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Two-Level (2F) Factorial Designs

e Many applications of response surface methodology are based on fitting one of the following

models:
First order model vy = By + fix1 + Bowa + -+ + Brip (3)
Interaction model y = By + i Biw; + Z i Bijxix; (4)
. i k
Second order model y = [y + Z Bix; + Z Z Bijxir; + Z Biix? (5)
i=1 i<j i=1

e One commonly-used response surface design is a 2 factorial design.

e A 2K factorial design is a k-factor design such that

(i) Each factor has two levels (coded —1 and +1).

(ii) The 2% experimental runs are based on the 2* combinations of the £1 factor levels.

e Common applications of 2¥ factorial designs (and the fractional factorial designs in Section 5

4.1

of the course notes) include the following:

— As screening experiments: A 2% design is used to identify or screen for potentially
important process or system variables. Once screened, these important variables are
then incorporated into a more complex experimental study.

— To fit the first-order model in (3) or the interaction model in (4): The 2% design can be
used to fit model (3) or (4). One application of fitting these models is in the method of
steepest ascent or descent (Section 6 of the course notes).

— As a building block for second-order response surface designs: 2* designs are used to
generate central composite designs (CCDs) and Box-Behnken designs (BBDs).

We will first analyze each 2 design as a fived effects design. We will also generalize the

fixed effects results to the regression model approach for which the model contains regression
coefficients fy, 51, fe, ... as in (3) and (4).

Before analyzing the data, you must determine if the design was completely randomized or
if blocking was used. Your answer to this question will indicate the appropriate analysis.
Initially, we will assume the design was completely randomized.

The 22 Design

The simplest 2¥ design is the 22 design. This is a special case of a two-factor factorial design
with factors A and B having two levels.

Because a 22 design has only 4 runs, several (n) replications are taken.

Notationally, we use lowercase letters a, b, ab, and (1) to indicate the sum of the responses
for all replications at each of the corresponding levels of A and B.

— If the lower case letter appears, then that factor is at its high (+1) level.

— If the lower case letter does not appear, then that factor is at its low (—1) level.
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Factor Level Coded Replicate Sum of n

Combination Levels 1 2 e n Replicates

Alow , B low -1 -1 XXX XXX XXX (1) = Y11
A high, B low +1 -1 XXX XXX e XXX a = Yo1.
A low , B high —1+1 XXX XXX e XXX b = Y12.
A high, B high +1 +1 XXX XXX e XXX ab — Yoo,

We will use the notation A and A~ to represent the set of observations with factor A at its
high (41) and its low (—1) levels, respectively. The same notation applies to B™ and B~ for
factor B.

a and ab correspond to AT and (1) and b correspond to A~.

b and ab correspond to BT and (1) and a correspond to B~.

Y4+ and 74— are the means of all observations when A = +1 and A = —1, respectively.

Yp+ and Y- are the means of all observations when B = +1 and B = —1, respectively.

The average effect of a factor is the average change in the response produced by a change
in the level of that factor averaged over the levels of the other factor.

e For a 22 design with n replicates, the

Average effect of Factor A, denoted A, is
_ _ 1
A= Yur —Tu- = = g-labt+a—b—(1).
Average effect of Factor B, denoted B, is
_ _ 1
B = Yp+ —Yp- = :%[ab—a—l—b—(l)].

Interaction effect between Factors A and B, denoted AB, is the difference between (i)
the average change in response when the levels of Factor A are changed given Factor B is at
its high level and (ii) the average change in response when the levels of Factor A are changed
given Factor B is at its low level:

AB = (Ya+p+ —Ya-p+) — Warp- —Ya-5-)
ab—a—0b+ (1)
2n

Note: The results would be the same if we switched the roles of A and B in the definition:

AB = (Ya+p+ —Ya+p-) — Wa-p+ —Ya-5-)
ab—a—0b+ (1)
2n

Sums of Squares for A, B and AB.

e Note that when estimating the effects for A, B and AB the following contrasts are used:

F'y=ab+a—-0—-(1) I'p=ab—a+b—(1) Cap=ab—a—b+ (1)
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e ['y, I'p, and I'yp are used to estimate A, B, and AB, and they are orthogonal contrasts.

— The coefficient vectors for the contrasts are [I 1 —1—1] for A, [1 —1 1—1] for B, and
[1—1—1 1] for AB. Note the dot product of any two vectors = 0. This is why they
are called orthogonal contrasts.

e The sum of squares for contrast I is 7

e For a replicated 22 design, this is equivalent to:

[ab+a—b— (1)]? SSB:[ab—a+b—(1)]2 SSAB:[ab—a—b—k(l)}2

SS, =
A 4n 4n 4n

e Because there are two levels for both factors, the degrees of freedom associated with each sum
of squares is 1. Thus, MS4 =554, MSp=S5Sg, and MSs g = 5SSa5B.

e Because there are n replicates for each of the four A *x B treatment combinations, there are
4(n — 1) degrees of freedom for error for the four-parameter interaction model in (4).

e It is common to list the treatment combinations in standard order: (1), a,b, and ab. Many
references use a shortened notation (— or +) to denote the low (—1) and high (+1) levels of
a factor.

Example: An engineer designs a 22 design with n = 4 replicates to study the effects of bit size (A)
and cutting speed (B) on routing notches in a printed circuit board.

A B AB Replicates Totals
— — + 18.2 18.9 12.9 144 (1) =64.4
+ — — 27.2 24.0 22.4 22.5 a=96.1
— + — 15.9 14.5 15.1 14.2 b =59.7
+ + + 41.0 43.9 36.3 39.9 ab = 161.1

Note: the signs in the AB column are the signs that result when multiplying the A and B columns.

e The estimates of the fixed effects are:

Ty abta—b—(1)  161.1+96.1—59.7 —64.4

A P— P— P— pr—
2n 2n 8

B _ I'p  ab—a+b—(1)  161.1—96.1+59.7—64.4

 2n omn N 8 N

B — Tup  ab—a—b+(1)  161.1—96.1—59.7+64.4

- 2n om N 8 N

e The sum of squares SS; = I'?/4n for i = A, B, AB, T is:

133.12 60.3?
SSx = 6 - 1107.2256 SSp = 6~ 227.2556

55 = 0T _ 3036306 S —iii n Y 10706728 _ 1700 8304
AB T e ' o =1 j=1 k=1 T | 16 |

SSgp = SSp—SS4—SSp —SSap = 71.7225

e Sums of squares can also be calculated using the formulas for a two-factor factorial design.
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The Regression Model

e If both factors in the 2% design are quantitative (say, z; and x5), we can fit the first order

4.2

regression model
y = Po + fivr + Baze + €

or, we can fit the regression model with interaction:
y = fo + fir1 + Paxe + Prarizs + €

The least squares estimates [ by by by b1o | = (X'X) ! X'y are directly related to the estimated
effects A, B, and AB from the fixed effects analysis:

ab+a+0b+ (1)

by = or by=7y
4dn
. FA . ab +a— b— (1) .
b1 = E = in or bl = A/2
_ I'p; ab+b—a—(1) B
by = = ym or by=DB/2
~ Tup  ab+(1)—a—>b B
by = i n or by=AB/2
For the previous example:
by = Y = 381.3/16 = 23.83125
by = A/2 = 16.6375/2 = 8.31875
b, = DB/2 = T75375/2 = 3.76875
b = AB/2 = 87125/2 = 4.35625

Therefore, the fitted regression equation is
y = 23.83125 + 8.31875x; + 3.76875xy + 4.356251175

where (x1,22) are the coded levels of factors A and B.

The 22 Design

Let A, B, and C be three factors each having two levels. The design which includes the 23 = 8
treatment combinations of A x B x C'is called a 2* (factorial) design.

The following table summarizes the eight treatment combinations and the signs for calculating
effects in the 2% design (I =intercept). Assume each treatment is replicted n times.

Factorial Effect Sum of

I A B (C AB AC BC  ABC  replicates

+ - - - + + + - (1) = Y
+ + - - - - + + a = Y211.
+ - + - - + - + b = Yi121-
+ + + - + - - - ab = Y221.
+ - - + + - - + C = Y1192.
+ + - + - + - - ac = Y219.
+ - + + - - + - be = Y122.
+ + + + + + + + abc = Y229.

e The signs in the interaction columns are the signs that result when multiplying the main effect

columns in the interaction of interest. Note that all columns are mutually orthogonal.
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e For a 23 design with n replicates, each estimated effect is the differences between two means:
The first mean is the average of all data corresponding to the + rows in an effect column and
the second mean is the average of all data corresponding to the — rows in an effect column.

Average effect of Factor A, denoted A, is

(a+ab+ac+abc) (1) +b+c+be

A ey M — _ = —
Ya+ —Ya An An

1
= 4—[a—|—ab—|—ac—|—abc—(1)—b—c—bc].
n

Average effect of Factor B, denoted B, is

(b+ab+bc+abc) (1)+a+c+ac

Bo= Vs =V = 4n a 4n
1

= b+ ab+ bc+ abc — (1) —a — ¢ — ac].

Average effect of Factor C, denoted C, is

(c+ac+bc+abc) (1)+a+b+ab

¢ = Yor ~Vo- = 4n a 4n

1
= R[c+ac—|—bc—|—abc—(1)—a—b—ab].

Two-factor interaction effect between Factors A and B, denoted AB, is

AB — ab+abc—a—ac b+bc—(1)—c  abctab+c+(l)—a—ac—bc—b
B 4n 4n B 4n '

Two-factor interaction effect between Factors A and C, denoted AC), is

actabc—a—ab c+bc—(1)—b  abctac+b+(l)—ab—a—bc—c

A —
¢ 4n 4n 4n

Two-factor interaction effect between Factors B and C, denoted BC, is

BC - bet+abc—b—ab c+ac—(1)—a  abct+bct+a+(l)—ab—b—ac—c
N 4n 4n B 4n '

Three-factor interaction effect between Factors A, B and C, denoted ABC, is the
average difference between the AB interaction for the two different levels of C. That is,

ABC — (abc —bc) — (ac—c)  (ab—1b) — (a—(1))
4dn 4dn
abc+a+b+c—ab—ac—bc— (1)

4n

e Let I' = the contrast sum in the numerator for any of the effects. Then the sums of squares

associated with that effect is SS =
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Geometric Representation for a 23 Design
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Estimation of Two-Factor Interaction Effects
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The Regression Model

e If all three factors in the 23 design are quantitative (say, x1, x», and x3), we can fit the
regression model

y= P00 + fix1 + Paxa + Psxs + PLirarixe + [isrirs + Posxers + Siazxrizazrs + €. (6)

e The least squares estimates (with the exception of by) are 1/2 of the estimated effects from
the fixed effects analysis. That is,

bo =7 by = A/2 by = B/2 by = C/2

b12 == AB/2 blg - AC/2 b23 = BC/2 b123 - ABC/2

e Because all of the contrasts associated with each of the effects are orthogonal, the least squares
estimates remain unchanged for any model containing a subset of terms in (6).

4.2.1 A 23 Design Example

An engineer is interested in the effects of cutting speed (A), tool geometry (B), and cutting angle
(C) on the life (in hours) of a machine tool. Two levels of each factor are chosen, and three replicates
of a 23 design are run. The results are summarized below:

A B (| Replicates | Treatment
r1 Ty T3 Sums
- — =122 31 25 (1) =178
+ - =132 43 29 a =104
- 4+ =135 34 50 b= 119
+ 4+ — |55 47 46 ab = 148
- — 4+ |44 45 38 c=127
+ — 4+ 140 37 36 ac =113
- 4+ + /60 50 54 bc = 164
+ + + |39 41 47| abe=127

Analyze the data (with lack-of-fit tests) assuming the following 4 models:
An additive model with fixed (categorical) effects.

A first-order regression model.

Model 3

An interaction model with fixed (categorical) effects.

(

e (Model 2
(
(Model 4

):
):
):
): A regression model with all two-factor crossproduct (interaction). terms.

Note there are df for pure error.
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o We will first estimate effects and sums of squares using the formulas, then use SAS to perform
the analysis. Recall:

(1) a b ab c ac bc abc
78 104 119 148 127 113 164 127

Model
Fixed Effects — I A B C AB AC BC ABC | Treatment
Regression — | Int x; xo 3 X1T9 XT3 ToT3  XT1ToX3 Sums
+ - - - + + + - (1) =78
+ + - - - -+ + a =104
+ - + - -+ - + b=119
+ + + - o+ - = - ab = 148
+ - -+ o+ - = + ¢ =127
+ + - + — + — — ac =113
+ - + + - -+ - be = 164
+ + + +  + 4+ + | abe=127
e The fixed effects estimates are
104 + 148 + 113 + 127 — 78 — 119 — 127 — 164 4 _
A = = — = 3
(4)(3) 12
119+ 148 + 164 + 127 — 78 — 104 — 127 — 113 136 _
B = = — = 11.3
(4)(3) 12
12 11 — 78 — — — _
oo 7+ 113+ 164 + 127 — 78 — 104 — 119 — 148 _ g _ 63
(4)(3) 12
AR — T8 + 148 + 127+ 127 — 104 — 119 — 113 — 164 _ —20 _ _1%
(4)(3) 12
AC - 78+ 119+ 113+ 127 — 104 — 148 — 127 — 164 _ —106 _ _883
(4)(3) 12
104 — — — — — _
BC — 78 +104 + 164 + 127 — 119 — 148 — 127 — 113 _ 34 _ 983
(4)(3) 12
ABC — 104 + 119 + 127+ 127 — 78 — 148 — 113 — 164 _ —26 _ 918
(4)(3) 12
F2
e The sums of squares are calculated using —</¢<.
42 _ (136)2 _ 822 _
Sa 51 6 SSp 51 770.6 SSc 51 80.16
_ (=200 ~(-106)> _
SSap = 5 = 16.6 SSac = 51 = 468.16
B (—34)2 B _ B (—26)> B
SSpc = Y 48.16 SSapc = 5L 28.16
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Fixed effects additive model (Model 1):

yijk:l = U + o + ﬁj + Yk + €ijkl (Z:il, j::tl, /{}Iil, l21,2,3)

Note the effect estimates in the SAS output match the formula calculations.
First-order regression model (Model 2):  Fori=1,2,...,24

Yi = Bo + bz + Paxe + PBsxsi+ €
Note that the parameter estimates are 1/2 of those from the fixed effects in Model 1.

For Models 1 and 2, there are df for pure error and df for total error. Thus, the
df for lack-of-fit = . This means we can add at most additional terms in the

model (such as interaction terms).

There is a significant lack-of-fit (p-value = ). We can add at most  additional terms
in the model (such as interaction terms).

The residuals in the Residual vs Predicted Value plot (page 50) are not randomly scattered
about 0 for several (1, x9,23) combinations. This suggests a lack-of-fit problem.

MODEL 1: ADDITIVE FIXED EFFECTS MODEL MODEL 2: FIRST ORDER REGRESSION MODEL
The GLM Procedure The REG Procedure
Model: MODEL1

Dependent Variable: Y

Sum of Number of Observations Read | 24
Source DF Squares | Mean Square | F Value | Pr > F X
Number of Observations Used |24
Model 311051.500000 350.500000 6.72 | 0.0026
Error 20| 1043.833333 52.191667
Analysis of Variance
Corrected Total | 23 | 2095.333333 y
Sum of Mean
Source DF Squares Square | F Value [ Pr >F
R-Square | Coeff Var | Root MSE | Y Mean Model 3 [ 1051.50000 | 350.50000 6.72 | 0.0026
0.501829 17.69236 7.224380 | 40.83333 Error 20 | 1043.83333 | 52.19167
Lack of Fit 4| 561.16667 |140.29167 4.65 | 0.0111
Source | DF | Type III SS | Mean Square | F Value | Pr > F Pure Error 16 | 482.66667 | 30.16667
A 1| 06666667 0.6666667 0.01 | 0.9111 Corrected Total | 23 | 2095.33333
B 1| 770.6666667 770.6666667 14.77 | 0.0010
C 1] 280.1666667 280.1666667 5.37] 0.0312 Root MSE 7.22438 | R-Square | 0.5018
Dependent Mean | 40.83333 [ Adj R-Sq | 0.4271
Coeff Var 17.69236
Standard X
Parameter | Estimate Error |t Value | Pr > |t| Parameter Estimates
A 03333333 [2.94934079 |  0.11 | 0.9111 . Parameter | Standard Variance
Variable | DF | Estimate Error |t Value | Pr > |t| | Inflation
B 11.3333333 | 2.94934079 3.84 | 0.0010
Intercept 1 40.83333 1.47467 27.69 | <.0001 0
C 6.8333333 | 2.94934079 232 0.0312
X1 1 0.16667 1.47467 0.11 ] 09111 1.00000
X2 1 5.66667 1.47467 3.84| 0.0010 1.00000
X3 1 3.41667 1.47467 2.32] 0.0312 1.00000
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Y
Level of
A N Mean Std Dev
-1 12 140.6666667 | 11.7808267
1 12 141.0000000 | 7.1858447
Y
Level of
B N Mean Std Dev
-1 12 [ 35.1666667 | 7.46912838
1 121 46.5000000 | 8.03967435
Y
Level of
C N Mean Std Dev
-1 12 [ 37.4166667 | 10.5093753
1 12 144.2500000 | 7.3870279
Y
Level of | Level of
A B N Mean Std Dev
-1 -1 6 | 34.1666667 | 9.7039511
-1 1 6 [ 47.1666667 | 10.4769588
1 -1 6 [ 36.1666667 | 5.1153364
1 1 6 | 45.8333333 | 5.6005952
Y
Level of | Level of
A C N Mean Std Dev
-1 -1 6 | 32.8333333 | 9.82683401
-1 1 6 [ 48.5000000 | 7.84219357
1 -1 6 | 42.0000000 |9.79795897
1 1 6 [ 40.0000000 | 3.89871774
Y
Level of | Level of
B C N Mean Std Dev
-1 -1 6 | 30.3333333 | 7.25718035
-1 1 6 [ 40.0000000 | 3.74165739
1 -1 6 | 44.5000000 | 8.36062199
1 1 6 [ 48.5000000 | 7.91833316
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Now let’s add the three two-factor interactions to get Models 3 and 4.

Fixed effects interaction model (Model 3):

Yijkl

oA o + B+ v+ oy +oavie + Bk T+ €l

for (i =41, j==+1, k=41, [=1,2,3)

Note the effect estimates match the formula calculations.

Interaction regression model (Model 4):

yi = Bo + Pz + Boxe + Baxsi + + Broxiixy + LisxiiTs + PosTouiTs + €

Fori=1,2,.

.24

Note that the parameter estimates are 1/2 of those from the fixed effects in Model 3.

The residuals are randomly scattered about 0. This suggests there is no lack-of-fit problem.
The lack-of-fit test (p-value=

MODEL 3: INTERACTION FIXED EFFECTS MODEL

) supports this.

MODEL 4: INTERACTION REGRESSION MODEL

The GLM Procedure The REG Procedure
Model: MODELI1
Dependent Variable: Y
Sum of Number of Observations Read |24
Source DF Squares | Mean Square | F Value | Pr > F X
Number of Observations Used |24
Model 6 | 1584.500000 264.083333 8.79 | 0.0002
Error 17 | 510.833333 30.049020
Analysis of Variance
Corrected Total | 23 |2095.333333 y
Sum of Mean
Source DF | Squares | Square |F Value |Pr>F
R-Square | Coeff Var | Root MSE | Y Mean Model 6 | 1584.50000 | 264.08333 8.79 | 0.0002
0.756204 13.42457 5.481699 | 40.83333 Error 17 | 510.83333 | 30.04902
Lack of Fit 1 28.16667 | 28.16667 0.93 | 0.3483
Source | DF | Type ITI SS | Mean Square | F Value | Pr > F Pure Error 16| 482.66667 | 30.16667
A 1| 06666667 0.6666667 0.02 | 0.8833 Corrected Total | 23 | 2095.33333
B 1|770.6666667 |  770.6666667 25.65 | <.0001
A*B 1| 16.6666667 16.6666667 0.55 | 0.4666 Root MSE 5.48170 | R-Square | 0.7562
C 11280.1666667 280.1666667 9.32'| 0.0072 Dependent Mean | 40.83333 | Adj R-Sq | 0.6702
A*C 1|468.1666667 | 468.1666667 15.58 | 0.0010 Coeff Var 13.42457
B*C 1| 48.1666667 48.1666667 1.60 | 0.2226
Parameter Estimates
Parameter | Standard Variance
Variable | DF Estimate Error | t Value | Pr > [t| | Inflation
Standard »
Parameter Estimate Error | t Value | Pr > [t] ntercept 1 40.83333 1.11895 36.49 | <.0001 0
A 0.3333333 | 2.23789408 0.15 | 0.8833 X1 1 0.16667 1.11895 0.15| 0.8833 1.00000
B 11.3333333 | 2.23789408 506 | <0001 X2 1 5.66667 1.11895 5.06 | <.0001 1.00000
C 6.8333333 | 2.23789408 3.05 | 0.0072 X3 1 3.41667 1.11895 3.05| 0.0072 1.00000
A*B 1.6666667 | 2.23789408 074 | 04666 X1Xx2 1 -0.83333 1.11895 -0.74 | 0.4666 1.00000
A*C 8.8333333 | 2.23789408 3.95| 0.0010 X1X3 1 -4.41667 1.11895 -3.95( 0.0010 1.00000
B*C 2.8333333 | 2.23789408 127 02226 X2X3 1 -1.41667 1.11895 -1.27 | 0.2226 1.00000
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MODEL 2: FIRST ORDER REGRESSION MODEL

The REG Procedure
Model: MODELI1
Dependent Variable: Y

Fit Diagnostics for Y
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SAS Code for the 2° Design Example

e ESTIMATE statements in SAS are used to calculate average effect estimates.

e Because of orthogonality, all standard errors are identically

2.24227067 = \/MSE/2n = 1/30.1667/6

DM °L0OG; CLEAR; OUT; CLEAR;’;

0DS LISTING;

0ODS PRINTER PDF file=’C:\COURSES\ST578\SAS\TW03.PDF’;
OPTIONS NODATE NONUMBER;

OPTIONS PS=54 LS=76 NODATE NONUMBER;

DATA IN;
DO C = -1 TO 1 BY 2;
DO B = -1 TO 1 BY 2;
DO A =-1TO 1 BY 2;
DO REP = 1 TO 3;
INPUT Y QOQ;

X1=A; X2=B; X3=C;
X1X2 = X1%X2; X1X3 = X1x%X3; X2X3 = X2x*X3;
OUTPUT;
END; END; END; END;
LINES;
22 31 25 32 43 29 35 34 50 55 47 46
44 45 38 40 37 36 60 50 54 39 41 47

PROC GLM DATA=IN PLOTS=NONE;
CLASS A B C;
MODEL Y = A B C / SS3;
MEANS A B C;
ESTIMATE A’ A -1 1;
ESTIMATE B’ B -1 1;
ESTIMATE ’C’ C -1 1;
TITLE °MODEL 1: ADDITIVE FIXED EFFECTS MODEL’;

PROC REG DATA=IN PLOTS=(DIAGNOSTICS);
MODEL Y = X1 X2 X3 / LACKFIT VIF;
TITLE *MODEL 2: FIRST ORDER REGRESSION MODEL’;

PROC GLM DATA=IN PLOTS=NONE;
CLASS A B C;
MODEL Y = A|B|C@2 / SS3 ;
MEANS A|B|C@2;
ESTIMATE A’ A -1 1;
ESTIMATE B’ B -1 1;
ESTIMATE ’C’ C -1 1;
ESTIMATE ’AxB’ A*B 1 -1 -1 1 / DIVISOR=2;
ESTIMATE ’AxC’ A*C 1 -1 -1 1 / DIVISOR=2;
ESTIMATE ’BxC’ B+C 1 -1 -1 1 / DIVISOR=2;
* ESTIMATE °*AxBxC’ AxBxC -1 11 -11-1-11 ;
TITLE *MODEL 3: INTERACTION FIXED EFFECTS MODEL’;

PROC REG DATA=IN PLOTS=(DIAGNOSTICS);

MODEL Y = X1 X2 X3 X1X2 X1X3 X2X3 / LACKFIT VIF;
TITLE ’MODEL 4: INTERACTION REGRESSION MODEL’;
RUN;

o1



4.3 Analyzing Unreplicated Experiments

e To test hypotheses in an unreplicated 2% design (n = 1), it is necessary to “pool” interaction
terms (especially higher-order interaction terms), and use the MSE after pooling as an estimate

of the random error o2.

e The problem is to determine which interaction terms should be pooled together. The following

three steps are recommended:

1. Estimate all effects for the full-factorial interaction model.

2. Make a normal probability plot of the estimated effects (excluding the intercept), and
label the “outlier” effects. Higher-order interactions which are not outliers can be pooled

to form the MSE.

3. Run the ANOVA using this pooled error term.

e Warning: When a higher-order interaction exists, it is inappropriate to pool that interaction

with the other interactions because it will inflate the MSE.

e Some comments on the normal probability plot of the 2 — 1 estimates for either the fixed

effects or regression model:

— If an effect is not significantly different than zero, then it should be randomly and nor-

mally distributed about 0. That is, it is N (0, 02/

. When plotted, all of the effects

which are not significantly different than zero should lie along a straight line on the

normal probability plot.

— If an effect is significantly different than zero, then it should be randomly and normally
distributed about its mean which we will call 3. That is, the effect is N(3,0?/ ).
Then, in the normal probability plot, all of the non-zero effects will be plotted away from

the line formed by the zero-mean effects.

Unreplicated 2! Design Example (from Montgomery text): In a process development

study on process yield in pounds, four factors were studied: time, concentration (conc), pressure ,

and temperature (temp). Each factor had two levels. A single replicate of the 2* design was run as
a completely randomized design. The resulting data are shown in the following table:

time conc

pressure

temp

yield

F'++ 1 1 ++ 1 1 ++ 1

'+ 1+ 1 +1+1+1+1+

+
+

+

L+

o+t

e e S

12
18
13
16
17
15
20
15
10
25
13
24
19
21
17
23

Analyze the data from this unreplicated experiment from Design and Analysis of Experiments, by

D. Montgomery (8th ed., p.298).
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A 2xx4 DESIGN -- ESTIMATION OF EFFECTS

The GLM Procedure

Dependent Variable: YIELD

Sum of
Source DF Squares Mean Square F Value
Model 15 291.7500000 19.4500000
Error 0 0.0000000
Corrected Total 15 291.7500000
R-Square Coeff Var Root MSE YIELD Mean
1.000000 17.37500
Type III Mean
Source DF SS Square F Value Pr > F
TIME 1 81.00 81.00
CONC 1 1.00 1.00
TIME=*CONC 1 2.25 2.25
PRESSURE 1 16.00 16.00
TIME+*PRESSURE 1 72.25 72.25
CONC*PRESSURE 1 0.25 0.25
TIME*CONC*PRESSURE 1 4.00 4.00
TEMP 1 42 .25 42 .25
TIME*TEMP 1 64.00 64.00
CONC*TEMP 1 0.00 0.00
TIME*CONC*TEMP 1 2.25 2.25
PRESSURE*TEMP 1 0.00 0.00
TIME*PRESSURE*TEMP 1 0.25 0.25
CONC*PRESSURE*TEMP 1 2.25 2.25
TIME*CONC*PRESS*TEMP 1 4.00 4.00
Standard
Parameter Estimate Error t Value Pr > |t]|
A TIME 4.50
B CONC 0.50
C PRESSURE 2.00
D TEMP 3.25
AxB TIME*CONC -0.75
AxC TIME*PRES -4.25
AxD TIME*TEMP 4.00
Bx*C CONC*PRES 0.25
B*D CONC*TEMP 0.00
C*D PRES*TEMP 0.00
A*B*C TIME*xCxP 1.00
A*B*D TIME*CxT 0.75
A*CxD TIMExPxT -0.25
B*CxD C*P*xTEMP -0.75
AxB*xC*D T*C*PxT 1.00
Make a NPP of these estimates
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DM ’L0OG; CLEAR; OUT; CLEAR;’;
0DS LISTING;

* ODS PRINTER
OPTIONS PS=54

DATA IN;
DO TEMP =-1T0
DO PRESSURE = -1 TO
DO CONC =-1TO
DO TIME =-1TO

INPUT YIELD QG;
END; END; END; END;

LINES;

A
o W @™
<< =<

1 BY 2;
OUTPUT;

PDF file=’C:\COURSES\ST578\SAS\TW04.PDF’;
LS=78 NODATE NONUMBER;

12 18 13 16 17 15 20 15 10 256 13 24 19 21 17 23

b

Kook ok ok ok ok ok ok ok ok ok ok ok ok ok ok okookookook ok ok ok ok okook okook okook ok ok okookokokookok kook kokokok kok kok kokokok ko kokokok

*x* PART I:

DETERMINE THE ESTIMATES OF THE 15 EFFECTS *xx;

ke skok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok skok skok ok skok skok skok skokskokskokokokoskokosk

PROC GLM DATA=IN;
CLASS TIME CONC PRESSURE TEMP;
MODEL YIELD = TIME|CONC|PRESSURE|TEMP /

ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE

ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE

ESTIMATE
ESTIMATE
ESTIMATE
ESTIMATE

ESTIMATE

’TIME’
’CONC?

TIME
CONC

-11;
-11;

’PRESSURE’ PRESSURE -1 1;

>TEMP’

>TIME*CONC’
>TIME*PRES’
>TIME*TEMP’
>CONC*PRES’
>CONC*TEMP’
’PRES*TEMP’

>TIME*C*P’
>TIME*C*T’
>TIME*P*T’
>CxP*TEMP’

?T*C*P*T’

TEMP

-1 1;

TIME*CONC
TIME*PRESSURE
TIME*TEMP
CONC*PRESSURE
CONC*TEMP
PRESSURE*TEMP

N e e e

SS3;

|
=
N e e

TIME*CONC*PRESSURE -1
TIME*xCONC*TEMP
TIME*PRESSURE*TEMP -1
CONC*PRESSUREXTEMP -1

TIME*CONC*PRESSURE*TEMP
1-1-11-111-1

/ DIVISOR=2;
/ DIVISOR=2;
/ DIVISOR=2;
/ DIVISOR=2;
/ DIVISOR=2;
/ DIVISOR=2;

-11-1
-11-1
-11-1
-11-1

-111-11-1-11/

TITLE ’A 2%%4 DESIGN -- ESTIMATION OF EFFECTS’;

o4

-1 1 / DIVISOR=4;
-1 1 / DIVISOR=4;
-1 1 / DIVISOR=4;
-1 1 / DIVISOR=4;

DIVISOR=8;



Kook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okook ok ok ok ok okok ok ok ok ok ok ok okook ok ok ok ok okok ok ok kk ok sk kok sk ok kok ok ok

*%% PART II: MAKE A NORMAL PROBABILITY PLOT OF THE ESTIMATED EFFECTS **x;
sk sk sk sk ok ok ok ok o o ok ok ok sk sk sk sk sk sk sk o ok ok sk sk sk sk sk sk ok ok o ok ok sk sk sk sk sk sk sk sk o sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk ok ok ok koK

DATA FX; INPUT EFFECTS ©@; LINES;
4.50.523.256 -0.75-4.2540.250010.75 -0.25 -0.75 1

PROC UNIVARIATE DATA=FX PLOTS;

VAR EFFECTS;
TITLE ’A 2%*4 DESIGN -- NORMAL PROBABILITY PLOT OF EFFECTS’;

A 2*%*4 DESIGN -- NORMAL PROBABILITY PLOT OF EFFECTS

The UNIVARIATE Procedure

Distribution and Probability Plot for EFFECTS

4_
2_
v
B
o
= L
=
2
4 o
I I I I
0 2 4 6 8

Count

EFFECTS

Normal Quantiles
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Analysis I: Pooling high order interactions

o After pooling all 3-factor and 4-factor interaction, we have 5 df for the M Sg.

e The ANOVA indicates significant A, C', AC, D, and AD effects. These match the highlighted
points on the normal probability plot of effects.

st st st st otk ok ok ok o ok ok ok ok ok sk ok sk ok sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ks ko ok kR ok ok ok ok sk sk sk sk sk sk ok sk sk sk sk sk sk sk ok koK 3

%% PART III: RUN ANOVA WITH POOLED HIGHER ORDER INTERACTIONS s*x*;
stesfesteofokok ook ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk skokokok ok ook sk ok sk kosk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok okok

PROC GLM DATA=IN;

CLASS TIME CONC PRESSURE TEMP;
MODEL YIELD = TIME|CONC|PRESSURE|TEMPQ2 / SS3;
TITLE ’A 2%*4 DESIGN -- POOLING HIGHER ORDER INTERACTIONS’;

A 2*%4 DESIGN -- POCLING HIGHER ORDER INTERACTIONS

Dependent Variable: YIELD

Source DF
Model 10
Error 5
Corrected Total 15

R-Sguare

0.956298
Source DF
TIME 1
CONC 1
TIME*CONC 1
PRESSURE 1
TIME*PRESSURE 1
CONC*PRESSURE 1
TEMP 1
TIME*TEMP 1
CONC*TEMP 1
PRESSURE*TEMP 1

Sum of
Squares

275.00000
12.75000
291.75000

c.v.
9.190630

Type III SS

81.000000
1.000000
2,250000

16.000000

72.250000
0.250000

42.250000

64.000000
0.000000
0.000000

o6

2

R

Mean

81.
1.
2.

16
72

0.

42
64

0.

0

Mean
Square

7.90000
2.55000

oot MSE
1.5969

Square

000000
000000
250000
.000000
.250000
250000
.250000
.000000
000000
.000000

F Value

10.

94

F value

31

16

.76
.39
.88
.27
28.
.10
.57
25.
.00
.00

33

10

Pr > F

0.0083

YIELD Mean

17.37500

Pr > F

[0.002§L+;k

8 —-0.5586
AM—-0.3907

0.0031

B-L(.7668
([0.0096]

0.0041

0.0542—>C

AC

— D
> AD

BD 1.0000
th1.0000



Analysis II: Pooling terms involving factor B = concentration (CONC)
e After pooling all terms involving CONC, we have 8 df for the M Sg.

e The ANOVA indicates significant A, C', AC, D, and AD effects. These match the highlighted
points on the normal probability plot of effects.

e After factor B is removed, we still retain balance and orthogonality. We now have a 2% design
with n = 2 replicates for each combination of factor levels for A, C', and D.

st st sk st otk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk ok sk sk sk sk sk sk sk sk sk ok k ok koK
*%% RUN ANOVA WITH CONCENTRATION REMOVED FROM THE ANALYSIS s ;

PROC GLM DATA=IN;
CLASS TIME PRESSURE TEMP;
MODEL YIELD = TIME|PRESSURE|TEMP / SS3;
TITLE ’ANOVA WITH CONCENTRATION REMOVED FROM THE ANALYSIS’;

RUN;

ANOVA WITH CONCENTRATION REMOVED FROM THE ANALYSIS -

Dependent Variable: YIELD

Sum of Mean
Source DF Squares Square F Value Pr > F
Model 7 275.75000 39.39286 19.70 0.0002
Error 8 16.00000 2.,00000
Corrected Total 15 291.75000
R-Square CcC.V. Root MSE YIELD Mean
0.945159 8.139359 1.4142 17.37500
Source DF Type III SS Mean Square F Value Pr > F
TIME 1 81.000000 81.000000 40.50 0.0002
PRESSURE 1 16.000000 -16.000000 8.00 0.0222
TIME*PRESSURE 1 72.250000 72.250000 36.13 0.0003
TEMP 1 42.250000 42.250000 21.12 0.0018
TIME*TEMP 1 64.000000 64.000000 32.00 0.0005
PRESSURE*TEMP 1 0.000000 0.000000 0.00 1.0000
TIME*PRESSURE*TEMP 1 0.250000 ©0.250000 0.13 0.7328

o7





