 1.46$


C1 1.45 to 1.26

C2 1.25 to 1.11

C3 1.10 to 1.04

C =	\mathbf{h}_0
	$h_0 - s$

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

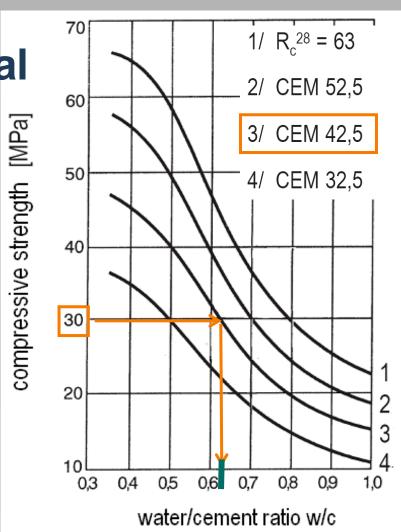
Concrete mix proportion design

- 1. definition of requirements (influence of environment, type of construction, load)
- 2. choice of components (cement type, aggregates gradation, admixtures)
 - workability is determined for the type of work
 - the maximum aggregate size is chosen
 - air content is determined from durability requirements
 - the w/c is selected to satisfy strength and durability
- 3. design of composition
- 4. experimental verification of design

Basic principles for design

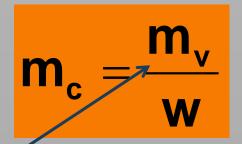
- the mix should be workable
- · as little cement as possible should be used
- as little water as possible should be used
- coarse and fine aggregate should be proportioned to achieve a dense mix
- the nominal maximum size of aggregate should be as large as possible
- the water-to-cement ratio will determine the compressive strength

Experimental verification of design


- 1. determination of consistence (workability)
- 2. change of composition for demanded consistence
- 3. determination of strength
- 4. change of composition for demanded strength without influence on the workability
- 5. determination of definitive composition

Concrete mix proportion design

According empirical amount of water


1. Find w/c for chosen cement type and demanded strength.

Concrete mix proportion design

- Determinate amount of water in 1m³ for chosen consistence and aggregate size
- 3. Calculate m_c from amount of water and w/c

	consistence	Aggregates granulometry											
		wA_8	B_8	C ₈	(A ₁₆)	B ₁₆	C ₁₆	A ₃₂	B ₃₂	C_{32}	A ₆₃	B ₆₃	C_{63}
	C 0	160	178	197	139	160	183	133	152	171	123	139	163
-	S 1	166	184	205	145	166	189	137	158	177	127	145	169
	S 2	176	194	217	(155)	176	200	145	167	188	135	155	180
	S 3	192	212	135	170	192	217	159	181	207	148	170	197
1	S 4	204	227	250	181	204	232	171	197	223	159	181	211

Concrete mix proportion design

4. Determinate the volume of other constituents according the equation:

$$\frac{\mathbf{m_c}}{\rho_c} + \frac{\mathbf{m_v}}{\rho_w} + \frac{\mathbf{m_k}}{\rho_a} + \left(\frac{\mathbf{m_p}}{\rho_p}\right) = 1 - \frac{\mathbf{V_z}}{100}$$

$$\mathbf{cement} \ (\rho_d = 3100 \ \text{kg.m}^{-3}) \quad \text{Air content (\%)}$$

$$\mathbf{water} \ (\rho_w = 1000 \ \text{kg.m}^{-3})$$

$$\mathbf{aggregates} \ (\rho_a = 2650 \ \text{kg.m}^{-3})$$

$$\mathbf{additions} \ (\rho_p = 2100 \ \text{kg.m}^{-3})$$

Department of Materials Engineering and Chemistry

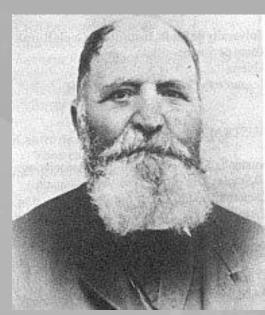
Faculty of Civil Engineering

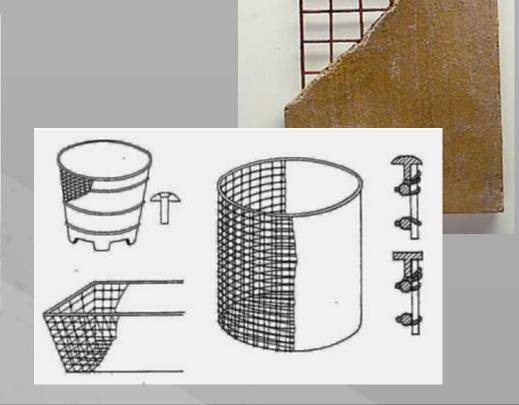
Building materials

Concrete types

- plain (non reinforced) concrete
- reinforced concrete
- prestressed concrete
- fiber-reinforced c.
- lightweight c. (ρ_V < 2000 kg.m³)
- high-performance and special concretes
 - self-compacting
 - high-strength c.
 - waterproof c.
 - sprayed c.
 - fair-faced c.
 - colored c

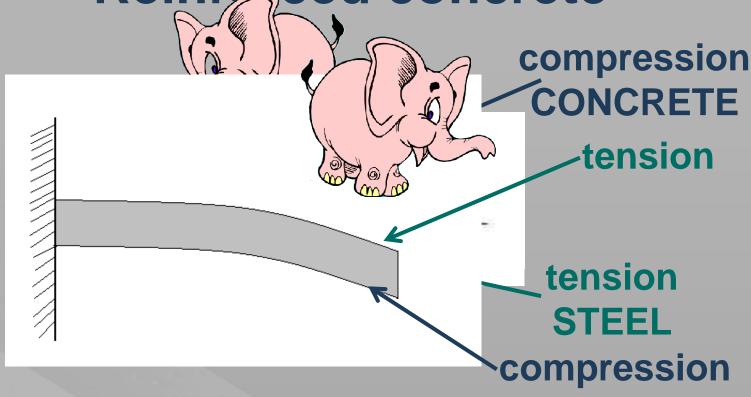
ding materials


Reinforced and prestressed concrete


Reinforced concrete

combining plain concrete and reinforcing steel

the system behaves as a unit



Joseph Monier 1823-1906

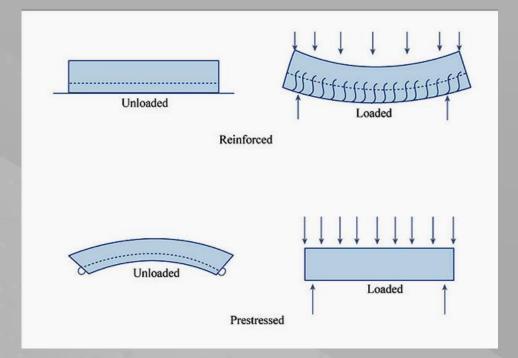
Reinforced concrete

- good bond between steel and concrete
- thermal compatibility ($\alpha_t \cong 12.10^{-6} \text{ K}^{-1}$)
- good material tolerance

ng material

Reinforcing steel

bars


grids

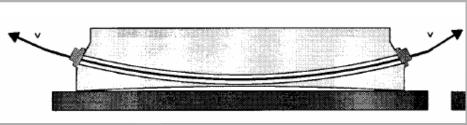
fibers

 strands, cables (prestressing)

 compressive stresses induced by highstrength steel tendons in a concrete member before loads are applied, will balance the tensile stresses imposed in the member during service

pre-tensioned concrete

concrete is cast around already tensioned



post-tensioned

 applying compression after pouring concrete and the curing process (in situ)

Lightweight concretes

- bulk density < 2000 kg.m³
 - pervious
 - lightweight aggregates
 - foamed

Lightweight concretes

- + less need for structural steel reinforcement
- + smaller foundation requirements
- + better fire resistance
- + better thermal properties
- usually lower strength
- higher cost
- higher shrinkage
- higher water absorption

Pervious concretes

 little or no fine aggregate and just enough cementitious paste to coat the coarse aggregate particles while preserving the interconnectivity of the voids

- compressive strength
 1-10 MPa
- bulk density
 900 -1400 kg.m³
- very high permeability

void

Pervious concrete

- pavements
 - drainage
 - noise reduction

noise protection walls

Concretes with lightweight

Lightweight aggregates:

- natural (pumice, scoria, volcanic cinders, tuff, and diatomite)
- thermal treatment of natural raw materials (clay, slate, shale, perlite)
- from industrial by-products (fly ash, slag)

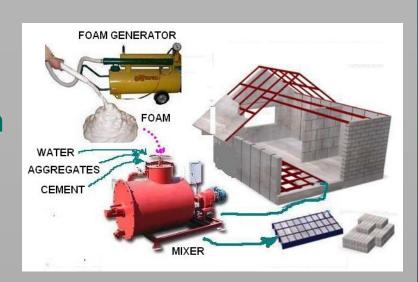
aggregates

Concretes with lightweight aggregates - LWAC

- compressive strength similar to normal concretes (up to 45 MPa)
- $\rho_v = 1000 2000 \text{ kg.m}^3$
- high-strength lightweight concretes
 (HSLW) strength up to 90 MPa
- aggregates require wetting prior to use
- worse pumping
- worse finishing

Concretes with organic aggregates

- wood particles (need mineralization)
- natural fibers (hemp, sisal, bamboo, coir)


foamed plastics (EPS, PP)

Cellular concretes

- foamed concrete
 - mixing of concrete with in advance prepared foam
 - foam is prepared in foam generator
- aerated autoclaved concrete – AAC
 - foaming agents, which generates gas in concrete due to chemical reaction

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

High performance concretes

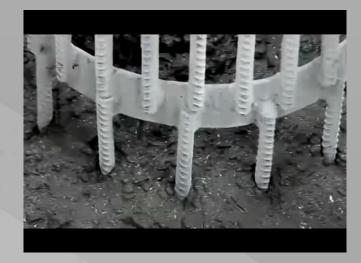
High performance concrete - HPC

concrete that meets special performance and uniformity requirements that cannot always be obtained using conventional ingredients, normal mixing procedures, and typical curing practices

Characteristics:

- ease of placement and consolidation without affecting strength
- long-term mechanical properties
- early high strength
- volume stability
- longer life in severe environments

Self- consolidating concrete SCC

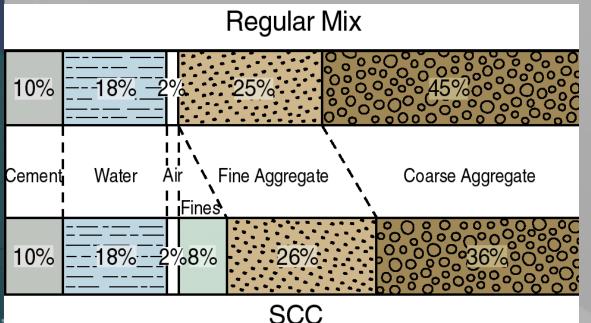

 highly flowable, non-segregating concrete that spreads into place, fills formwork, and encapsulates even the most congested reinforcement, all without any mechanical vibration

developed in 1980s — Japan

strength and durability same as conventional

concrete

Faculty of Civil Engineering

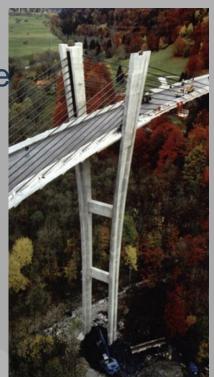

Self- consolidating concrete SCC

Self- consolidating concrete

- increased amount of
 - fine material (i.e. fly ash or limestone filler)
 - superplasticizers

culty of Civil Engineering

High-strength concrete - HSC


- compressive strength
 - 60- 90 MPa HSC
 - 100-180 MPa UltraHSC
- highly impermeable
 - the curing is very important
- brittle
 - high strength and increased stiffness
- low water content (< 0.38)
 - some cement grains act as aggregate grains (not all of the cement can be hydrated)

High-strength concrete - HSC

Components:

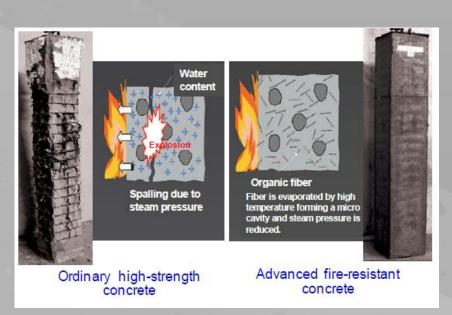
- portland cement
- latent hydraulic and pozzolanic materials
 - large quantities (5% 20%)
- superplasticizers
- high strength aggregates with a suitable particle surface (angular), reduced particle size (< 32 mm)
- admixtures to ensure maximum deaeration
- $w/c \sim 0.28$

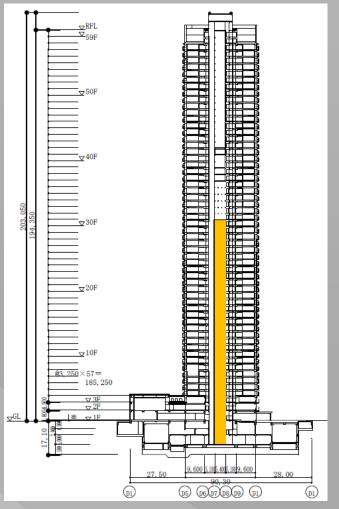
APC – Advanced Permormance Composites Musashi Kosugi Towers, Tokio

Mid Sky Tower
(MS Tower)

Station Forest Tower
(SF Tower)

Component	Amount / 1 m ³ of concrete				
Cement with silica fume	1024 kg				
Fine aggregates	436 kg				
Coarse aggregates	840 kg				
Mixing water	155 I				
Polypropylene fibres	2 kg				
Steel fibers	40 kg				
Superplasticizers	PC				


APC - Musashi Kosugi Towers, Tokio


compressive strength: 150 MPa

w/c ratio: 0.15

flow diameter: 600 mm

air content: 2%

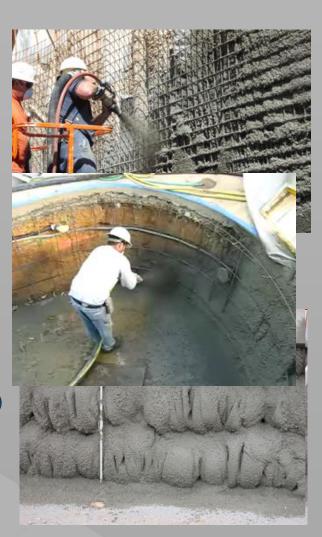
Special concretes

Waterproof concrete

- reduced capillary porosity
 - suitable particle-size distribution
 - low w/c ratio
 - additional sealing of the voids with pozzolanic reactive material
 - careful and correct compaction of the concrete

Sprayed concrete

 a mixture of cement, aggregate and water projected pneumatically from a nozzle into place to produce a dense homogeneous mass.


- wet process (Shotcrete)
 - the concrete mix is supplied in the wet form and is pumped to the spraying nozzle where accelerating agent is added
- dry process (Gunite)
 - material is conveyed in a dry or semi dry state using compressed air to the nozzle where water is added

Sprayed concrete

Advantages

- high strength, low permeability, high durability
- reduction in formworksaving time and money
- high early strength gain
- low water / cement ratio
- good adhesion and bond strengths

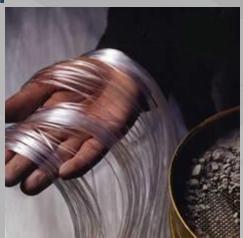
nateria

Fair faced concrete

- smooth concrete surface
- uniform appearance
- low-void (max. proportion of voids 0,3 0,6 % of test surface)

Fair faced concrete

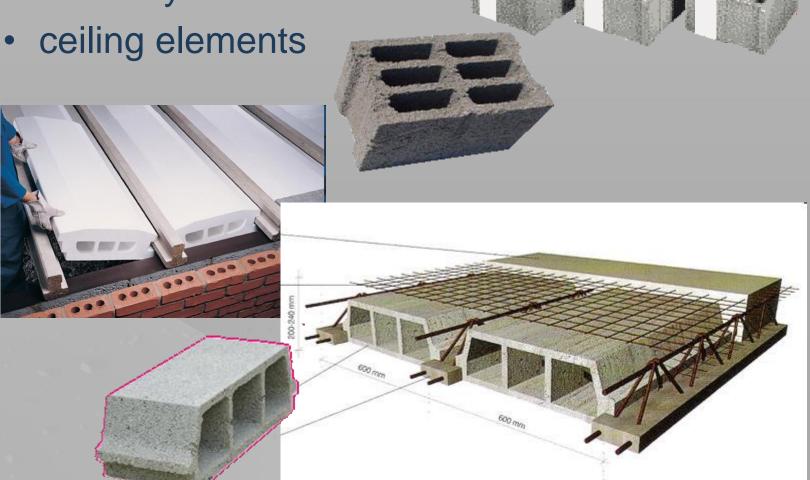
Rules:


- suitable concrete mix
 - suitable aggregates
- good formwork
 - absolutely impervious
- right quantity of a release agent
- suitable placement method
- correct installation
 - compaction, placing, prevention of bleeding
- thorough curing

Light transmitting concrete

- Litracon
- 4 % optical fibers
- $\rho_v = 2100 2400 \text{ kg.m}^3$
- compressive strength 50 MPa

price: t.100 mm – 2140 € / m²



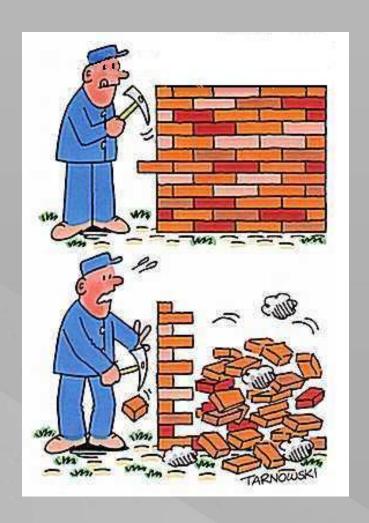
Concrete blocks and ceiling

masonry blocks

Concrete tiles

- roof tiles
- floor tiles

Department of Materials Engineering and Chemistry


Faculty of Civil Engineering

Faculty of Civil Engineering

Mortars

Mortars

binder + <u>fine</u> aggregates + (additives) + water

Use:

- masonry mortars
- plastering and rendering m.
- laying adhesives, grouts, screeds

Manufacture:

- site made
- factory made
- semi-finished

Mortar components

Binder:

- clay
- cement
- cement + lime
- lime
- gypsum
- gypsum + lime

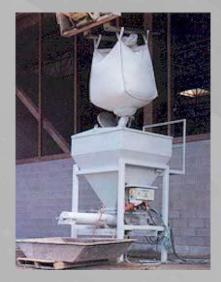
Aggregates

- sand
- blast furnace slag
- ash
- perlite
- polystyrene

Additives:

plastificating a., fibers, pigments

Masonry mortars


- sand : cement : hydrated lime =

=([6]: 1: 1])

- sand : cement = (4:1)

factory made (EN 998-2)

Masonry mortars - definitions

- general purpose (G)
 - satisfies general requirements, without special characteristics
 - prescribed and/or designed
- thin layer (T)
 - a maximum aggregate particle size of 2
 mm
- lightweight (L)
 - a dry bulk density below 1400 kg/m³

Brick laying – horizontal joints

Rendering mortars

- site-made exceptionally (restoring works)
- factory made
 - lime, cement, lime-cement EN 998-1
 - gypsum EN 13279

Rendering mortars

- general purpose (GP)
- lightweight (LW)
 - a dry hardened bulk density of less than 1300 kg/m³
- colored (CR)
- one coat for external use (OC)
- thermal Insulating (T)
- renovation (R)
 - for use on moist masonry walls containing soluble salts

Clay renders

clay + sand + (fibers)

outer – restoring works

inner – also in modern interiors

(moisture regulation)

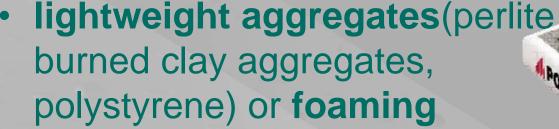
Classical and one coat renders

 classical render – 15mm

(primer, undercoat, finicoat)

one coat renders – 4-8 mm

- gypsum
- lime-cement
- acrylic
- silicone
- silicate



Thermal insulating mortars

masonry mortars

$$(\lambda = 0.2 - 0.6 \text{ W.m}^{-1}.\text{K}^{-1})$$

- thermal insulating masonry
- plaster ($\lambda = 0.09 0.12 \text{ W.m}^{-1}.\text{K}^{-1}$)
 - worse effect than (ca 1/4) than ETICS *

* External Thermal Insulating Composite System

Department of Materials Engineering and Chemistry

Faculty of Civil Engineering

Building materials

Department of Materials Engineer Ind Chemistry

Autoclaved products

Autoclave curing

- curing of products in special vessels (autoclaves), with an environment of steam with high pressure and temperature
- hydrothermal hardening of silicate materials (temperature ca 180 °C and pressure 0,8 MPa)
- after 16 -18 hours materials obtain the final strength
- after curing in autoclave non-hydraulic binders became hydraulic (quartz sand reacts with calcium hydroxide to form calcium silica hydrate)

ing materia

Autoclaves for AAC manufacture

Aerated autoclaved concrete - AAC

Aerated autoclaved concrete

Composition:

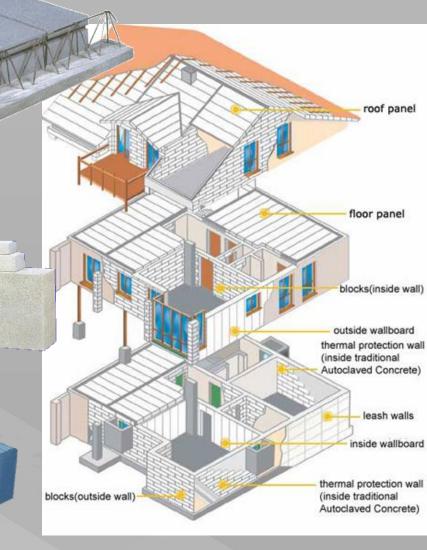
- binder (lime, cement)
- silicate materials
 - sand white AAC
 - ash grey AAC
- gas forming (foaming)
 admixture
 - Al powder, Al paste
- water

Aerated autoclaved concrete

Foaming:

• 2 Al + 3 Ca(OH)₂ + 6 H₂O \rightarrow 3 CaO . Al₂O₃ . $6H_{2}O + (3 H_{2})$

Faculty of Civil Engineering


AAC manufacture

AAC - products

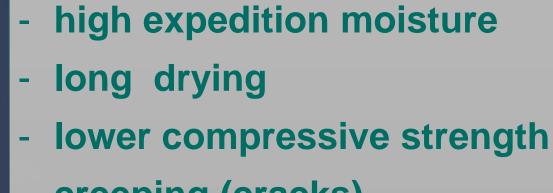
- blocks
- lintels
- ceiling elements
- panels
 - walls
 - partitions
 - floors
- chimney elements

AAC - properties

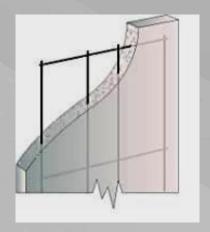
- compression strength classification:
 - 1,5; 2; 2,5; 3; 3,5; 4; 4,5; 5; 6; 7 (MPa)
- bulk density classification:
 - 300 (250 –300); 350; 400; 450; 500; 550;..... 950; 1000 (kg/m³)
- $\lambda = 0.11 0.17 \text{ W.m}^{-1}.\text{K}^{-1}$

AAC - advantages

- + less amount of mortar
- + good thermal efficiency
- + easy sawing and cutting
- + light weight
- + easy rendering
- + price

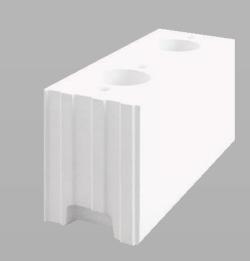

AAC - disadvantages

- creeping (cracks)
- volume changes with moisture



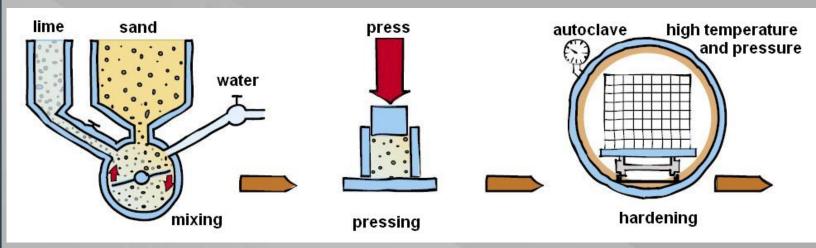
AAC - reinforcing

- after autoclave curing there is no Ca(OH)₂ → AAC is not alkalic
- → anticorrosive protection of reinforcing steel is necessary!
- · acrylic paint, stainless steel



Autoclaved products

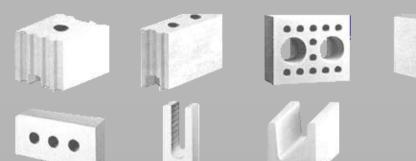
Sand lime masonry elements

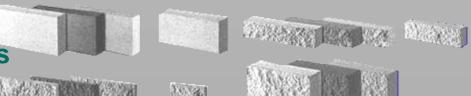

Sand lime masonry elements

quicklime

1:10-12

- sand
- water
- pigments




Sand lime masonry elements

- under the action of the high-pressure steam the lime attacks the particles of sand, and a chemical compound of water, lime and silica is produced which forms a strong bond of calcium silicate hydrates with the particles of sand
- compressive strength $R_c = 15 40 \text{ MPa}$
- good frost resistance
- $\rho_{\rm v} = 1300 2000 \text{ kg.m}^{-3}$
- $\lambda = 0.9 \text{ W.m}^{-1}.\text{K}^{-1}$


Sand lime masonry elements

- bricks
- blocks
 - full or hollow
 - smooth sides or interlocking grooves
- wall tiles
- lintels

Sand lime masonry elements advantages

- + high dimensional accuracy
- + smooth surface
- + good frost resistance
- + good fire resistance
- + rendering is not necessary
- + good resistence against
 - chemicals
- + labor saving
- + good thermal accumulation

Sand lime masonry elements - disadvantages

- price
- efflorescence
- higher thermal conductivity
- difficult removal of graffiti

Faculty of Civil Engineering

Autoclaved products

Fibre cement

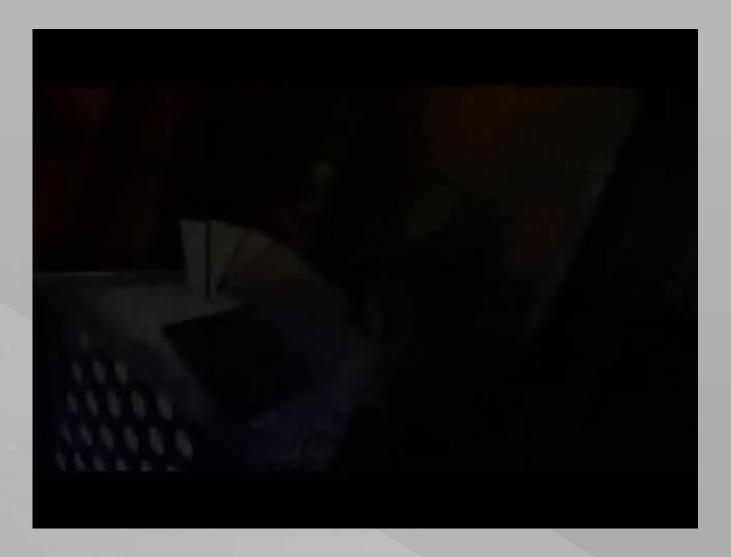
Fibre cement

Components:

- cement
- formerly asbestos fibers (Eternit)
 - prohibited (health risk)

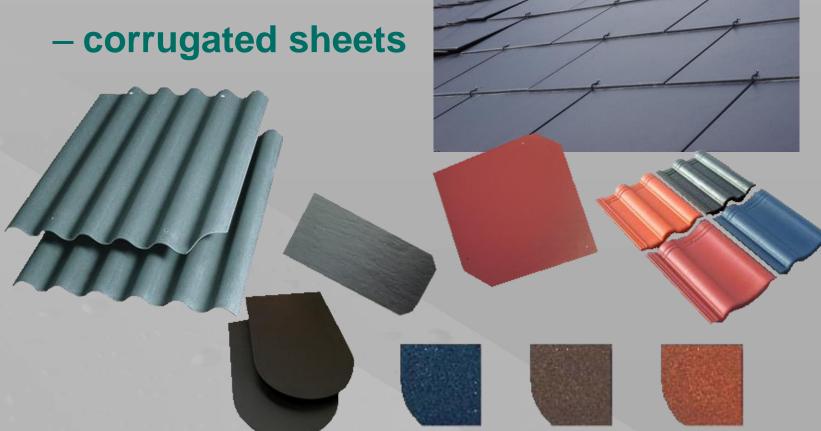
now:

- cellulose fibers
- syntetic fibers (PVA)
- water
- sand or microfillers
- additives (pigments)



Faculty of Civil Engineering

materials

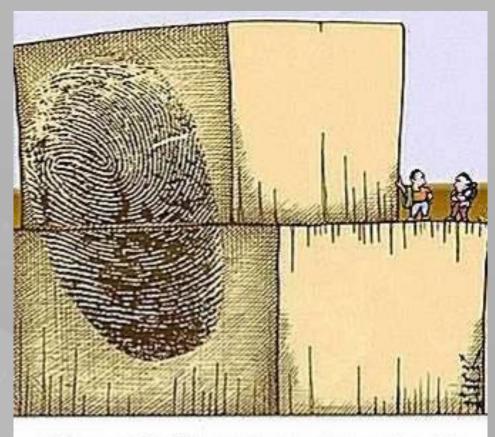

Fibre cement manufacture

Fibre cement products

- roofing
 - slates

Fibre cement products

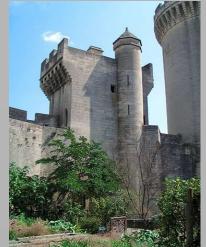
- cladding
 - internal (fire protection, partition walls, ceilings)
 - external (siding)



Faculty of Civil Engineering

Building stone

"Of course, it's still a complete mystery as to how the ancients even managed to MOVE these massive stones..."


Faculty of Civil Engineering

Building stone

Building stone

all kinds of solid rocks, which have suitable properties to be used in construction works

rocks must have certain physical and chemical properties based on their mineralogical and petrographic composition, structure, texture, secondary alterations, etc.

dimension stones > 125 mm

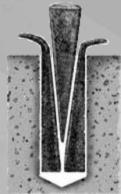
(x aggregates < 125 mm)

Some properties of common rocks

Type of rock	Porosity (%)	Density pcf (kg/m³)	Compressive strength ksi (MPa)	Modulus of elasticity ksi (MPa) × 10 ⁻³
Granite	0-2	165 (2650)	15-35 (103-241)	6-10 (41.3-68.9)
Limestone	0.5 - 30	168 (2700)	5-35 (34.4-241)	4-14 (27.6-96.5)
Marble	0-1.5	175 (2750)	10-30 (68.9-206.7)	4-14 (27.6-96.5)
Sandstone	1-20	160 (2580)	7-30 (48.2-206.7)	1-7.5 (6.9-51.7)
Slate	_	170 (2740)	_	_
Shale	2-30	140 (2255)		_

igneous

$$-R_c$$
= 120- 400 MPa, ρ_v = 2500 $-$ 3000 kg.m⁻³


sedimentary

$$-R_c = 50 - 150 \text{ MPa}, \ \rho_v = 2000 - 2800 \text{ kg.m}^{-3}$$

Stone extracting

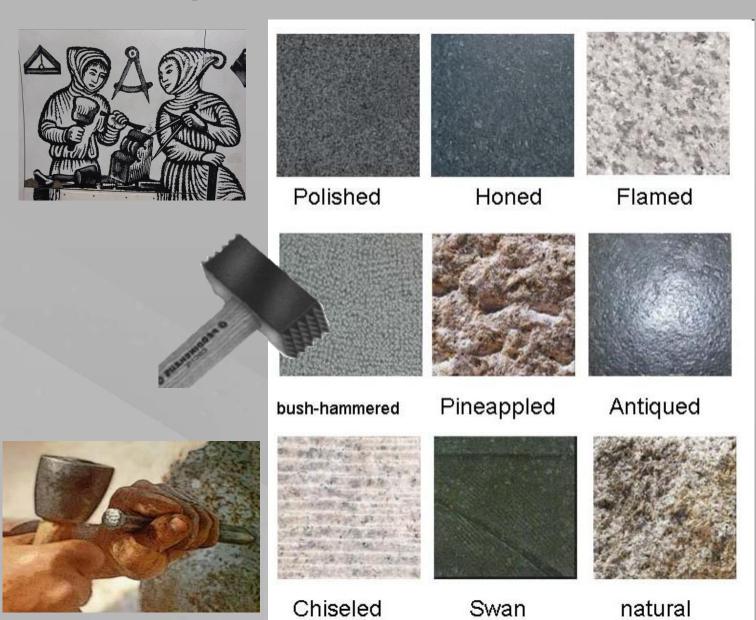
- quarry
 - broaching (channeling)
 - holes, wedges
 - blasting
 - explosives



Stoneworking

carving

surface finishing



Faculty of Civil Engineering

Granit processing

Surface finishes

Granite

Mechanical properties:


- high compressive strength
- hard surface
- difficult to work with
- can be polished

Appearance:

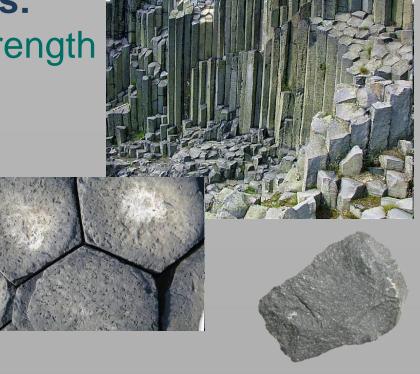
- medium to coarse texture
- pink to dark gray or even black
- small porosity

Use:

 external walls, flooring tiles, kerbs, paving stones, stairs

Basalt

Mechanical properties:


- high compressive strength
- very hard surface
- difficult to work with

Appearance:

- fine grained
- black, dark gray, greenish black

Use:

- external walls, floors, cobblestones
- aggregates
- products from melted basalt

Sandstone

Mechanical properties:

- easy to work with
- only particularly resistant to weather

Appearance:

- sand grains (0.05-2mm)
 cemented together
- the color varies from red, green, yellow, gray and white

Use:

 decorative stones, flooring, paving, garden architecture

Limestone

Mechanical properties:

- easy to work with
- soft
- acid sensitive
- low porosity

Appearance:


 often a sandy color but sometimes it can be gray, greenish, or blackish

Use:

- flooring, wall cladding
- raw material for cement, lime...

Marble (recrystallized limestone)

Mechanical properties

- easy to work with
- easy to polish
- not resistant to acids

Appearance

a wide variety of colors

Use:

- interior decoration, statues
- cladding, floors (interior)

Slate

Mechanical properties:

can be split into thin layers

 extremely low water absorption

good weather resistance

Appearance:

color mostly gray

Use:

cladding, flooring - tiles

roof tiles - slates

Dimension stone

 natural stone or rock that has been selected and fabricated (trimmed, cut, drilled, ground) to specific sizes or shapes

Types:

- quarried (ruble) stone
- dressed stone
 - rough stone that has to be adjusted to fit a shape
- cut stone

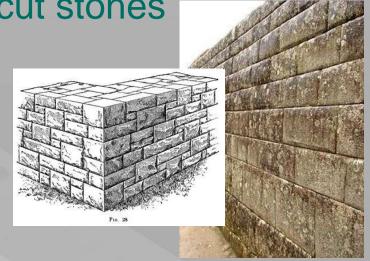
Rubble stone

- broken stone, of irregular size, shape and texture
- scrap left over from quarrying and processing
- may be roughly shaped into blocks, but it is not finished
- rubble stone walls
- fill
- stepping stones
- cyclopean masonry

Stonemasonry

rubble masonry

 roughly dressed stones are laid in a mortar


- quarried stone should be used

- stone masonry using cut stones

- ashlar blocks

- small ashlar

Stonemasonry

- stone veneer
 - protective and decorative covering of walls
 - relatively small thickness and weight
- slipform stonemasonry
 - a reinforced concrete
 wall with stone facing in
 which stones and mortar
 are built up in courses
 within reusable slipforms

Another building stone types

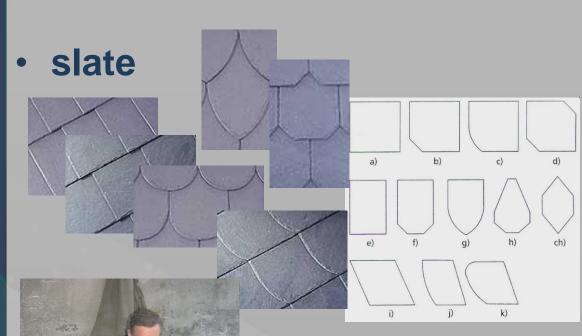
- kerbs
- paving stones
 - cubes, cobblestones
- stone cladding
- stairs

Gabion

gabbia (it.) = big cage

retaining walls

slopes stabilization


architectural elements

Faculty of Civil Engineering

Stone roofing

Artificial stone

 binder (white and/or grey cements or polymer resin), manufactured or natural sands, carefully selected crushed stone or well graded natural gravels and mineral coloring pigments

manufactured s., cast stone, enginéered stone

Cast basalt

- compressive strength 300 450 MPa
- hardness 8 (Mohs)

Mineral fibers

EN 13162 – insulation material having a woolly consistency, manufactured from molten rock, slag or glass

- boards or slabs (λ = 0,035 0,045 W.m⁻¹.K⁻¹, ρ_V = 35 220 kg.m⁻³)
- rolls ($\lambda \cong 0.04 \text{ W.m}^{-1}.\text{K}^{-1}$, $\rho_V = 70 \text{ kg.m}^{-3}$)
- batts, mats ($\lambda \cong 0.04 \text{ W.m}^{-1}.\text{K}^{-1}$, $\rho_{\text{V}} = 100 120$

kg.m⁻³)

free wool

Mineral fibers use

thermal insulations

acoustic insulations

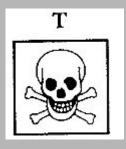
Isover

Isoi

fire proofing

Asbestos

 silicate minerals (serpentine, amphibole, chrysotile, crocidolite) with long, (1:20) thin fibrous crystals



- asbestos cement (roofing, boards, pipes)
- plasters, paints, sealants

Asbestos

- prolonged inhalation of asbestos fibers can cause serious illnesses, (cancer mesothelioma, asbestosis)
- → banned in EU
- → difficult liquidation!

