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Preface

Target audience

This book is for bachelor students in social, behavioural and management
sciences that want to learn how to analyse their data, with the specific aim
to answer research questions. The book has a practical take on data analysis:
how to do it, how to interpret the results, and how to report the results. All
techniques are presented within the framework of linear models: this includes
simple and multiple regression models, linear mixed models and generalised
linear models. This approach is illustrated using R.

Why linear models?

Starting from linear models gives students a great start into the world of data
analytics. Starting from the linear regression model, there is a whole world
to explore of versatile models that can handle almost any data problem in the
social sciences. It also gives an entry into the world of machine learning, as
many linear models are also used in that context. Being familiar with linear
regression and logistic regression gives student a head start when moving to
that field later on and something to build on.

This book is unique in that it is about linear models but has a non-technical
focus. Many texts on linear models start from linear algebra with complicated
formulas for vectors and matrices. In contrast, this text sticks to relatively
simple regression equations and as far as formulas are concerned, they do not
go beyond addition, multiplication, division, taking the root or taking the square
of something. Anybody with a diploma from secondary education should be able
to follow the equations, maybe with a little assurance from a teacher.
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R

Although this book is about analysing data using R, it is not a book on R itself.
Online there are many resources to get a first introduction to R. In this book
we provide the student with example R code that can be copied and tweaked to
make it usable for their own datasets. In order to understand the code and to
be able to use it, the student should get acquainted with the tidyverse way of
coding in R, and particularly the pipe operator %>%. The most basic functions
that we use in this book are mutate(), filter(), select(), pivot_longer(),
pivot_wider(), group_by(), summarise() and ggplot(). The student should
also be familiar with the difference between numeric variables and factors, know
how to read in data files, and how to install and work with R packages. The
rest is explained in this book.

How to read the book

Finally, some important tips on how to read this book. Although the focus
is non-technical, some things need to be explained. But it is often hard for a
student to figure out to what extent something should be understood in order
to put the theory into daily practice. To guide the student, at the end of every
chapter there is a list of take-away points. They form the essence of the learning
goals. There is also a list of key concepts. If the student reads these take-away
points and key concepts and feels they understand what is meant by them, they
can stop reading and try to put the theory into practice by analysing some data
on their own. If they get stuck, they can go back to the text again to see where
they missed some key insights. Remember: analysing data is a skill, you learn
by doing.

In order to further help the student to distinguish between what is essential
and what is more detailed background information, we put the more detailed
background information into grey boxes. For the day-to-day application of
linear models, it is sufficient to understand what is in the main text. Whenever
a student wants more explanation of how things actually work and why things
are as they are, this can be found in the grey boxes. There are also a couple
of sections that can be skipped entirely without losing track of the narrative of
the book. These sections are indicated by having “(advanced)” in their title.

Note on statistical reporting and scientific
notation

When analysing data with R, the output shows a lot of numbers, with varying
numbers of decimals. When reporting the output, we adhere to the style
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proposed by the American Psychological Association, which dictates that
statistics should be reported to at most 2 decimals, and 𝑝-values to 2 or 3.
Here we use 3 decimals for 𝑝-values.
Further, when numbers become either very large or very small, R shows output
in scientific notation . If R shows a number like 8.77e- 2, this should be read
as 8.77 × 10−2, which is equivalent to 0.0877. The easiest way to think about
it is that you take the number before the 𝑒 and then if you see a −2 after the
𝑒, you move the decimal dot in the number two places to the left. If you see a
+2 after the 𝑒, you move the decimal dot two places to the right. In this way,
8.77e+ 1 should be read as 87.7, and 8.77e+ 2 should be read as 877. 8.77e+
0 should be read as 8.77.

Disclaimer

Some of the data sets used in this book have been generated for the sole
purpose of demonstrating statistical principles. These are not real data and
no conclusions should be based on them.
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Chapter 1

Variables, variation and
co-variation

1.1 Units, variables, and the data matrix

Data is the plural of datum, and datum is the Latin translation of ‘given’. That
the world is round, is a given. That you are reading these lines, is a given, and
that my dog’s name is Philip, is a given. Sometimes we have a bunch of given
facts (data), for example the names of all students in a school, and their marks
for a particular course. We could put these data in a table, like the one in Table
1.1. There we see information (‘facts’) about seven students. And of these seven
students we know two things: their name and their grade. You see that the data
are put in a matrix with seven (horizontal) rows and two (vertical) columns.
Each row stands for one student, and each column stands for one property.
In data analysis, we nearly always put data in such a matrix format. In general,
we put the objects of our study in rows, and their properties in columns. The
objects of our study we call units, and the properties we call variables.
Let’s look at the first column in Table 1.1. We see that it regards the variable
name We call the property name a variable, because it varies across our units
(the students): in this case, every unit has a different value for the variable
name. In sum, a variable is a property of units that shows different values for
different units.
The second column represents the variable grade. Grade is here a variable,
because it takes different values for different students. Note that both Mark
Zimmerman and Mohammed Solmaz have the same value for this variable.
What we see in Table 1.1 is called a data matrix: it is a matrix (a collection of
rows and columns) that contains information on units (in the rows) in the form
of variables (in the columns).
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Table 1.1: Data matrix with 7 units and 2 variables.

name grade
Mark Zimmerman 5
Daisy Doe 8
Mohammed Solmaz 5
Monique Gambin 9
Inga Svensson 10
Piet van der Keuken 2
Floor de Vries 6

Table 1.2: Data matrix on teachers.

teacher number_students grade_average
Alice Monroe 5 6.1
Daphne Stuart 8 5.9
Stephanie Morrison 5 6.9
Clark Davies 9 5.9
David Sanchez Gomez 10 6.4
Metin Demirci 2 6.1
Frederika Karlsson 6 5.2
Advika Agrawal 9 6.8

A unit is something we’d like to say something about. For example, I might
want to say something about students and how they score on a course. In that
case, students are my units of analysis.
If my interest is in teachers, the data matrix in Table 1.2 might be useful, which
shows a different row for each teacher with a couple of variables. Here again,
we see a variable for grade on a course, but now averaged per teacher. In this
case, teacher is my unit of analysis.

1.2 Data matrices in R

In R, data matrices are called data frames. A data frame consists of different
vectors, one vector for each variable, and each vector contains values. Each
vector/variable is stored as a column in a data frame. In the tidyverse version
of R that we use in this book, we work with a particular form of a data frame:
a tibble. Below we see some R code that creates a tibble: we first load the
tidyverse package, then we create the vectors studentID, course, grade, and
shirtsize, and then combine these four vectors into a tibble.
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library(tidyverse)
studentID <- seq(4132211, 4132215)
course <- c("Chemistry", "Physics", "Math", "Math", "Chemistry")
grade <- c(4, 6, 3, 6, 8)
shirtsize <- c("medium", "small", "large", "medium", "small")
tibble(studentID, course, shirtsize, grade)

## # A tibble: 5 x 4
## studentID course shirtsize grade
## <int> <chr> <chr> <dbl>
## 1 4132211 Chemistry medium 4
## 2 4132212 Physics small 6
## 3 4132213 Math large 3
## 4 4132214 Math medium 6
## 5 4132215 Chemistry small 8

From the output, you see that the tibble has dimensions 5×4: that means it has
5 rows (units) and 4 columns (variables). Under the variable names, it can be
seen how the data are stored. The variable studentID is stored as a numeric
variable, more specifically as an integer (<int>). The course variable is stored
as a character variable (<chr>), because the values consist of text. The same is
true for shirtsize. The last variable, grade, is stored as <dbl> which stands
for ‘double’. Whether a numeric variable is stored as integer or double depends
on the amount of computer memory that is allocated to a variable. Double
variables have a decimal part (e.g., 2.0), integers don’t (e.g., 2).

1.3 Multiple observations: wide format and long
format data matrices

In many instances, units of analysis are observed more than once. This means
that we have more than one observation for the same variable for the same unit
of analysis. Storing this information in the rows and columns of a data matrix
can be done in two ways: using wide format or using long format. We first look
at wide format, and then look at long format. The way data are stored in a
matrix is important because for linear models, it is usually required to have the
data in long format.

Suppose we measure depression levels in four clients, four times during
cognitive behavioural therapy. Sometimes you see data presented in the way
of Table 1.3, where there are four separate variables for depression level, one
for each measurement: depression_1, depression_2, depression_3, and
depression_4. In other words, depression_1 represents the score that was
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Table 1.3: Data matrix with depression scores in wide format.

client depression_1 depression_2 depression_3 depression_4
1 5 6 9 3
2 9 5 8 7
3 9 0 9 3
4 9 2 8 6

recorded first during therapy, and depression_4 represents the score that
was recorded at the very end of the therapy.

This way of representing data on a variable that was measured more than once
is called wide format. We call it wide because we have several columns where
we put the depression scores in, which leads to a wide data matrix.

Note that this is only one way of looking at four measures of depression. Here,
we have four depression variables: there is depression measured at time point 1,
there is depression measured at time point 2, and so on, and each of these four
variables varies only across clients (i.e., depression_1 has different values for
different clients).

An alternative way of storing multiple depression scores per client, is that
depression is really only one variable and that it varies both across clients (some
clients are more depressed than others) and across time (sometimes you feel more
depressed than at other times).

Therefore, instead of using multiple columns, we put all the depression scores
into one column with many rows. That way, the data matrix becomes long,
which is the reason that we call that format long format. Table 1.4 shows
the same information from Table 1.3, but now in long format. Instead of
four different depression variables, we have only one variable for depression,
and one extra variable time that indicates to which time point a particular
depression measure refers to. Check that Tables 1.3 and 1.4 give us the exact
same information, for instance what do both data matrices tell us about the
third measure of the second client?

Now let’s look at an example, where the advantage of long format becomes clear.
Suppose the clients were measured twice and that the depression measures were
taken on different days for different clients. Client 1 was measured on Monday
and Tuesday, while client 2 was measured on Saturday and Sunday. If we would
put that information into a wide format table, it would look like Figure 1.5, with
missing values for measures on Monday thru Friday for client 2, and missing
values for measures on Wednesday thru Sunday for patient 1. The matrix has
2 rows and 8 columns, so 16 cells.

Table 1.6 shows the same data in long format. Now it has 4 rows and 3 columns,
so 12 cells. A bit smaller than the data in wide format.
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Table 1.4: Data matrix with depression scores in long format.

client time depression
1 1 5
1 2 6
1 3 9
1 4 3
2 1 9
2 2 5
2 3 8
2 4 7
3 1 9
3 2 0
3 3 9
3 4 3
4 1 9
4 2 2
4 3 8
4 4 6

Table 1.5: Data matrix with depression levels in wide format.

client Monday Tuesday Wednesday Thursday Friday Saturday Sunday
1 5 6
2 8 7

Table 1.6: Data matrix with depression scores in long format.

client day depression
1 Monday 5
1 Tuesday 6
2 Saturday 8
2 Sunday 7
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Thus, storing data in long format is often more efficient in terms of storage
room: you do not need so many cells with missing data. But a more important
reason for preferring long format over wide format is purely practical: when
analysing data using linear models, software packages like R require your data
to be in long format. With long format, we mean that the most important
variable in your analysis, the variable that you wish to understand better or to
predict, should be stored in only one column. Thus, if you want to understand
how depression scores are different for different individuals, and how the scores
are different for different days, then you should put all the depression scores
into one column. The same goes for visualisation. When using ggplot() for
visualisation, as we do in this book, the data should be in long format too.

However, we will also come across some analyses without linear models that
require your data to be in wide format. If your data happen to be in the wrong
format, rearrange your data first. Of course you should never do this by hand as
this will lead to typing errors and would take too much time. Statistical software
packages have helpful tools for rearranging your data from wide format to long
format, and vice versa.

1.4 Wide and long format in R

Making a data matrix longer or wider can be done with the functions
pivot_longer() and pivot_wider(), respectively. These functions are part
of the tidyr package, and available when you load the tidyverse collection of
packages.

library(tidyverse)

1.4.1 From wide to long

Suppose we have the following dataframe on depression measures for two clients
for every day of the week.

data_wide

## # A tibble: 2 x 8
## client Monday Tuesday Wednesday Thursday Friday Saturday Sunday
## <int> <int> <int> <int> <int> <int> <int> <int>
## 1 1 5 6 NA NA NA NA NA
## 2 2 NA NA NA NA NA 8 7

We see for each client, the variable depression is measured twice. The
measurements were done on different days for clients 1 and 2, so many values
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are not there. In R, missing values are indicated by NA (not available). We
would like to see all of the depression scores in one column, which means we
have to transform this data set into long format.

data_wide %>%
pivot_longer(cols = Monday:Sunday, # columns that need to be restructured

names_to = "day", # name of new variable with old column names
values_to = "depression") # name of new variable with values

## # A tibble: 14 x 3
## client day depression
## <int> <chr> <int>
## 1 1 Monday 5
## 2 1 Tuesday 6
## 3 1 Wednesday NA
## 4 1 Thursday NA
## 5 1 Friday NA
## 6 1 Saturday NA
## 7 1 Sunday NA
## 8 2 Monday NA
## 9 2 Tuesday NA
## 10 2 Wednesday NA
## 11 2 Thursday NA
## 12 2 Friday NA
## 13 2 Saturday 8
## 14 2 Sunday 7

If we use values_drop_na = TRUE we only get the rows that actually contain
information about the depression levels, which leads to a smaller dataframe.

data_wide %>%
pivot_longer(cols = Monday:Sunday, # columns that need to be restructured

names_to = "day", # name of new variable with old column names
values_to = "depression", # name of new variable with values
values_drop_na = TRUE) # leave out rows with missing values

## # A tibble: 4 x 3
## client day depression
## <int> <chr> <int>
## 1 1 Monday 5
## 2 1 Tuesday 6
## 3 2 Saturday 8
## 4 2 Sunday 7
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• The cols argument describes which columns need to be reshaped. In this
case, it is all columns from Monday to Sunday

• The names_to argument gives the name of the variable that indicates from
which column the data come, i.e. day

• The values_to argument gives the name of the variable that will be
created from the depression scores stored in the cells, i.e. depression

1.4.2 From long to wide

Suppose we have the following dataframe called data_long. It contains
depression levels at the beginning of therapy and at the end of therapy.

data_long

## # A tibble: 6 x 3
## client time depression
## <int> <chr> <int>
## 1 1 before 9
## 2 1 after 13
## 3 2 after 12
## 4 2 before 14
## 5 3 before 19
## 6 3 after 15

Suppose for some type of analysis, we need the data in wide format. We can
use pivot_wider() to do that.

data_long %>%
pivot_wider(names_from = time,

values_from = depression)

## # A tibble: 3 x 3
## client before after
## <int> <int> <int>
## 1 1 9 13
## 2 2 14 12
## 3 3 19 15

• The names_from argument gives the name of the variable that will be used
for the new column names, i.e. time
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• The values_from argument gives the name of the variable that stores the
values that you wish to see spread out across several columns. Here that
is depression

For more examples, see the vignette on pivoting.

vignette(pivot)

1.5 Measurement level

Data analysis is about variables and the relationships among them. In essence,
data analysis is about describing how different values in one variable go together
with different values in one or more other variables (co-variation). For example,
if we have the variable age with values ‘young’ and ‘old’, and the variable
happiness with values ‘happy’ and ‘unhappy’, we’d like to know whether
‘happy’ mostly comes together with either ‘young’ or ‘old’. Therefore, data
analysis is about variation and co-variation in variables.

Linear models are important tools when describing co-varying variables. When
we want to use linear models, we need to distinguish between different kinds
of variables. One important distinction is about the measurement level of the
variable: numeric, ordinal or categorical.

1.5.1 Numeric variables

Numeric variables have values that describe a measurable quantity as a number,
like ‘how many’ or ‘how much’. A numeric variable can be a count variable,
for instance the number of children in a classroom. A count variable can
only consist of discrete, natural, positive numbers: 0, 1, 2, 3, etcetera. But
a numeric variable can also be a continuous variable. Continuous variables can
take any value from the set of real numbers, for instance values like -200.765,
-9.78, -2, 0.001, 4, and 7.8. The number of decimals can be as large as the
instrument of measurement allows. Examples of continuous variables include
height, time, age, blood pressure and temperature. Note that in all these
examples, quantities (age, height, temperature) are expressed as the number
of a particular measurement unit (years, inches, degrees).

Whether a numeric variable is a count variable or a continuous variable, it
is always expressing a quantity, and therefore numeric variables can be called
quantitative variables.

For numeric variables, there is a further distinction between interval variables
and ratio variables. The distinction is rather technical. The difference between
interval and ratio variables is that for ratio variables, the ratio between two

23



measurement values is meaningful, and for interval variables it is not. An
example of a ratio variable is height. You could measure height in two persons
where one measures 1 meter and the other measures 2 meters. It is then
meaningful to say that the second person is twice as tall as the first person.
This is meaningful, because had we chosen a different measurement unit, the
ratio would be the same. For instance, suppose we express the heights of the two
persons in inches, we would get 39.37 and 78.74 inches respectively. The ratio
remains 2: namely 78.74/39.37. The same ratio would hold for measurements
in feet, miles, millimetres or even light years. Thus, whatever the unit of
measurement you use, the ratio of height for these individuals would always
be 2. Therefore, if we have a variable that measures height in meters, we are
dealing with a ratio variable.

Now let’s look at an example of an interval variable. Suppose we measure the
temperature in two classrooms: one is 10 degrees Celsius and the other is 20
degrees Celsius. The ratio of these two temperatures is 20/10 = 2, but does
that ratio convey meaningful information? Could we state for example that
the second classroom is twice as warm as the first classroom? The answer is
no, and the reason is simple: had we expressed temperature in Fahrenheit, we
would have obtained the values of 50 and 68 degrees Fahrenheit, respectively.
These Fahrenheit temperatures have a ratio of 68/50 = 1.36. Based on the
Fahrenheit metric, the second classroom would now be 1.36 times warmer
than the first classroom. We therefore say that the ratio does not have a
meaningful interpretation, since the ratio depends on the metric system that
you use (Fahrenheit or Celsius). It would be strange to say that there is twice
more warmth in classroom B than in classroom A, but only if you measure
temperature in Celsius, not when you measure it in Fahrenheit!

The reason why the ratios depend on the metric system, is because both the
Celsius and Fahrenheit metrics have arbitrary zero-points. In the Celsius metric,
0 degrees does not mean that there is no warmth, nor is that implied in the
Fahrenheit metric. In both metrics, a value of 0 is still warmer than a value of
-1.

Contrasting this to the example of height: a height of 0 is indeed the absence
of height, as you would not even be able to see a person with a height of 0,
whatever metric you would use. Thus, the difference between ratio and interval
variables is that ratio variables have a meaningful zero point where zero indicates
the absence of the quantity that is being measured. This meaningful zero-point
makes it possible to make meaningful statements about ratios (e.g., 4 is twice
as much as 2) which gives ratio variables their name.

What ratio and interval variables have in common is that they are both numeric
variables, expressing quantities in terms of units of measurements. This implies
that the distance between 1 and 2 is the same as the distances between 3 and
4, 4 and 5, etcetera. This distinguishes them from ordinal variables.
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1.5.2 Ordinal variables

Ordinal variables are also about quantities. However, the important difference
with numeric variables is that ordinal variables are not measured in units. An
example would be a variable that would quantify size, by stating whether a
T-shirt is small, medium or large. Yes, there is a quantity here, size, but there
is no unit to state exactly how much of that quantity is present in that T-shirt.

Even though ordinal variables are not measured in specific units, you can still
have a meaningful order in the values of the variable. For instance, we know
that a large T-shirt is larger than a medium T-shirt, and a medium T-shirt is
larger than a small T-shirt.

Similar for age, we could code a number of people as young, middle-aged or
old, but on the basis of such a variable we could not state by how much
two individuals differ in age. As opposed to numeric variables that are often
continuous, ordinal variables are usually discrete: there isn’t an infinite number
of levels of the variable. If we have sizes small, medium and large, there are no
meaningful other values in between these values.

Ordinal variables often involve subjective measurements. One example would
be having people rank five films by preference from one to five. A different
example would be having people assess pain: ”On a scale from 1 to 10, how bad
is the pain?”

Ordinal variables often look numeric. For example, you may have large, medium
and small T-shirts, but these values may end up in your data matrix as ‘3’, ‘2’
and ‘1’, respectively. However, note that with a truly numeric variable there
should be a unit of measurement involved (3 of what? 2 of what?), and that
numeric implies that the distance between 3 and 2 is equal to the distance
between 2 and 1. Here you would not have that information: you only know
that a large T-shirt (coded as ‘3’) is larger than a medium T-shirt (coded as
‘2’), but how large that difference is, and whether that difference is that same
as the difference between a medium T-shirt (‘2’) is larger than a small T-shirt
(‘1’), you do not know. Therefore, even though we see numbers in our data
matrix, the variable is called an ordinal variable.

1.5.3 Categorical variables

Categorical variables are not about quantity at all. Categorical variables are
about quality. They have values that describe ‘what type’ or ‘which category’ a
unit of belongs to. For example, a school could either be publicly funded or not,
or a person could either have the Swedish nationality or not. A variable that
indicates such a dichotomy between publicly funded ‘yes’ or ‘no’, or Swedish
nationality ‘yes’ or ‘no’, is called a dichotomous variable, and is a subtype of a
categorical variable. The other subtype of a categorical variable is a nominal
variable. Nominal comes from the Latin nomen, which means name. When you
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Table 1.7: Nationalities.

ID Swedish Nationality
1 Yes Swedish
2 Yes Swedish
3 No Angolan
4 No Norwegian
5 Yes Swedish
6 Yes Swedish
7 No Danish
8 No Unknown

name the nationality of a person, you have a nominal variable. Table 1.7 shows
an example of both a dichotomous variable (Swedish) that always has only two
different values, and a nominal variable (Nationality), that can have as many
different values as you want (usually more than two).

Another example of a nominal variable could be the answer to the question:
”name the colours of a number of pencils”. Nothing quantitative could be
stated about a bunch of pencils that are only assessed regarding their colour.
In addition, there is usually no logical order in the values of such variables,
something that we do see with ordinal variables.

1.5.4 Treatment of variables in data analysis

For data analysis with linear models, you have to decide for each variable
whether you want to treat it as numeric or as categorical.1 The easiest choice is
for numeric variables: numeric variables should always be treated as numeric.

Categorical data should always be treated as categorical. However, the problem
with categorical variables is that they often look like numeric variables. For
example, take the categorical variable country. In your data file, this variable
could be coded with strings like ”Netherlands”, ”Belgium”, ”Luxembourg”, etc.
But the variable could also be coded with numbers: 1, 2 and 3. In a codebook
that belongs to a data file, it could be stated that 1 stands for ”Netherlands”,
2 for ”Belgium”, and 3 for ”Luxembourg” (these are the value labels), but still
in your data matrix your variable would look numeric. You then have to make
sure that, even though the variable looks numeric, it should be interpreted as a
categorical variable and therefore be treated like a categorical variable.

The most difficult problem involves ordinal variables: in linear models
you can either treat them as numeric variables or as categorical variables.

1See for example www.normaltable.com or www.mathsisfun.com/data/standard-normal-
distribution-table.html.
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The choice is usually based on common sense and whether the results are
meaningful. For instance, if you have an ordinal variable with 7 levels, like
a Likert scale, the variable is often coded with numbers 1 through 7, with
value labels 1=”completely disagree”, 2=”mostly disagree”, 3=”somewhat
disagree”, 4=”ambivalent”, 5=”somewhat agree”, 6=”mostly agree”, and
7=”completely agree”. In this example, you could choose to treat this variable
as a categorical variable, recognising that this is not a numeric variable as there
is no measurement unit. However, if you feel this is awkward, you could choose
to treat the variable as numeric, but be aware that this implies that you feel
that the difference between 1 and 2 is the same as the difference between 2 and
3. In general, with ordinal data like Likert scales or sizes like, Small, Medium
and Large, one generally chooses to use categorical treatment for low numbers
of categories, say 3 or 4 categories, and numerical treatment for variables with
many categories, say 5 or more. However, this should not be used as a rule of
thumb: first think about the meaning of your variable and the objective of your
data analysis project, and only then take the most reasonable choice. Often,
you can start with numerical treatment, and if the analysis shows peculiar
results2, you can choose categorical treatment in secondary analyses.

In the coming chapters, we will come back to the important distinction between
categorical and numerical treatment (mostly in Chapter 6). For now, remember
that numeric variables are always treated as numeric variables, categorical
variables are always treated as categorical variables (even when they appear
numeric), and that for ordinal variables you have to think before you act.

1.6 Measurement level in R

In a previous section we saw the creation of a data frame. Let’s store the
resulting data frame as an object called course_results.

studentID <- seq(4132211, 4132215)
course <- c("Chemistry", "Physics", "Math", "Math", "Chemistry")
grade <- c(4, 6, 3, 6, 8)
shirtsize <- c("medium", "small", "large", "medium", "small")
course_results <- tibble(studentID, course, shirtsize, grade)
course_results

## # A tibble: 5 x 4
## studentID course shirtsize grade
## <int> <chr> <chr> <dbl>
## 1 4132211 Chemistry medium 4
## 2 4132212 Physics small 6

2For instance, you may find that the assumptions of your linear model are not met, see
Chapter 7.
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## 3 4132213 Math large 3
## 4 4132214 Math medium 6
## 5 4132215 Chemistry small 8

We see that the variable studentID is stored as integer. That means that the
values are stored as numeric values. However, the values are quite meaningless,
they are only used to identify persons. If we want to treat this variable as a
categorical variable in data analysis, it is necessary to change this variable into
a factor variable. We can do this by typing:

course_results$studentID <-
course_results$studentID %>%
factor()

When we look at this variable after the transformation, we see that this new
categorical variable has 5 different categories (levels).

course_results$studentID

## [1] 4132211 4132212 4132213 4132214 4132215
## Levels: 4132211 4132212 4132213 4132214 4132215

When we look at the variable course, we see that it is stored as a character
variable. If we want R to treat it as a categorical variable in data analysis, we
can also transform this variable into a factor variable. We could use the same
code as above, or we could use the function mutate().

course_results <- course_results %>%
mutate(course = factor(course))

The shirtsize variable is stored as character, but we tell R that this is an
ordinal variable. For this we need to turn it into a factor variable, indicating
that there is an order in the values, where small is the lowest quantity, and large
the highest quantity.

course_results <- course_results %>%
mutate(shirtsize = factor(shirtsize,

levels = c("small", "medium", "large"),
ordered = TRUE)

)
course_results$shirtsize

## [1] medium small large medium small
## Levels: small < medium < large
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The last variable grade is stored as double. Variables of this type will be treated
as numeric in data analyses. If we’re fine with that for this variable, we leave it
as it is. If we want the variable to be treated as ordinal, then we need the same
type of factor transformation as for shirtsize. For now, we leave it as it is. The
resulting data frame then looks like this:

course_results

## # A tibble: 5 x 4
## studentID course shirtsize grade
## <fct> <fct> <ord> <dbl>
## 1 4132211 Chemistry medium 4
## 2 4132212 Physics small 6
## 3 4132213 Math large 3
## 4 4132214 Math medium 6
## 5 4132215 Chemistry small 8

Now both studentID and course are stored as factors and will be treated
as categorical. Variable shirtsize is stored as an ordinal factor and will be
treated accordingly. Variable grade is still stored as double and will therefore
be treated as numeric.

1.7 Frequency tables, frequency plots and
histograms

Variables have different values. For example, age is a (numeric, ratio) variable:
lots of people have different ages. Suppose we have an imaginary town with 1000
children. For each age measured in years, we can count the number of children
who have that particular age. The results of the counting are in Table 1.8.
The number of observed children with a certain age, say 8 years, is called the
frequency of age 8. The table is therefore called a frequency table. Generally in
a frequency table, values that are not observed are omitted (i.e., the frequency
of children with age 16 is 0).

The data in the frequency table can also be represented using a frequency plot.
Figure 1.1 gives the same information, not in a table but in a graphical way.
On the horizontal axis we see several possible values for age in years, and on
the vertical axis we see the number of children (the count) that were observed
for each particular age. Both the frequency table and the frequency plot tell
us something about the distribution of age in this imaginary town with 1000
children. For example, both tell us that the oldest child is 17 years old.

Furthermore, we see that there are quite a lot of children with ages between 5
and 8, but not so many children with ages below 3 or above 14. The advantage
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Table 1.8: Frequency table for age, with proportions and cumulative
proportions.

age frequency proportion cum_frequency cum_proportion
0 2 0.002 2 0.002
1 7 0.007 9 0.009
2 20 0.020 29 0.029
3 50 0.050 79 0.079
4 105 0.105 184 0.184
5 113 0.113 297 0.297
6 159 0.159 456 0.456
7 150 0.150 606 0.606
8 124 0.124 730 0.730
9 108 0.108 838 0.838
10 70 0.070 908 0.908
11 34 0.034 942 0.942
12 32 0.032 974 0.974
13 14 0.014 988 0.988
14 9 0.009 997 0.997
15 2 0.002 999 0.999
17 1 0.001 1000 1.000
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Figure 1.1: A frequency plot.

of the table over the graph is that we can get the exact number of children of a
particular age very easily. But on the other hand, the graph makes it easier to
get a quick idea about the shape of the distribution, which is hard to make out
from the table.

Instead of frequency plots, one often sees histograms. Histograms contain the
same information as frequency plots, except that groups of values are taken
together. Such a group of values is called a bin. Figure 1.2 shows the same
age data, but uses only 9 bins: for the first bin, we take values of age 0 and 1
together, for the second bin we take ages 2 and 3 together, etcetera, until we
take ages 16 and 17 together for the last bin. For each bin, we compute how
often we observe the ages in that bin.

Histograms are very convenient for continuous data, for instance if we have
values like 3.473, 2.154, etcetera. Or, more generally, for variables with values
that have very low frequencies. Suppose that we had measured age not in years
but in days. Then we could have had a data set of 1000 children where each and
every child had a unique value for age. In that case, the length of the frequency
table would be 1000 rows (each value observed only once) and the frequency
plot would be very flat. By using age measured in years, what we have actually
done is putting all children with an age less than 365 days into the first bin (age
0 years) and the children with an age of at least 365 but less than 730 days into
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Figure 1.2: A histogram.

the second bin (age 1 year). And so on. Thus, if you happen to have data with
many many values with very low frequencies, consider binning the data, and
using a histogram to visualise the distribution of your numeric variable.

1.8 Frequencies, proportions and cumulative
frequencies and proportions

When we have the frequency for each observed age, we can calculate the relative
frequency or proportion of children that have that particular age. For example,
when we look again at the frequencies in Table 1.8 we see that there are two
children who have age 0. Given that there are in total 1000 children, we know
that the proportion of people with age 0 equals 2

1000 = 0.002. Thus, the
proportion is calculated by taking the frequency and dividing it by the total
number.

We can also compute cumulative frequencies. You get cumulative frequencies
by accumulating (summing) frequencies. For instance, the cumulative frequency
for the age of 3, is the frequency for age 3 plus all frequencies for younger ages.
Thus, the cumulative frequency of age 3 equals 50 + 20 (for age 2) + 7 (for age

32



1) + 2 (for age 0) = 79. The cumulative frequencies for all ages are presented
in Table 1.8.

We can also compute cumulative proportions: if we take for each age the
proportion of people who have that age or less, we get the fifth column in
Table 1.8. For example, for age 2, we see that there are 20 children with an age
of 2. This corresponds to a proportion of 0.020 of all children. Furthermore,
there are 9 children who have an even younger age. The proportion of children
with an age of 1 equals 0.007, and the proportion of children with an age of 0
equals 0.002. Therefore, the proportion of all children with an age of 2 or less
equals 0.020 + 0.007 + 0.002 = 0.029, which is called the cumulative proportion
for the age of 2.

1.9 Frequencies and proportions in R

The mtcars data set contains information about a number of cars: miles per
gallon (mpg), number of cylinders (cyl), etcetera.

mtcars

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
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## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

The object is a data frame. We can turn it into a tibble as follows:

mtcars <- mtcars %>% as_tibble()

The function as_tibble() is available when you load the tidyverse package.
From now on, we assume that you load the tidyverse package at the start of
every R session.
If we want to know how many cars belong to which category of number of
cylinders, we can use the function tabyl() from the janitor package:

library(janitor)
mtcars %>%
tabyl(cyl)

## cyl n percent
## 4 11 0.34375
## 6 7 0.21875
## 8 14 0.43750

The new variable n is the frequency. We see that the value 4 occurs 11 times,
the value 6 occurs 7 times, and the value 8 occurs 14 times. Thus, in this data
set there are 11 cars with 4 cylinders, 7 cars with 6 cylinders, and 14 cars with
8 cylinders. The last column is the proportion (the term percent is misleading
here). The table tells us that 34% of the cars have 4 cylinders.
We obtain the same proportions when we divide the frequencies by the total
number of cars (the sum of all the values in the n variable):

mtcars %>%
tabyl(cyl) %>%
mutate(proportion = n/sum(n))

## cyl n percent proportion
## 4 11 0.34375 0.34375
## 6 7 0.21875 0.21875
## 8 14 0.43750 0.43750
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Cumulative frequencies and cumulative proportions can be obtained using the
cumsum() function:

mtcars %>%
tabyl(cyl) %>%
mutate(proportion = n/sum(n)) %>%
mutate(cumfreq = cumsum(n),

cumprop = cumsum(proportion))

## cyl n percent proportion cumfreq cumprop
## 4 11 0.34375 0.34375 11 0.34375
## 6 7 0.21875 0.21875 18 0.56250
## 8 14 0.43750 0.43750 32 1.00000

The table tells us that 56% of the cars have 6 cylinders or less.

A frequency plot can be made using ggplot() combined with geom_freqpoly():

mtcars %>%
ggplot(aes(x = mpg)) +
geom_freqpoly()

A histogram of the mpg variable can be made using geom_histogram():

mtcars %>%
ggplot(aes(x = mpg)) +
geom_histogram(breaks = seq(5, 40, 5)) +
scale_y_continuous(breaks = seq(0, 12, 1), minor_breaks = NULL)

It is wise to play around with the number of bins that you’d like to make, or
with the boundaries of the bins. Here we choose boundaries 5, 10, 15, … , 40.

1.10 Quartiles, quantiles and percentiles

Suppose we want to split the group of 1000 children into 4 equally-sized
subgroups, with the 25% youngest children in the first group, the 25% oldest
children in the last group, and the remaining 50% of the children in two equally
sized middle groups. What ages should we then use to divide the groups?
First, we can order the 1000 children on the basis of their age: the youngest
first, and the oldest last. We could then use the concept of quartiles (from
quarter, a fourth) to divide the group in four. In order to break up all ages
into 4 subgroups, we need 3 points to make the division, and these three
points are called quartiles. The first quartile is the value below which 25% of
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the observations fall, the second quartile is the value below which 50% of the
observations fall, and the third quartile is the value below which 75% of the
observations fall.3

Let’s first look at a smaller but similar problem. For example, suppose your
observed values are 10, 5, 6, 21, 11, 1, 7, 9. You first order them from low to
high so that you obtain 1, 5, 6, 7, 9, 10, 11, 21. You have 8 values, so the first
25% of your values are the first two. The highest value of these two equals 5,
and this we define as our first quartile.4 We find the second quartile by looking
at the values of the first 50% of the observations, so 4 values. The first 4 values
are 1, 5, 6, and 7. The last of these is 7, so that is our second quartile. The
first 75% of the observations are 1, 5 ,6 ,7 , 9, and 10. The value last in line is
10, so our fourth quartile is 10.
The quartiles as defined here can also be found graphically, using cumulative
proportions. Figure 1.3 shows for each observed value the cumulative
proportion. It also shows where the cumulative proportions are equal to 0.25,
0.50 and 0.75. We see that the 0.25 line intersects the other line at the value
of 5. This is the first quartile. The 0.50 line intersects the other line at a value
of 7, and the 0.75 line intersects at a value of 10. The three percentiles are
therefore 5, 7 and 10.
If you have a large data set, the graphical way is far easier than doing it by
hand. If we plot the cumulative proportions for the ages of the 1000 children,
we obtain Figure 1.4.
We see a nice S-shaped curve. We also see that the three horizontal quartile
lines no longer intersect the curve at specific values, so what do we do? By
eye-balling we can find that the first quartile is somewhere between 4 and 5.
But which value should we give to the quartile? If we look at the cumulative
proportion for an age of 4, we see that its value is slightly below the 0.25 point.
Thus, the proportion of children with age 4 or younger is lower than 0.25. This
means that the child that happens to be the 250th cannot be 4 years old. If
we look at the cumulative proportion of age 5, we see that its value is slightly
above 0.25. This means that the proportion of children that is 5 years old or
younger is slightly more than 0.25. Therefore, of the the total of 1000 children,
the 250th child must have age 5. Thus, by definition, the first quantile is 5. The
second quartile is somewhere between 6 an 7, so by using the same reasoning as
for the first quartile we know that 50% of the youngest children is 7 years old
or younger. The third quartile is somewhere between 8 and 9 and this tells us
that the youngest 75% of the children is age 9 or younger. Thus, we can call 5,
7 and 9 our three quartiles.

3The fourth quartile would be the value below which all values are, so that would be the
largest value in the row (the age of the last child in the row).

4Note that we could also choose to use 6, because 1 and 5 are lower than 6. Don’t worry,
the method that we show here to compute quartiles is only one way of doing it. In your life,
you might stumble upon alternative ways to determine quartiles. These are just arbitrary
agreements made by human beings. They can result in different outcomes when you have
small data sets, but usually not when you have large data sets.
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Figure 1.3: Cumulative proportions.

Alternatively, we could also use the frequency table (Table 1.8). First, if we
want to have 25% of the children that are the youngest, and we know that we
have 1000 children in total, we should have 0.25 × 1000 = 250 children in the
first group. So if were to put all the children in a row, ordered from youngest
to oldest, we want to know the age of the 250th child.

In order to find the age of this 250th child, and we look at Table 1.8, we see
that 29.7% of the children have an age of 5 or less (297 children), and 18.4% of
the children have an age of 4 or less (184 children). This tells us that, since 250
comes after 184, the 250th child must be older than 4, and because 250 comes
before 297, it must be younger than or equal to 5, hence the child is 5 years old.

Furthermore, if we want to find a cut-off age for the oldest 25%, we see from
the table, that 83.8% of the children (838 children) have an age of 9 or less, and
73.0% of the children (730) have an age of 8 or less. Therefore, the age of the
750th child (when ordered from youngest to oldest) must be 9.

What we just did for quartiles, (i.e. 0.25, 0.50, 0.75) we can do for any proportion
between 0 and 1. We then no longer call them quartiles, but quantiles. A
quantile is the value below which a given proportion of observations in a group
of observations fall. From this table it is easy to see that a proportion of 0.606
of the children have an age of 7 or less. Thus, the 0.606 quantile is 7. One
often also sees percentiles. Percentiles are very much like quantiles, except that
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Figure 1.4: Cumulative proportions.

they refer to percentages rather than proportions. Thus, the 20th percentile is
the same as the 0.20 quantile. And the 0.81 quantile is the same as the 81st
percentile.

The reason that quartiles, quantiles and percentiles are important is that they
are very short ways of saying something about a distribution. Remember that
the best way to represent a distribution is either a frequency table or a frequency
plot. However, since they can take up quite a lot of space sometimes, one needs
other ways to briefly summarise a distribution. Saying that ”the third quartile
is 454” is a condensed way of saying that ”75% of the values is either 454 or
lower”. In the next sections, we look at other ways of summarising information
about distributions.

Another way in which quantiles and percentiles are used is to say something
about individuals, relative to a group. Suppose a student has done a test and
she comes home saying she scored in the 76th percentile of her class. What does
that mean? Well, you don’t know her score exactly, but you do know that of
her classmates, 76 percent had the same score or lower. That means she did
pretty well, compared to the others, since only 24 percent had a higher score.

38



1.11 Quantiles in R

Obtaining quartiles, quantiles and percentiles can be done with the quantile()
function:

mtcars$mpg %>% # select the values for the mpg variable
quantile(probs = c(0.25, 0.50, 0.75, 0.90))

## 25% 50% 75% 90%
## 15.425 19.200 22.800 30.090

1.12 Measures of central tendency

The mean, the median and the mode are three different measures that say
something about the central tendency of a distribution. If you have a series of
values: around which value do they tend to cluster?

1.12.1 The mean

Suppose we have the values 1, 2 and 3, then we compute the mean by first
adding these numbers and then divide them by the number of values we have.
In this case we have three values, so the mean is equal to (1 + 2 + 3)/3 = 2.
In statistical formulas, the mean of a variable is indicated by a bar above that
variable. In such formulas we often use 𝑋 or 𝑌 to represent a particular variable.
Suppose if the values of variable 𝑌 are 1, 2 and 3, then we denote the mean by

̄𝑌 (pronounced as ‘y-bar’). When taking the sum of a set of values, statistical
formulas show the summation sign Σ (the Greek letter sigma). So we often see
the following formula for the mean of a set of 𝑛 values for variable 𝑌 5:

̄𝑌 = ∑𝑛
𝑖=1 𝑌𝑖
𝑛

In words, in order to compute ̄𝑌 , we take every value for variable 𝑌 from 𝑖 = 1
to 𝑖 = 𝑛 and sum them, and the result is divided by 𝑛. Suppose we have variable
𝑌 with the values 6, -3, and 21. The number of values n is equal to 3. Then
the mean of 𝑌 equals:

̄𝑌 = ∑𝑛
𝑖=1 𝑌𝑖
𝑛 = 𝑌1 + 𝑌2 + 𝑌3

𝑛 = 6 + (−3) + 21
3 = 24

3 = 8
5Variables are symbolised by capitals, e.g., 𝑌 . Specific values of a variable are indicated in

lowercase, e.g., 𝑦.
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A closer look at the summation sign ∑
The sigma symbol ∑ tells us to sum a couple of things. We usually see
something like this:

3
∑
𝑖=1

The number below the Sigma symbol tells us where we have to start making the
sum, and the number above the Sigma symbol tells us where we have to stop
making the sum. Right behind the Sigma symbol it says what we have to add.
For instance,

3
∑
𝑖=1

𝑖

tells us that we have to sum a number of values for 𝑖, when 𝑖 runs from 1 to 3.
It is short for making the following sum:

3
∑
𝑖=1

𝑖 = 1 + 2 + 3

since we substitute 𝑖 for the values starting at 1 and ending at 3. Similarly, we
could have the following sum:

3
∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + 𝑥3

,

because we count the 𝑥-values for which the subscripts run from 1 to 3.

Suppose 𝑥 is a series (vector) of several values, say 5 values.

𝑥 = (7, 8, 4, 3, 2)

Then, when we compute ∑3
𝑖=1 𝑥𝑖, we only need the first three values of 𝑥.

3
∑
𝑖=1

𝑥𝑖 = 7 + 8 + 4 = 19

If we have a lot of values for 𝑥, say 𝑛 values, where 𝑛 can be anything, and we
want to add all the numbers up, we can write in a short way as
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𝑛
∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

A bit shorter:

𝑛
∑
𝑖=1

𝑥𝑖

Even shorter:

∑
𝑖

𝑥𝑖

It’s best to be clear about what values for what letter the summation has to be
done. For instance,

3
∑
𝑘=2

(𝑘 + 𝑖)

means that we have to use two different values for 𝑘, and then add things up.
Thus we have:

3
∑
𝑘=2

(𝑘 + 𝑖) = (2 + 𝑖) + (3 + 𝑖)

As an exercise, write out the following sum to check your understanding of
summation.

2
∑
𝑙=0

(𝑘 − 𝑙)

The result should be equal to 3𝑘 − 3.

1.12.2 The median

The mean is only one of the measures of central tendency. An alternative
measure of central tendency is the median. The median is nothing but the
middle value of an ordered series. Suppose we have the values 45, 567, and 23.
Then what value lies in the middle when ordered? Let’s first order them from
small to large to get a better look. We then get 23, 45 and 567. Then it’s easy
to see that the value in the middle is 45.
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Suppose we have the values 45, 45, 45, 65, and 23. What is the middle value
when ordered? We first order them again and see what value is in the middle:
23, 45, 45, 45 and 65. Obviously now 45 is the median. You can also see that
half of the values is equal or smaller than this value, and half of the values is
equal or larger than this value. The median therefore is the same as the second
quartile.

What if we have two values in the middle? Suppose we have the values 46, 56,
45 and 34. If we order them we get 34, 45, 46 and 56. Now there are two values
in the middle: 45 and 46. In that case, we take the mean of these two middle
values, so the median is 45.5.

When do you use a median and when do you use a mean? For numeric variables
that have a more or less symmetric distribution (i.e., a frequency plot that is
more or less symmetric), the mean is most often used. Actually, for distributions
that are more or less symmetric the mean and median are very similar. For
numeric variables that do not have a symmetric distribution, it is usually more
informative to use the median. An example of such a situation is income.
Figure 1.5 shows a typical distribution of yearly income. The distribution is
highly asymmetric, it is severely skewed to the right. The bulk of the values
are between 20,000 and 40,000, with only a very few extreme values on the high
end. Even though there are only a few people with a very high income, the few
high values have a huge effect on the mean.
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Figure 1.5: Distribution of yearly income.
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Table 1.9: Four series of values and their respective medians and means.

X1 X2 X3 median mean
4 5 8 5 6
4 5 80 5 30
4 5 800 5 270
4 5 8000 5 2670

The mean of the distribution turns out to be 23604. The largest value in the
distribution is an income of 75051. Imagine what would happen to the mean
and the median if we would change only this one value, that is, the highest
observed income. Which would be most affected, do you think: the mean or the
median?
Well, if we would change this value into 85051, you see an immediate impact on
the mean: the mean is then 23614. This means that the mean is very sensitive
to extreme values. One single change in a data set can have a huge effect on
the mean. The median on the other hand is much more stable. The median
remains unaffected by changes in the extremes. This because it only looks at
the middle value. The middle value is unaffected by a change in the extreme
values, as long as the order of the values remains the same and the middle value
remains the same.
This can be seen even more clearly by looking at the example in Table 1.9.
There we have three values, X1, X2 and X3, for which we compute both the
mean and the median. First, suppose we have the values 4, 5, and 8 (like in the
first row of Table 1.9). Obviously, the median is 5. Next, instead of 4, 5 and 8,
we could have values 4, 5 and 80, or 4, 5 and 800, or 4, 5 and 8000. Regardless,
the middle value of this series remains 5. In contrast, the mean would be very
much affected by having either an 8, an 80, an 800 or an 8000 in the series. In
sum: the median is a more stable measure of central tendency than the mean.

1.12.3 The mode

A third measure of central tendency is the mode. The mode is defined as the
value that we see most frequently in a series of values. For example, if we have
the series 4, 7, 5, 5, 6, 6, 6, 4, then the value observed most often is 6 (three
times). Modes are easily inferred from frequency tables: the value with the
largest frequency is the mode. They are also easily inferred from frequency
plots: the value on the horizontal axis for which we see the highest count (on
the vertical axis).
The mode can also be determined for categorical variables. If we have the
observed values ‘Dutch’, ‘Danish’, ‘Dutch’, and ‘Chinese’, the mode is ‘Dutch’
because that is the value that is observed most often.
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If we look back at the distribution in Figure 1.5, we see that the peak of the
distribution is around the value of 19,000. However, whether this is the mode,
we cannot say. Because income is a more or less continuous variable, every
value observed in the Figure occurs only once: there is no value of income with
a frequency more than 1. So technically, there is no mode. However, if we
split the values into 20 bins, like we did for the histogram in Figure 1.5, we
see that the fifth bin has the highest frequency. In this bin there are values
between 17000 and 21000, so our mode could be around there. If we really want
a specific value, we could decide to take the average value in the fifth bin. There
are many other statistical tricks to find a value for the mode, where technically
there is none. The point is that for the mode, we’re looking for the value or the
range of values that are most frequent. Graphically, it is the value under the
peak of the distribution. Similar to the median, the mode is also quite stable: it
is not affected by extreme values and is therefore to be preferred over the mean
in the case of asymmetric distributions.

1.13 Relationship between measures of tendency
and measurement level

There is a close relationship between measures of tendency and measurement
level. For numeric variables, all three measures of tendency are meaningful.
Suppose you have the numeric variable age measured in years, with the values
56, 68, 68, 99 and 100. Then it is meaningful to say that the average age is 78.2
years, that the median age is 68 years, and that the mode is 68 years.

For ordinal variables, it is quite different. Suppose you have 5 T-shirts, with
the following sizes: M, S, M, L, XL. Then what is the average size? There are
no numeric values here to put in the algebraic formula. But we can determine
the median: if we order the values from small to large we get the set S, M, M,
L, XL and we see that the middle value is M. So M is our median in this case.
6 The other meaningful measure of tendency for ordinal variables is the mode.

For categorical variables, both the mean and the median are pointless to report.
Suppose we have the nominal variable Study Programme with observed values
”Medicine”, ”Engineering”, ”Engineering”, ”Mathematics”, and ”Biology”. It
would be impossible to derive a numerical mean, nor would it be possible to
determine the middle value to determine the median, as there is no logical
or natural order.7 It is meaningful though to report a mode. It would be
meaningful to state that the study programme mentioned most often in the
news is ”Psychology”, or that the most popular study programme in India is

6However, suppose that our collection of T-shirts had the following sizes: S, M, L, XL.
Then there would be no single middle value in we would have to average the M and L values,
which would be impossible!

7Unless you see one? But then it would not be a categorical value but an ordinal variable.
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Table 1.10: Study programmes and their relative sizes (1=small, 2=medium,
3=large) for six different universities.

University Size Programme
1 1 2
2 3 2
3 2 3
4 2 3
5 3 4
6 2 1

”Engineering”. Thus, for categorical variables, both dichotomous and nominal
variables, only the mode is a meaningful measure of central tendency.

As stated earlier, the appearance of a variable in a data matrix can be quite
misleading. Categorical variables and ordinal variables can often look like
numeric variables, which makes it very tempting to compute means and medians
where they are completely meaningless. Take a look at Table 1.10. It is entirely
possible to compute the average University, Size, or Programme, but it would
be utterly senseless to report these values.

It is entirely possible to compute the median University, Size, or Programme,
but it is only meaningful to report the median for the variable Size, as Size is
an ordinal variable. Reporting that the median size is equal to 2 is saying that
about half of the study programmes is of medium size or small, and about half
of the study programmes is of medium size or large.

It is entirely possible to compute the mode for the variables University, Size, or
Programme, and it is always meaningful to report them. It is meaningful to say
that in your data there is no University that is observed more than others. It
is meaningful to report that most study programmes are of medium size, and
that most study programmes are study programme number 2 (don’t forget to
look up and write down which study programme that actually is!).

1.14 Measures of central tendency in R

The mean and median for numeric variables can be obtained as follows:

mtcars %>%
summarise(mean_cyl = mean(cyl),

median_cyl = median(cyl))

## # A tibble: 1 x 2
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## mean_cyl median_cyl
## <dbl> <dbl>
## 1 6.19 6

R does not have an in-built function to calculate modes. So we create our own
function getmode(). This function takes a vector as input and gives the mode
value as output.

getmode <- function(variable){
unique_values <- unique(variable)
unique_values[
match(variable, unique_values) %>%

tabulate() %>%
which.max()

]
}

mtcars %>%
summarise(mode_cyl = getmode(cyl))

## # A tibble: 1 x 1
## mode_cyl
## <dbl>
## 1 8

1.15 Measures of variation

Above we saw that we can summarise distributions by measures of central
tendency. Here we discuss how we can summarise distributions of numeric
variables by a measure that describes their variation. Variables show variation,
by definition, but how much variation do they actually show?

Suppose we measure the height of 3 children, and their heights (in cm) are 120,
120 and 120. There is no variation in height: all heights are the same. There
are no differences. Then the average height is 120, the median height is 120,
and the mode is 120. The variation is 0: non-existing, absent.

Now suppose their heights are 120, 120, 135. Now there are differences: one
child is taller than the other two, who have the same height. There is some
variation now. We know how to quantify the mean, which is 125, we know how
to quantify the median, which is 120, and we know how to quantify the mode,
which is also 120. But how do we quantify the variation? Is there a lot of
variation, or just a little, and how do we measure it?
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1.15.1 Range and interquartile range

One thing you could think of is measuring the distance or difference between
the lowest value and the highest value. We call this the range. The lowest
value is 120, and the highest value is 135, so the range of the data is equal to
135 − 120 = 15. As another example, suppose we have the values 20, 20, 21,
20, 19, 20 and 454. Then the range is equal to 454 − 19 = 435. That’s a large
range, for a series of values that for the most part hardly differ from each other.

Instead of measuring the distance from the lowest to the highest value, we could
also measure the distance between the first and the third quartile: how much
does the third quartile deviate from the first quartile? This distance or deviation
is called the interquartile range (IQR) or the interquartile distance. Suppose that
we have a large number of systolic blood pressure measurements, where 25% are
120 or lower, and 75% are 147 or lower, then the interquartile range is equal to
147 − 120 = 27.
Thus, we can measure variation using the range or the interquartile range. A
third measure for variation is variance, and variance is based on the sum of
squares.

1.15.2 Sum of squares

What we call a sum of squares is actually a sum of squared deviations. But
deviations from what? We could for instance be interested in how much the
values 120, 120, 135 vary around the mean of these values. The mean of these
three values equals 125. The first value differs 120−125 = −5, the second value
also differs 120 − 125 = −5, and the third value differs 135 − 125 = 10.
Whenever we look at deviations from the mean, some deviations are positive
and some deviations will be negative (except when there is no variation). If we
want to measure variation, it should not matter whether deviations are positive
or negative: any deviation should add to the total variation in a positive way.
Moreover, if we would add up all deviations from the mean, we would always
end up with 0, as you can see in our example. Adding up -5, -5 and +10 would
lead to a sum of 0. This would mean no variation. However, as you can see,
there is variation. So that is why it would be better to make all deviations
positive, and this can be done by taking the square of the deviations, since a
negative number squared is always positive. So for our three values 120, 120
and 135, we get the deviations -5, -5 and +10, and if we square these deviations,
we get 25, 25 and 100. If we add these three squares, we obtain the sum 150.
This is a sum of squared differences, or sum of squares.

In most cases, the sum of squares (SS) refers to the sum of squared deviations
from the mean. In brief, suppose you have 𝑛 values of a variable 𝑌 , you first
take the mean of those values (this is ̄𝑌 ), you subtract this mean from each of
these 𝑛 values (𝑌𝑖 − ̄𝑌 ), then you take the squares of these deviations, (𝑌𝑖 − ̄𝑌 )2,
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and then add them up (take the sum of these squared deviations, ∑(𝑌𝑖 − ̄𝑌 )2.
In formula form, this process looks like:

𝑆𝑆 =
𝑛

∑
𝑖

(𝑌𝑖 − ̄𝑌 )2

As an example, suppose you have the values 10, 11 and 12, then the mean is
11. Then the deviations from the mean are -1, 0 and +1. If you square them
you get (−1)2 = 1, 02 = 0 and (+1)2 = 1, and if you sum these three values,
you get 𝑆𝑆 = 1 + 0 + 1 = 2. In formula form:

𝑆𝑆 = (𝑌1 − ̄𝑌 )2 + (𝑌2 − ̄𝑌 )2 + (𝑌3 − ̄𝑌 )2

= (10 − 11)2 + (11 − 11)2 + (12 − 11)2

= (−1)2 + 02 + 12 = 2

Now let’s use some values that are more different from each other, but with the
same mean. Suppose you have the values 9, 11 and 13. The average value is
still 11, but the deviations from the mean are larger. The deviations from 11
are -2, 0 and +2. Taking the squares, you get (−2)2 = 4, 02 = 0 and (+2)2 = 4
and if you add them you get 𝑆𝑆 = 4 + 0 + 4 = 8.

𝑆𝑆 = (𝑌1 − ̄𝑌 )2 + (𝑌2 − ̄𝑌 )2 + (𝑌3 − ̄𝑌 )2

= (9 − 11)2 + (11 − 11)2 + (13 − 11)2

= (−2)2 + 02 + 22 = 8

Thus, the more the values differ from each other, the larger the deviations from
the mean. And the larger the deviations from the mean, the larger the sum of
squares. The sum of squares is therefore a nice measure of how much values
differ from each other.

1.15.3 Variance and standard deviation

The sum of squares can be seen as a measure of total variation: all (squared)
deviations from a certain value are added up. This means that the more data
values you have, the larger the sum of squares. Often-times, you are not
interested in the total variation, but you’re interested in the average variation.
Suppose we have the values 10, 11 and 24. The mean is then 45/3 = 15. We
have two values that are smaller than the mean and one value that is larger than
the mean, so two negative deviations and one positive deviation. Squaring them
makes them all positive. The squared deviations are 25, 16, and 81. The third
value has a huge squared deviation (81) compared to the other two values. If
we take the average squared deviation, we get (25 + 16 + 81)/3 ≈ 40.67. So the
average squared deviation is equal to 40.67. This value is called the variance. So
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the variance of a bunch of values is nothing but the 𝑆𝑆 divided by the number
of values, 𝑛. The variance is the average squared deviation from the mean. The
symbol used for the variance is usually 𝜎2 (pronounced as ‘sigma squared’).8

Var(𝑌 ) = 𝑆𝑆
𝑛 = ∑𝑖(𝑌𝑖 − ̄𝑌 )2

𝑛
As an example, suppose you have the values 10, 11 and 12, then the average
value is 11. Then the deviations are -1, 0 and 1. If you square them you get
(−1)2 = 1, 02 = 0 and 12 = 1, and if you add these three values, you get
𝑆𝑆 = 1 + 0 + 1 = 2. If you divide this by 3, you get the variance: 2

3 . Put
differently, if the squared deviations are 1, 0 and 1, then the average squared
deviation (i.e., the variance) is 1+0+1

3 = 2
3 .

As another example, suppose you have the values 8, 10, 10 and 12, then the
average value is 10. Then the deviations from 10 are -2, 0, 0 and +2. Taking
the squares, you get 4, 0, 0 and 4 and if you add them you get 𝑆𝑆 = 8.
To get the variance, you divide this by 4: 8/4 = 2. Put differently, if the
squared deviations are 4, 0, 0 and 4, then the average squared deviation (i.e.,
the variance) is 4+0+0+4

4 = 2.
Often we also see another measure of variation: the standard deviation. The
standard deviation is the square root of the variance and is therefore denoted
as 𝜎9:

𝜎 =
√

𝜎2 = √Var(𝑌 ) = √∑𝑖(𝑌𝑖 − ̄𝑌 )2

𝑛

The standard deviation is often used to indicate how deviant a particular value
is from the rest of the values. Take for instance an IQ score of 105. Is that a high
IQ score or a low IQ score? Well, if someone tells you that the average person
has an IQ score of 100, you know that a score of 105 is above average. However,
still you do not know whether it is much higher than average, or just slightly
higher than average. Suppose I tell you that the standard deviation of IQ scores
is 15, then you know that a score of 105 is a third of a standard deviation above
the mean. Therefore, in order to know how deviant a particular value is relative
to a the rest of the values, one needs both a measure of central tendency and
a measure of variation. In psychological testing, IQ testing for instance, one

8Online you will often find the formula ∑𝑖(𝑌𝑖− ̄𝑌 )2
𝑛−1 . The difference is that here we are talking

about the definition of the variance of an observed variable 𝑌 , and that elsewhere one talks
about trying to figure out what the variance might be of all values of 𝑌 when we only see a
small portion of the values of 𝑌 . When we use all values of 𝑌 , we talk about the population
variance, denoted by 𝜎2. When we only see a small part of the values of 𝑌 , we talk about a
sample of 𝑌 -values. We will come back to the distinction between population variance and
sample variance and why they differ in Chapter 2.

9The greek letter sigma is used to indicate summation, but also refers to the variance.
Capital Sigma, ∑, refers to summation, lower-case sigma, 𝜎, refers to standard deviation.
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usually uses the mean and the standard deviation to express someone’s score
as the number of standard deviations above or below the average score. This
process of counting the number of standard deviations is called standardisation.
If we go back to the IQ score of 105, and if we want to standardise the score
in terms of standard deviations from the mean, we saw that a score of 105 was
a third of a standard deviation above the mean, so + 1

3 . As another example,
suppose the mean is 100 and we observe an IQ score of 80, we see that we
are 20 points below the average of 100. This is equal to 20/15 = 4/3 standard
deviations below the average, so our standardised measure equals −4/3 (note the
negative sign: it indicates we are below the mean). In general, a standardised
score can be computed by subtracting the mean and dividing the result by the
standard deviation. A standardised score for a particular value of 𝑌 , 𝑌 = 𝑦, is
usually denoted by the 𝑧-score:

𝑧 = 𝑦 − ̄𝑌
𝜎

1.16 Variance, standard deviation, and standardisation
in R

The functions var() and sd() calculate the variance and standard deviation
for a variable, respectively.

mtcars %>%
summarise(var_mpg = var(mpg),

std_mpg = sd(mpg))

## # A tibble: 1 x 2
## var_mpg std_mpg
## <dbl> <dbl>
## 1 36.3 6.03

However, these functions use the formulas ∑𝑖(𝑌𝑖− ̄𝑌 )2

𝑛−1 and √ ∑𝑖(𝑌𝑖− ̄𝑌 )2

𝑛−1 ,
respectively. We will discuss this further in Chapter 2. If you want to use the
formula ∑𝑖(𝑌𝑖− ̄𝑌 )2

𝑛 , you need to write your own function that computes the sum
of squares (SS) and divides by n:

var_n <- function(variable){
SS <- (variable - mean(variable))**2 %>%
sum()

return(SS/length(variable)) # dividing by n
}
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mtcars %>%
summarise(var_mpg = var_n(mpg),

std_mpg = sqrt(var_n(mpg))) # taking the square root

## # A tibble: 1 x 2
## var_mpg std_mpg
## <dbl> <dbl>
## 1 35.2 5.93

Note that you get different results. For large data sets (large n), the differences
will be negligible.
Standardised measures can be obtained using the scale() function:

mtcars %>%
mutate(z_mpg = scale(mpg)) %>%
dplyr::select(mpg, z_mpg)

## # A tibble: 32 x 2
## mpg z_mpg[,1]
## <dbl> <dbl>
## 1 21 0.151
## 2 21 0.151
## 3 22.8 0.450
## 4 21.4 0.217
## 5 18.7 -0.231
## 6 18.1 -0.330
## 7 14.3 -0.961
## 8 24.4 0.715
## 9 22.8 0.450
## 10 19.2 -0.148
## # i 22 more rows

1.17 Density plots

Earlier in this chapter we saw that when we have a number of values for a
numeric variable, frequency tables and frequency plots fully describe all values
of the variable that are observed. A histogram is a helpful tool to visualise
the distribution of a variable when there are so many different values that a
frequency table would be too long and a frequency plot would become too
cluttered.
A histogram can then be used to give a quick graphical overview of the
distribution. The bin width is usually chosen rather arbitrarily. Figure 1.6
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shows a histogram of one million values of a numeric variable, say yearly wage
for an administrative clerk. Figure 1.7 shows a histogram for the exact same
data, but now using a much smaller bin size. You see that when you have a lot
of values, a million in this case, you can choose a very small bin size, and in
some cases this can result in a very clear shape of the distribution.
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Figure 1.6: A histogram of wages with bin width 1000.

The shape of the distribution that we discern in Figure 1.7 can be represented by
a density plot. Density plots are an elegant representation of how the frequency
of certain values are distributed across a continuum. They are particularly
suited for large amounts of non-discrete (continuous) values, typically more
than 1000. Figure 1.8 shows a density plot of the one million wages. They
more or less ‘smooth’ the histogram: drawing a smooth line connecting the dots
of the histogram in Figure 1.7 while looking through your eyelashes. On the
vertical axis, we no longer see ‘count’ or ‘frequency’, but ‘density’. The quantity
density is defined such that the area under the curve equals 1. Density plots
are particularly suited for large data sets, where one is no longer interested in
the particular counts, but more interested in relative frequencies: how often are
certain values observed, relative to other values. From this density plot, it is
very clear that, relatively speaking, there are more values around 30,000 than
around 27,500 or 32,500.
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Figure 1.7: A histogram with bin width 10.

1.18 Density plots in R

Density plots can be obtained using geom_density():

mtcars %>%
ggplot(aes(x = mpg)) +
geom_density()

A histogram can be obtained using geom_histogram():

mtcars %>%
ggplot(aes(x = mpg)) +
geom_histogram(bins = 8) # when you want to divide the data into 8 bins
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Figure 1.8: A density plot of the wage variable.
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Often a combination is made of a histogram and a density plot. It’s a bit
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tricky to do because the histogram has counts on the 𝑦-axis, and the density
has density on the 𝑦-axis, which is mostly smaller than 1. To put the counts on
the same density scale, you can use:

mtcars %>%
ggplot(aes(x = mpg)) +
geom_histogram(aes(y = after_stat(density)), bins = 10) +
geom_density()
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1.19 The normal distribution

Sometimes distributions of observed variables bear close resemblance to
theoretical distributions. For instance, Figure 1.8 bears close resemblance to
the theoretical normal distribution with mean 30,000 and standard deviation
1000. This theoretical shape can be described with the mathematical function

𝑓(𝑥) = 1√
2𝜋10002 𝑒− (𝑥−30000)2

2×10002

which you are allowed to forget immediately. It is only to illustrate that
distributions observed in the wild (empirical distributions) sometimes resemble
mathematical functions (theoretical distributions).
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The density function of that distribution is plotted in Figure 1.9. Because of
its bell-shaped form, the normal distribution is sometimes informally called ‘the
bell curve’. The histogram in Figure 1.8 and the normal density function in
Figure 1.9 look so similar, they are practically indistinguishable.

68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent68 percent

2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent2.5 percent

inflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion pointinflexion point

0.0000

0.0001

0.0002

0.0003

0.0004

25000 30000 35000
wage

de
ns

ity

Figure 1.9: The theoretical normal distribution with mean 30,000 and standard
deviation 1000.

In interactive Figure 1.10 you can see the shape of the normal distribution
change as a function of mean and standard deviation. Try out different values
for the mean and see what happens to the distribution. Then try out different
values for the standard deviation and see what effect it has on the shape.

Please	Wait

Figure 1.10: [Interactive] The shape of the normal distribution depends on only
two parameters: the mean and the standard deviation. Change their values and
see what it does to the density function.

Mathematicians have discovered many interesting things about the normal
distribution. If the distribution of a variable closely resembles the normal
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distribution, you can infer many things. One thing we know about the normal
distribution is that the mean, mode and median are always the same. Another
thing we know from theory is that the inflexion points10 are one standard
deviation away from the mean. Figure 1.9 shows the two inflexion points.
From theory we also know that if a variable has a normal distribution, 68% of
the observed values lies between these two inflexion points. We also know that
5% of the observed values lie more than 1.96 standard deviations away from
the mean (2.5% on both sides, see Figure 1.9). Theorists have constructed
tables that make it easy to see what proportion of values lies more than
1, 1.1, 1.2 … , 3.8, 3.9, … standard deviations away from the mean. These tables
are easy to find online or in books, and these are fully integrated into statistical
software like SPSS and R. Because all these percentages are known for the
number of standard deviations, it is easier to talk about the standard normal
distribution.

In such tables online or in books, you find information only about this standard
normal distribution. The standard normal distribution is a normal distribution
where all values have been standardised (see Section 1.15.3). When values have
been standardised, they automatically have a mean of 0 and a standard deviation
of 1. As we saw in Section 1.15.3, such standardised values are obtained if you
subtract the mean score from each value, and divide the result by the standard
deviation. A standardised value is usually denoted as a 𝑧-score. Thus in formula
form, a value 𝑌 = 𝑦 is standardised by using the following equation:

𝑧 = 𝑦 − ̄𝑌
𝜎

Table 1.11 shows an example set of values for 𝑌 that are standardised. The
mean of the 𝑌 -values turns out to be 10.38, and the standard deviation 4.77.
By subtracting the mean, we ensure that the average 𝑧-score becomes 0, and
by subsequently dividing by the standard deviation, we make sure that the
standard deviation of the 𝑧-scores becomes 1.

This standardisation makes it much easier to look up certain facts about the
normal distribution. For instance, if we go back to the normally distributed
wage values, we see that the average is 30,000, and the standard deviation is
1,000. Thus, if we take all wages, subtract 30,000 and divide by 1,000, we
get standardised wages with mean 0 and standard deviation 1. The result is
shown in Figure 1.11. We know that the inflexion points lie at one standard
deviation below and above the mean. The mean is 30,000, and the standard
deviation equals 1,000, so the inflexion points are at 30000 − 1000 = 29000 and
30000+1000 = 31000. Thus we know that 68% of the wages are between 29,000
and 31,000.

10The inflexion point is where concave turns into convex, and vice versa. Mathematically,
the inflexion point can be found by equating the second derivative of a function to 0.
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Table 1.11: Standardising scores.

Y mean Y_minus_mean Z
7.2 10.4 -3.2 -0.7
8.8 10.4 -1.5 -0.3
17.8 10.4 7.4 1.6
10.4 10.4 0.0 0.0
10.6 10.4 0.3 0.1
18.6 10.4 8.2 1.7
12.3 10.4 1.9 0.4
3.7 10.4 -6.7 -1.4
6.6 10.4 -3.8 -0.8
7.8 10.4 -2.6 -0.5
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Figure 1.11: The standard normal distribution.
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How do we know that 68% of the observations lie between the two inflexion
points? Similar to proportions and cumulative proportions, we can plot the
cumulative normal distribution. Figure 1.12 shows the cumulative proportions
curve for the normal distribution. Note that we no longer see dots because the
variable 𝑍 is continuous.
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Figure 1.12: The cumulative standard normal distribution.

We know that the two inflexion points lie one standard deviation below and
above the mean. Thus, if we look at a 𝑧-value of 1, we see that the cumulative
probability equals about 0.84. This means that 84% of the 𝑧-values are lower
than 1. If we look at a 𝑧-value of -1, we see that the cumulative probability
equals about 0.16. This means that 16% of the 𝑧-values are lower than -1.
Therefore, if we want to know what percentage of the 𝑧-values lie between -1
and 1, we can calculate this by subtracting 0.16 from 0.84, which equals 0.68,
which corresponds to 68%.
All quantiles for the standard normal distribution can be looked up online11 or
in Appendix A, but also using R. Table 1.12 gives a short list of quantiles. From
this table, you see that 1% of the 𝑧-values is lower than -2.33, and that 25%
of the 𝑧-values is lower than -0.67. We also see that half of all the 𝑧-values is
lower than 0.00 and that 10% of the 𝑧-values is larger than 1.28, and that the
1% largest values are higher than 2.33.

11See for example www.normaltable.com or www.mathsisfun.com/data/standard-normal-
distribution-table.html
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Table 1.12: Some quantiles for the standard normal distribution.

Z cum_proportion
-2.33 0.01
-1.28 0.10
-0.67 0.25
0.00 0.50
0.67 0.75
1.28 0.90
2.33 0.99

Although tables are readily found online, it’s helpful to memorise the so-called
68 – 95 – 99.7 rule, also called the empirical rule. It says that 68% of normally
distributed values are at most 1 standard deviation away from the mean, 95%
of the values are at most 2 standard deviations away (more precisely, 1.96), and
99.7% of the values are at most 3 standard deviations away. In other words,
68% of standardised values are between -1 and +1, 95% of standardised values
are between -2 and +2 (-1.96 and +1.96), and 99.7% of standardised values are
between -3 and +3.

Thus, if we return to our wages with mean 30,000 and standard deviation 1,000,
we know from Table 1.12 that 99% of the wages are below 30000 + 2.33 times
the standard deviation = 30000 + 2.33 × 1000 = 32330.
Returning back to the IQ example of Section 1.15.3. Suppose we have IQ scores
that are normally distributed with a mean of 100 and a standard deviation of
15. What IQ score would be the 90th percentile? From Table 1.12 we see that
the 90th percentile is a 𝑧-value of 1.28. Thus, the 90th percentile for our IQ
scores lies 1.28 standard deviations above the mean (above because the 𝑧-value
is positive). The mean is 100 so we have to look at 1.28 standard deviations
above that. The standard deviation equals 15, so we have to look at an IQ score
of 100 + 1.28 × 15, which equals 119.2. This tells us that 90% of the IQ scores
are equal to or lower than 119.2.

As a last example, suppose we have a personality test that measures
extraversion. If we know that test scores are normally distributed with a mean
of 18 and a standard deviation of 2, what would be the 0.10 quantile? From
Table 1.12 we see that the 0.10 quantile is a 𝑧-value of -1.28. This tells us
that the 0.10 quantile for the personality scores lies at 1.28 standard deviations
below the mean. The mean is 18, so the 0.10 quantile for the personality scores
lies at 1.28 standard deviations below 18. The standard deviation is 2, so this
amounts to 18 − 1.28 × 2 = 15.44. This tells us that 10% of the scores on this
test are 15.44 or lower.

Such handy tables are also available for other theoretical distributions.
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Theoretical distributions are at the core of many data analysis techniques,
including linear models. In this book, apart from the normal distribution, we
will also encounter other theoretical distributions: the 𝑡-distribution (Chapter
2), the 𝐹 -distribution (Chapter 6), the chi-square distribution (Chapters 2, 8,
14, 15 and 16) and the Poisson distribution (16).

1.20 Obtaining quantiles of the normal distribution
using R

Quantiles of a normal distribution with a certain mean and standard deviation
(sd) can be obtained using the qnorm() function:

qnorm(c(0.05, 0.50, 0.95), mean = 100, sd = 15)

## [1] 75.3272 100.0000 124.6728

This means that if you have a normal distribution with mean 100 and standard
deviation 15, 5% of the values are 75.33 or less, 50% of the values are 100.00 or
less, and 95% of the values are 124.67 or less.

If you want to know the cumulative proportion for a certain value of a variable
that is normally distributed, you can use pnorm():

pnorm(-1, mean = 0, sd = 1)

## [1] 0.1586553

So 15.86% of the values from a standard normal distribution (mean 0, standard
deviation 1), are -1 or less.

1.21 Visualising numeric variables: the box plot

We started this chapter with variables that can be stored in a data matrix. With
a variable with a large number of values on a large number of units of analysis,
it is hard to get a an intuitive feel for the data. Making a frequency table
is one way of summarising a variable, computing measures of central tendency
and variation is another way. Visualisation is probably the best way of getting a
quick and dirty feel for the information contained in a large data matrix. Earlier
in this chapter we came across frequency plots, histograms, and density plots to
visualise the distribution of a single variable. A fourth plot for a single variable
that we discuss in this book is the box plot.
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A box plot gives a quick overview of the distribution of a numeric variable in
terms of its quartiles. Figure 1.13 gives an example of a box plot of (part of)
the wage data. The white box represents the interquartile range. The top of the
white box equals the third quartile, and the bottom of the white box equals the
first quartile. Therefore, we know that half of the workers have a wage between
29,400 and 30,800 The horizontal black line within the white box represents the
second quartile (the median), so half of the workers earn less than 30,100.
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Figure 1.13: A box plot of the wages earned by a sample of 150 administrative
clerks.

A box plot also shows whiskers: two vertical lines sprouting from the white box.
There are several ways to draw these two whiskers. One way is to draw the
top whisker to the largest value (the maximum) and the bottom whisker to the
smallest value (the minimum). Another way, used in Figure 1.13, is to have
the upper whisker extend from the third quartile to the observed value equal
to at most 1.5 times the interquartile range away from the median, and the
lower whisker extend from the first quartile to the value at most 1.5 times the
interquartile range below the median (the interquartile range is of course the
height of the white box). The dots are outlying values, or simply called outliers:
values that are even further away from the median. This is displayed in Figure
1.13. There you see first and third quartiles of 29,400 and 30,800, respectively, so
an interquartile range (IQR) of 30800 − 29400 = 1400. Multiplying this IQR by
1.5 we get 1.5 × 1400 = 2100. The whiskers therefore extend to 29400 − 2100 =
27300 and 30800 + 2100 = 32900.
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Table 1.13: A frequency table of nationalities.

nationality n
Chinese 10
Dutch 145
German 284
Indian 7
Indonesian 10

Thus, the box plot is a quick way of visualising in what range the middle half
of the values are (the range in the white box), where most of the values are
(the range of the white box plus the whiskers), and where the extreme values
are (the outliers, individually plotted as dots). Note that the white box always
contains 50% of the values. The whiskers are only extensions of the box by a
factor of 1.5. In many cases you see that they contain most of the values, but
sometimes they miss a lot of values. You will see that when you notice a lot of
outliers.

1.22 Box plots in R

A box plot can be made using geom_boxplot():

mtcars %>%
ggplot(aes(x = "", y = mpg)) +
geom_boxplot() +
xlab("")

1.23 Visualising categorical variables

The histogram, the density plot and the box plot can be used for numeric
variables, but also for ordinal variables that you’d like to treat numerically. For
categorical variables and ordinal variables that can’t be treated numerically, we
need other types of plots.

For example, suppose we are in a lecture hall with 456 students and we count the
number of Dutch, German, Belgian, Indian, Chinese and Indonesian students.
We could summarise the results in a frequency table (see Table 1.13), but a bar
chart shows the distribution in a more dramatic way, see Figure 1.14.

Sometimes, counts of values of a categorical variable are displayed as a pie chart,
see Figure 1.15. Pie charts are however best avoided. First, because compared to
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Figure 1.14: A bar chart of the observed nationalities in a lecture hall.

bar charts, they show no information about the actual counts; you only observe
relative sizes of the counts. Second, it is very hard to see from a pie chart what
the exact proportions are. For example, from the bar chart in Figure 1.14 it is
easily seen that the ratio German students to Dutch students is about 2 to 1.
Research shows that this ratio cannot be read with the same precision from the
pie chart in Figure 1.15. In sum, pie charts are best replaced by bar charts.

Ordinal variables are often visualised using bar charts. Figure 1.16 shows
the variation of the answers to a Likert questionnaire item, where Nairobi
inhabitants are asked ”To what degree do you agree with the statement that
the climate in Iceland is agreeable?”. With ordinal variables, make sure that
the labels are in the natural order.

1.24 Visualising categorical and ordinal variables
in R

If a categorical variable is stored as numeric, turn it into a factor first. Then R
will treat it as categorical. A bar plot with the frequencies on the 𝑦-axis can be
made with geom_bar():
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Figure 1.16: Opinions on the climate in Iceland.

mtcars %>%
mutate(cyl = factor(cyl, ordered = TRUE)) %>%
ggplot(aes(x = cyl)) +
geom_bar()

If you really want a pie chart, then do:

mtcars %>%
tabyl(cyl) %>%
ggplot(aes(x = "",

y = percent,
fill = factor(cyl))) +

geom_col(width = 1) +
coord_polar(theta = "y") +
xlab("") +
ylab("") +
theme_void() +
scale_fill_brewer(palette = "Blues") +
labs(fill = "Cylinders")
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Table 1.14: Cross-tabulation of colour and length for twenty pencils.

Colour
blue red

long 4 0
short 8 8

1.25 Visualising co-varying variables

1.25.1 Categorical by categorical: cross-table

Variables are properties that vary: from person to person, or from location to
location, or from time to time, or from object to object. Sometimes when you
have two variables, you see that they co-vary: when one variable changes, the
other variable changes too. For example, suppose I have 20 pencils. These
pencils may vary in colour: twelve of them are red, and eight of them are blue.
Therefore, colour is a variable with values ”red” and ”blue”. The twenty pencils
also vary in length: four are unused and therefore still long, and sixteen of them
have been used many times so that they are short. Therefore, length is also a
variable, with values ”long” and ”short”. Note that these variables have been
measured using the same pencils. In theory I could have long blue pencils, long
red pencils, short blue pencils and short red pencils. Let’s look at the pencils
that I have: for each combination of length and colour, I count the number
of pencils. The result I put in Table 1.14.

Such a table is called a cross-table. For every combination of two variables, I see
the number of objects (units of analysis) that have that combination. From the
table we see that there is not a single pencil that is both red and long (count
is 0). At the same time you see that all long pencils are blue. A cross-table is
therefore a nice way to show how two variables co-vary. From this particular
table for instance, you can easily see that once you know that a pencil is long,
you automatically know it is blue.

Cross-tables are a nice visualisation of how two categorical variables co-vary.
But what if one of the two variables is not a categorical variable?

1.25.2 Categorical by numerical: box plot

Suppose instead of determining length by values ”short” and ”long”, we could
measure the exact length of the pencils in centimetres. The results are displayed
in Table 1.15. We see that the table is much larger than Table 1.14. We also
see quite a few cells with zeros. In most cases, for every particular combination
of length and colour we only see a count of 1 pencil. In general, you see that
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Table 1.15: Cross-tabulation of colour and length for twenty pencils.

Colour
Length blue red
2 0 1
2.7 1 0
3.3 1 0
3.4 0 1
3.5 0 1
3.6 1 0
4.1 1 1
4.4 1 1
4.5 1 1
4.7 0 1
5.2 1 0
5.7 1 0
5.8 0 1
9 4 0

when one of the variables is numeric, the cross-table becomes very large and in
addition it becomes sparse, that is, with many zeros. With such a large and
sparse table, it is hard to get a quick impression of how two variables co-vary.

The alternative for two variables where one is categorical and the other one is
numeric, is to create a box plot. Figure 1.17 shows a box plot of the pencil
data. A box plot gives a quick overview of the distribution of the pencils: one
distribution of the blue pencils, and one distribution of the red pencils. Let’s
have a look at the distribution of the blue pencils on the left side of the plot.
The white box represents the interquartile range (IQR), so that we know that
half of the blue pencils have a length between 4 and 9. The horizontal black
line within the white box represents the median (the middle value), so half of
the blue pencils are smaller than 4.85. The vertical lines are called whiskers.
These typically indicate where the data points are that lie at most 1.5 times
the IQR away from the median. For the blue pencils, we see no whisker on top
of the white box. That means that there are no data points that lie more than
1.5 times the IQR above the median of 4.85 (here the IQR equals 5.03). We see
a whisker on the bottom of the white box, to the lowest observed value of 2.7.
This value is less than 1.5 times 5.03 = 7.55 away from the median of 4.85 so
it is included in the whisker. It is the lowest observed value for the blue pencils
so the whisker ends there.

From a box plot like this it is easy to spot differences in the distribution of a
quantitative measure for different levels of a qualitative measure. From Figure
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Figure 1.17: A box plot of the pencil data.

1.17 we easily spot that the red pencils (varying between 2 and 6 cm) tend to
be shorter than the blue pencils (varying between 3 and 9 cm). Thus, in these
pencils, length and colour tend to co-vary: red pencils are often short and
blue pencils are often long.

1.25.3 Numeric by numeric: scatter plot

Suppose we also measure the weight of my pencils in grams. Table 1.16 shows
the cross-tabulation of length and weight. This is a very sparse table (i.e.,
with lots of zeros), which makes it very hard to see any systematic co-variation
in weight and length. Figure 1.18 shows a box plot of weight and length.
Also this plot seems a bit strange, because for every observed weight value under
4 grams, there is only one observation, so that only the median can be plotted.

Therefore, in cases where we have two numeric variables, we generally use a
scatter plot. Figure 1.19 shows a scatter plot of weight by length. Now,
the relationship between weight and length is easily understood: it appears
there is a linear relationship between weight and length. For every increase
in weight, there is also an increase in length. The relationship is called linear
because we could summarise the relationship by drawing a straight line through
the dots. This line is shown in Figure 1.20.
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Table 1.16: Cross-tabulation of length (rows) and weight (columns) for twenty
pencils.

Length Weight
3.3 3.4 3.5 3.6 3.7 4

2 1 0 0 0 0 0
2.7 0 1 0 0 0 0
3.3 0 1 0 0 0 0
3.4 0 1 0 0 0 0
3.5 0 0 1 0 0 0
3.6 0 0 1 0 0 0
4.1 0 0 2 0 0 0
4.4 0 0 2 0 0 0
4.5 0 0 2 0 0 0
4.7 0 0 0 1 0 0
5.2 0 0 0 1 0 0
5.7 0 0 0 0 1 0
5.8 0 0 0 0 1 0
9 0 0 0 0 0 4

2

4

6

8

3.3 3.4 3.5 3.6 3.7 4
weight

le
ng

th

Figure 1.18: A box plot of the pencil data.
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Figure 1.19: A scatter plot of length and weight.

You see that by visualising two variables, important patterns may emerge that
you can easily overlook when only looking at the values. Cross-tables, box plots
and scatter plots are powerful tools to find regularities but also oddities in your
data that you’d otherwise miss. Some such patterns can be summarised by
straight lines, as we see in Figure 1.20. The remainder of this book focuses
on how we can use straight lines to summarise data, but also how to make
predictions for data that we have not seen yet.

1.26 Visualising two variables using R

A scatter plot for two numeric variables can be made using geom_point():

mtcars %>%
ggplot(aes(x = wt, y = mpg)) +
geom_point()

A box plot for one categorical and one numeric variable can be made using
geom_boxplot():
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Figure 1.20: A scatter plot of length and weight, with a straight line that
summarises the relationship.
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mtcars %>%
mutate(cyl = factor(cyl)) %>%
ggplot(aes(x = cyl, y = mpg)) +
geom_boxplot()

A cross table for two categorical variables can be made using tabyl() from the
janitor package:

# install.packages("janitor") # only run when not installed earlier
library(janitor)
mtcars %>% tabyl(cyl, gear)

## cyl 3 4 5
## 4 1 8 2
## 6 2 4 1
## 8 12 0 2

Note that the number of cylinders (first-named variable) is in the rows (here 4,
6 and 8 cylinders), and the number of gears (second-named variable) is in the
columns (3, 4, and 5 gears).

The janitor package includes functions that help you make tables that are
prettier than this basic one.

1.27 Take-away points

• Data on units and variables can be stored in a data matrix.
• Every column in a data matrix is a variable.
• Data can be stored in long or wide format.
• There are different kinds of variables in terms of their measurement level.
• How you describe variables and how you visualise them depends on their

measurement level.
• There are several ways to see how two variables co-vary.

Key concepts

• Data
• Units
• Variables
• Variation
• Data matrix
• Wide and long format
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• Measurement level
• Numeric/ordinal/categorical
• Interval variable
• Ratio variable
• Dichotomous variable
• Nominal variable
• (Cumulative) frequency
• (Cumulative) proportion
• Histogram
• Quartiles, quantiles, percentiles
• Central tendency
• Mean, median, mode
• (Interquartile) range
• Sum of squares (SS)
• Variance (𝜎2) and standard deviation (𝜎)
• Standardised score/ 𝑧-score
• Density plot
• (Standard) normal distribution
• Empirical rule
• Box plot
• Bar chart
• Pie chart
• Cross-table
• Scatter plot

1.28 Overview of the book

Chapter 2 will introduce the problem of inference: if you only have a small
selection of data points, what can they tell us about the rest of the data? We
will use the example of a mean computed using a small number of numerical
data points and try to figure out what the mean is likely to be if we would
have all the data points. Chapter 3 discusses the same problem but then for a
proportion.

Chapter 4 will show how we can use a straight line to summarise the relationship
between two numeric variables (simple regression), where one variable is the
outcome variable, and the other variable is a predictor variable, that predicts
the value on the outcome variable. Such a straight line is a simple form of a
linear model. We also describe how we can use straight lines (linear models)
to summarise relationships between one outcome variable and more than two
numeric predictor variables (multiple regression). In Chapter 5 we will discuss
how you can draw conclusions about linear models for data that you have not
seen. For example, in the previous section we described the relationship between
weight and length of twenty pencils. The question that you may have is whether
this linear relationship also holds for all pencils of the same make, that is,

74



whether the same linear model holds for both the observed twenty pencils and
the total collection of pencils.

In Chapter 6 we will show how we can use straight lines to summarise
relationships with predictor variables that we want to treat as categorical.

Chapter 7 discusses when it is appropriate to use linear models to summarise
your data, and when it is not. It introduces methods that enable you to decide
whether to trust a linear model or not. Chapter 8 then discusses alternative
methods that you can use when linear models are not appropriate.

Chapter 9 focuses on moderation: how one predictor variable can affect the
effect that a second predictor variable has on the outcome variable.

Chapter 10 shows how you can make elaborate statements about differences
between groups of observations, in case one of the predictor variables is a
categorical variable.

Chapter 11 discusses dealing with research questions that arise not before the
data analysis, but during the data analysis.

Chapters 12 and 13 show how to deal with variables that are measured more
than once in the same unit of analysis (the same participant, the same pencil,
the same school, etc.). For example, you may measure the weight of a pencil
before and after you have made a drawing with it. Models that we use for
such data are called linear mixed models. Similar to linear models, linear mixed
models are not always appropriate for some data sets. Therefore, Chapter 14
discusses alternative methods to study variables that are repeatedly measured
in the same research unit.

Chapters 15 and 16 discuss generalised linear models. These are models where
the outcome variable is not numeric and continuous. Chapter 15 discusses
logistic regression, a method that is appropriate when the outcome variable has
only two values, say “yes” and “no”, or “pass” and “fail”. Chapter 16 discusses
methods that can be used when the outcome variable is a count variable and
therefore discrete, for example the number of children in a classroom, or the
number of harvested zucchini from one plant. An often used method is the
Pearson chi-square statistic that can be used when you have two categorical
variables and you want to analyse crosstables. For more complicated situations
we introduce Poisson regression.
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Chapter 2

Inference about a mean

2.1 The problem of inference

For the topic of inference, we turn to an example from biology. The human body
is heavily controlled by hormones. One of the hormones involved in a healthy
reproductive system is luteinising hormone (LH). This hormone is present in
both females and males, but with different roles. In females, a sudden rise in
LH levels triggers ovulation (the release of an egg from an ovary). We have
a data set on luteinising hormone (LH) levels in one anonymous female. The
data are given in Figure 2.1. In this data set, we have 48 measures, taken at
10-minute intervals. We see that LH levels show quite some variation over time.
Suppose we want to know the mean level of luteinising hormone level in this
woman, how could we do that?
The easiest way is to compute the mean of all the values that we see in this
graph. If we do that here, we get the value 2.4. That value is displayed as the
red line in Figure 2.1. However, is that really the mean of the hormone levels
during that time period? The problem is that we only have 48 measures; we do
not have information about the hormone levels in between measurements. We
see some very large differences between two consecutive measures, which makes
the level of hormone look quite unstable. We lack information about hormone
levels in between measurements because we do not have data on that. We only
have information about hormone levels at the times where we have observed
data. For the other times, we have unobserved or missing data.
Suppose that instead of the mean of the observed hormone levels, we want to
know the mean of all hormone levels during this time period: not only those
that are measured at 10-minute intervals, but also those that are not measured
(unobserved/missing).
You could imagine that if we would measure LH not every 10 minutes, but every
5 minutes, we would have more data, and the mean of those measurements
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Figure 2.1: Luteinising hormone levels measured in one female, 48 measures
taken at 10-minute intervals.

would probably be somewhat different than 2.4. Similarly, if we would take
measurements every minute, we again would obtain a different mean. Suppose
we want to know what the true mean is: the mean that we would get if we
would measure LH continuously, that is, an infinite number of measurements.
Unfortunately we only have these 48 measures to go on. We would like to
infer from these 48 measures, what the mean is of LH level had we measured
continuously.

This is the problem of inference: how to infer something about complete data,
when you only see a small subset of the data. The problem of statistical inference
is when you want to say something about an imagined complete data set, the
population, when you only observe a relatively small portion of the data, the
sample.

In order to show you how to do that, we do a thought experiment. Imagine
a huge data set on African elephants where we measured the height of each
elephant currently living (today around 415,000 individuals). Let’s imagine
that for this huge data set, the mean and the variance are computed: a mean
of 3.25 m and a variance of 0.14 (recall, from Chapter 1, that the variance is
a measure of spread, based on the sums of squared differences between values
and the mean). We call this data set of all African elephants currently living
the population of African elephants.
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Table 2.1: Imaginary data on elephant height when 5 random samples (columns)
of 10 elephants (rows) are drawn from the population data. For each sample,
the mean and the variance are computed.

elephant sample1 sample2 sample3 sample4 sample5
1 3.22 3.08 2.90 3.31 2.93
2 3.21 2.49 2.93 3.41 3.21
3 4.12 3.14 3.71 2.63 3.55
4 3.63 3.47 2.72 3.31 2.77
5 3.01 3.79 3.82 3.83 3.38
6 3.14 2.82 3.82 3.40 3.34
7 3.46 3.24 3.38 3.28 2.90
8 3.07 2.91 3.49 3.08 2.56
9 3.28 3.60 3.39 2.85 2.59
10 3.47 2.55 3.01 3.23 3.25

mean 3.36 3.11 3.32 3.23 3.05
variance 0.10 0.17 0.15 0.10 0.11

Now that we know that the actual mean equals 3.25 and the actual variance
equals 0.14, what happens if we only observe 10 of these 415,000 elephants? In
our thought experiment we randomly pick 10 elephants. Random means that
every living elephant has an equal chance of being picked. This random sample
of 10 elephants is then used to compute a mean and a variance. Imagine that we
do this exercise a lot of times: every time we pick a new random sample of 10
elephants, and you can imagine that each time we get slightly different values
for our mean, but also for our variance. This is illustrated in Table 2.1, where
we show the data from 5 different samples (in different columns), together with
5 different means and 5 different variances.

What we see from this table is that the 5 sample means vary around the
population mean of 3.25, and that the 5 variances vary around the population
variance of 0.14. We see that therefore the mean based on only 10 elephants
gives a rough approximation of the mean of all elephants: the sample mean
gives a rough approximation of the population mean. Sometimes it is too low,
sometimes it is too high. The same is true for the variance: the variance based
on only 10 elephants is a rough approximation, or estimate, of the variance of
all elephants: sometimes it is too low, sometimes it is too high.

2.2 Sampling distribution of mean and variance

How high and how low the sample mean can be, is seen in Figure 2.2. There you
see a histogram of all sample means when you draw 10,000 different samples of

79



each consisting of 10 elephants and for each sample compute the mean. This
distribution is a sampling distribution. More specifically, it is the sampling
distribution of the sample mean.
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Figure 2.2: A histogram of 10,000 sample means when the sample size equals
10.

The red vertical line indicates the mean of the population data, that is, the
mean of 3.25 (the population mean). The blue line indicates the mean of all
these sample means together (the mean of the sample means). You see that
these lines practically overlap.

What this sampling distribution tells you, is that if you randomly pick 10
elephants from a population, measure their heights, and compute the mean,
this mean is on average a good estimate (approximation) of the mean height in
the population. The mean height in the population is 3.25, and when you look
at the sample means in Figure 2.2, they are generally very close to this value
of 3.25. Another thing you may notice from Figure 2.2 is that the sampling
distribution of the sample mean looks symmetrical and resembles a normal
distribution.

Now let’s look at the sampling distribution of the sample variance. Thus, every
time we randomly pick 10 elephants, we not only compute the mean but also
the variance. Figure 2.3 shows the sampling distribution. The red line shows
the variance of the height in the population, and the blue line shows the mean
variance observed in the 10,000 samples. Clearly, the red and blue line do not
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overlap: the mean variance in the samples is slightly lower than the actual
variance in the population. We say that the sample variance underestimates
the population variance a bit. Sometimes we get a sample variance that is lower
than the population value, sometimes we get a value that is higher than the
population value, but on average we are on the low side.
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Figure 2.3: A histogram of 10,000 sample variances when the sample size equals
10. The red line indicates the population variance. The blue line indicates the
mean of all variances observed in the 10,000 samples.
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Overview

• population: all values, both observed and unobserved

• population mean: the mean of all values (observed and
unobserved values)

• sample: a limited number of observed values

• sample size: the number of observed values

• sample mean: the mean of the values in the sample

• random sample: values that you observe when you randomly
pick a subset of the population

• random: each value in the population has an equal probability
of being observed

• sampling distribution of the sample mean: the distribution
of means that you get when you randomly pick new samples from
a population and for each sample compute the mean

• sampling distribution of the sample variance: the
distribution of variances that you get when you randomly pick
new samples from a population and for each sample compute the
variance

2.3 The effect of sample size

What we have seen so far is that when the population mean is 3.25 m and
we observe only 10 elephants, we may get a value for the sample mean of
somewhere around 3.25, but on average, we’re safe to say that the sample mean
is a good approximation for the population mean. In statistics, we call the
sample mean an unbiased estimator of the population mean, as the expected
value (the average value we get when we take a lot of samples) is equal to the
population value.
Unfortunately the same could not be said for the variance: the sample variance is
not an unbiased estimator for the population variance. We saw that on average,
the values for the variances are too low.
Another thing we saw was that the distribution of the sample means looked
symmetrical and close to normal. If we look at the sampling distribution of
the sample variance, this was less symmetrical, see Figure 2.3. It actually has
the shape of a so-called 𝜒2-(pronounced ‘chi-square’) distribution, which will
be discussed in Chapters 8, 14, 15 and 16. Let’s see what happens when we do
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not take samples with 10 elephants each time, but 100 elephants.

Stop and think: What will happen to the sampling distributions of the mean
and the variance? For instance, in what way will Figure 2.2 change when we
use 100 elephants instead of 10?

Figure 2.4 shows the sampling distribution of the sample mean. Again the
distribution looks normal, again the blue and red lines overlap. The only
difference with Figure 2.2 is the spread of the distribution: the values of the
sample means are now much closer to the population value of 3.25 than with
a sample size of 10. That means that if you use 100 elephants instead of 10
elephants to estimate the population mean, on average you get much closer to
the true value!
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Figure 2.4: A histogram of 10,000 sample means when the sample size equals
100.

Now stop for a moment and think: is it logical that the sample means are much
closer to the population mean when you have 100 instead of 10 elephants?

Yes, of course it is, with 100 elephants you have much more information about
elephant heights than with 10 elephants. And if you have more information,
you can make a better approximation (estimation) of the population mean.
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Figure 2.5 shows the sampling distribution of the sample variance. Compared
to a sample size of 10, the shape of the distribution now looks more symmetrical
and closer to normal. Second, similar to the distribution of the means, there is
much less variation in values: all values are now closer to the true value of 0.14.
And not only that: it also seems that the bias is less, in that the blue and the
red lines are closer to each other.
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Figure 2.5: A histogram of 10,000 sample variances when the sample size equals
100.

Here we see three phenomena. The first is that if you have a statistic like a mean
or a variance and you compute that statistic on the basis of randomly picked
sample data, the distribution of that statistic (i.e., the sampling distribution)
will generally look like a normal distribution if sample size is large enough.

It can actually be proven that the distribution of the mean will become a normal
distribution if sample size becomes large enough. This phenomenon is known
as the Central Limit Theorem. It is true for any population, no matter what
distribution it has.1 Thus, this means that height in elephants itself does not
have to be normally distributed, but the sampling distribution of the sample
mean will be normal for large sample sizes (e.g., 100 elephants).

The second phenomenon is that the sample mean is an unbiased estimator of the
population mean, but that the variance of the sample data is not an unbiased

1This is true except for the case that you have fewer than 3 data points and for a few
special cases, that you don’t need to know about in this book.
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estimator of the population variance. Let’s denote the variance of the sample
data as 𝑆2. Remember from Chapter 1 that the formula for the variance is

𝑆2 = Var(𝑌 ) = Σ(𝑦𝑖 − ̄𝑦)2

𝑛

We saw that the bias was large for small sample size and small for larger sample
size. So somehow we need to correct for sample size. It turns out that the
correction is a multiplication with 𝑛

𝑛−1 :

𝑠2 = 𝑛
𝑛 − 1𝑆2

where 𝑠2 is the corrected estimator of population variance, 𝑆2 is the variance
observed in the sample, and 𝑛 is sample size. When we rewrite this formula and
cancel out 𝑛, we get a more direct way to compute 𝑠2:

𝑠2 = Σ(𝑦𝑖 − ̄𝑦)2

𝑛 − 1

Thus, if we are interested to know the variance or the standard deviation in
the population, and we only have sample data, it is better to take the sums of
squares and divide by 𝑛 − 1, and not by 𝑛.

𝜎2 = 𝑠2 = Σ(𝑦𝑖 − ̄𝑦)2

𝑛 − 1

where 𝜎2 (pronounced ‘sigma-squared hat’) signifies the estimator of the
population variance (the little hat stands for estimator or estimated value).

The third phenomenon is that if sample size increases, the variability of the
sample statistic gets smaller and smaller: the values of the sample means and
the sample variances get closer to their respective population values. We will
delve deeper into this phenomenon in the next section.
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Overview

• Central Limit Theorem: says that the sampling distribution of
the sample mean will be normally distributed for infinitely large
sample sizes.

• estimator: a quantity that you compute based on sample data,
that you hope says something about a quantity in the population
data. For instance, you can use the sample mean and hope that
it is close to the population mean. You use the sample mean as
an approximation of the population mean.

• estimate: the actual value that you get when computing an
estimator. For instance, we can use the sample mean as the
estimator of the population mean. The formula for the sample
mean is Σ𝑦𝑖

𝑛 so this formula is our estimator. Based on a sample
of 10 values, you might get a sample mean of 3.5. Then 3.5 is the
estimate for the population mean.

• unbiased estimator: an estimator that has the population value
as expected value (the mean that you get when averaging over
many samples). For example, the sample mean is an unbiased
estimator for the population mean because if you draw an infinite
number of samples, the mean of the sample means will be equal
to the population mean.

• biased estimator: an estimator that does not have the
population value as expected value. For example, the variance
calculated using a sample is a biased estimator for the population
variance because if you draw an infinite number of samples, the
mean of the variances will not be equal to the population variance.

• 𝑆2: the variance of the values in the sample, computed by taking
the sum of squares and divide by sample size 𝑛.

• 𝑠2: an unbiased estimator for the population variance, often
confusingly called the ‘sample variance’, computed by taking the
sum of squares and divide by 𝑛 − 1.

2.4 The standard error

In Chapter 1 we saw that a measure for spread and variability was the variance.
In the previous section we saw that with sample size 100, the variability of the
sample mean was much lower than with sample size 10. Let’s look at this more
closely.
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When we look at the sampling distribution in Figure 2.2 with sample size 10,
we see that the means lie between 2.80 and 3.71. If we compute the standard
deviation of the sample means, we obtain a value of 0.118. This standard
deviation of the sample means is technically called the standard error, in this
case the standard error of the mean. It is a measure of how uncertain we are
about a population mean when we only have sample data to go on. Think about
this: why would we associate a large standard error with very little certainty?
In this case we have only 10 data points for each sample, and it turns out that
the standard error of the mean is a function of both the sample size 𝑛 and the
population variance 𝜎2.

𝜎 ̄𝑦 = √𝜎2

𝑛
Here, the population variance equals 0.14 and sample size equals 10, so the 𝜎 ̄𝑦

equals √ 0.14
10 = 0.118, close to our observed value. If we fill in the formula for

a sample size of 100, we obtain a value of 0.037. This is a much smaller value
for the spread and this is indeed observed in Figure 2.4. Figure 2.6 shows the
standard error of the mean for all sample sizes between 1 and 200.
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Figure 2.6: Relationship between sample size and the standard error of the
mean, when the population variance equals 0.14.

In sum, the standard error of the mean is the standard deviation of the sample
means, and serves as a measure of the uncertainty about the population mean.
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The larger the sample size, the smaller the standard error, the closer a sample
mean is expected to be around the population mean, the more certain we can
be about the population mean.

Similar to the standard error of the mean, we can compute the standard error of
the variance. This is more complicated – especially if the population distribution
is not normal – and we do not treat it here. Software can do the computations
for you, and later in this book you will see examples of the standard error of
the variance.

Summarising the above: when we have a population mean, we usually see that
the sample mean is close to it, especially for large sample sizes. If you do not
understand this yet, go back before you continue reading.

The larger the sample size, the closer the sample means are to the population
means. If you turn this around, if you don’t know the population mean, you
can use a large sample size, calculate the sample mean, and then you have a
fairly good estimate for the population. This is useful for our problem of the
LH levels, where we have 48 measures. The mean of the 48 measurements could
be a good approximation of the mean LH level in general.

As an indication of how close you are to the population mean, the standard
error can be used. The standard error of the mean is the standard deviation of
the sampling distribution of the sample mean. The smaller the standard error,
the more confident you can be that your sample mean is close to the population
mean. In the next section, we look at this more closely. If we use our sample
mean as our best guess for the population mean, what would be a sensible range
of other possible values for the population mean, given the standard error?

Overview

• standard error of the mean: the standard deviation of the
distribution of sample means (the sampling distribution of the
sample mean). Says something about how spread out the values of
the sample means are. It can be used to quantify the uncertainty
about the population mean when we only have the sample mean
to go on.

• standard error of the variance: the standard deviation of
the sampling distribution of the sample variance. Says something
about how spread out the values of the sample variances are. It
can be used to quantify the uncertainty about the population
variance when we only have the variance of the sample values to
go on.
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2.5 Confidence intervals

If we take a sample mean as our best guess of the population mean, we know
that we are probably a little bit off. If we have a large standard error we know
that the population mean could be very different from our best guess, and if we
have a small standard error we know that the true population mean is pretty
close to our best guess, but could we quantify this in a better way? Could we
give a range of plausible values for the population mean?

In order to do that, let’s go back to the elephants: the true population mean is
3.25 m with variance 0.14. What would possible values of sample means look
like if sample size is 4? Of course it would look like the sampling distribution
of the sample mean with a sample size of 4. Its mean would be the population
mean of 3.25 and its standard deviation would be equivalent to the standard
error, computed as a function of the population variance and sample size, in our
case √ 0.14

4 = 0.19. Now imagine that for a bunch of samples we compute the
sample means. We know that the means for large sample sizes will look more
or less like a normal distribution, but how about for a small sample size like
𝑛 = 4? If it would look like a normal distribution too, then we could use the
knowledge about the standard normal distribution to say something about the
distribution of the sample means.

For the moment, let’s assume the sample size is not 4, but 4000. From the
Central Limit Theorem we know that the distribution of sample means is almost
identical to a normal distribution, so let’s assume it is normal. From the normal
distribution, we know that 68% of the observations lies between 1 standard
deviation below and 1 standard deviation above the mean (see Section 1.19
and Figure 1.9). If we would therefore standardise our sample means, we
could say something about their distribution given the standard error, since
the standard error is the standard deviation of the sampling distribution. Thus,
if the sampling distribution looks normal, then we know that 68% of the sample
means lies between one standard error below the population mean and one
standard error above the population mean.

So suppose we take a large number of samples from the population, compute
means and variances for each sample, so that we can compute standardised
scores. Remember from Chapter 1 that a standardised score is obtained by
subtracting an observed score from the mean and divide by the standard
deviation:

𝑧𝑦 = 𝑦 − ̄𝑦
𝑠𝑑𝑦

If we apply standardisation of the sample means, we get the following: for a
given sample mean ̄𝑦 we subtract the population mean 𝜇 and divide by the
standard deviation of the sample means (the standard error):
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𝑧 ̄𝑦 = ̄𝑦 − 𝜇
𝜎 ̄𝑦

If we then have a bunch of standardised sample means, their distribution should
have a standard normal distribution with mean 0 and variance 1. We know that
for this standard normal distribution, 68% of the values lie between -1 and +1,
meaning that 68% of the values in a non-standardised situation lie between -1
and +1 standard deviations from the mean (see Section 1.19). That implies that
68% of the sample means lie between -1 and +1 standard deviations (standard
errors!) from the population mean. Thus, 68% of the sample means lie between
−1 × 𝜎 ̄𝑦 and +1 × 𝜎 ̄𝑦 from the population mean 𝜇. If we have sample size 4000,
𝜎 ̄𝑦 is equal to √ 0.14

4000 = 0.006 and 𝜇 = 3.25, so that 68% of the sample means
lie between 3.244 and 3.256.

This means that we also know that 100 − 68 = 32% of the sample means lie
farther away from the mean: that it occurs in only 32% of the samples that
a sample mean is smaller than 3.244 and larger than 3.256. Taking this a bit
further, since we know that 95% of the values in a standard normal distribution
lie between -1.96 and +1.96 (see Section 1.19), we know that it happens in only
5% of the samples that the sample mean is smaller than 3.25 − 1.96 × √ 0.14

4000 =
3.238 or larger than 3.25 + 1.96 × √ 0.14

4000 = 3.262. Another way of putting this
is that it happens in only 95% of the samples that a sample mean is at most
1.96 × √ 0.14

4000 away from the population mean 3.25. This distance of 1.96 times
the standard error is called the margin of error (MoE). Here we focus on the
margin of error that is based on 95% observations of the observations seen in
the normal distribution:

𝑀𝑜𝐸0.95 = 𝑧0.95 × 𝜎 ̄𝑦 = 1.96 × 𝜎 ̄𝑦

where 𝑧0.95 is the standardised value 𝑧 for which holds that 95% of the values
are between 𝜇 − 𝑧 and 𝜇 + 𝑧 (i.e., 1.96).

Knowing the population mean, we know that it is very improbable (5%) that
a sample mean is farther away from the population mean than this margin of
error. The next step is tricky, so pay close attention. If we know the population
mean, we can construct an interval based on the margin of error for where we
expect sample means to lie. In the above case, knowing that the population
mean is 3.25, and we use an MoE based on 95%, we expect that 95% of the
sample means will lie between 3.25 − MoE and 3.25 + MoE.

But what if we don’t know the population mean, but do know the sample mean?
We could use the same interval but centred around the sample mean instead of
the population mean. Thus, we have a 95% interval if we take the sample mean
as the centre and the MoE around it. Suppose that we randomly draw 4000
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elephants and we obtain a sample mean of ̄𝑦 = 3.26, then we construct the 95%
interval as running from ̄𝑦 − 𝑀𝑜𝐸 = 3.26 − 𝑀𝑜𝐸 to ̄𝑦 + 𝑀𝑜𝐸 = 3.26 + 𝑀𝑜𝐸.
The margin of error is based on the standard error, which is in turn dependent
on the population variance. If we don’t know that, we have to estimate it from
the sample. So suppose we find a sample variance 𝑠2 = 0.15, we get the 95%
interval from ̄𝑦−𝑀𝑜𝐸 = 3.26−1.96×√ 0.15

4000 to ̄𝑦+𝑀𝑜𝐸 = 3.26+1.96×√ 0.15
4000 .

Such an interval, centred around the sample mean, is called a confidence interval.
Because it is based on 95% of the sampling distribution (centred around the
population mean) it is called a 95% confidence interval.
One way of thinking about this interval is that it represents 95% of the sample
means had the population mean been equal to the sample mean. For example,
a 95% interval around the sample mean of 3.26 represents 95% of the sample
means that you would get if you would take many random samples from a
population distribution with mean 3.26: the middle 95% of the sampling
distribution for a population mean of 3.26.
A 95% confidence interval contains 95% of the sample means had the population
mean been equal to the sample mean. Its construction is based on the estimated
sampling distribution of the sample mean.
The idea is illustrated in Figure 2.7. There you see two sampling distributions:
one for if the population mean is 3.25 (blue) and one for if the population mean
is 3.26 (black). Both are normal distributions because sample size is large, and
both have the same standard error that can be estimated using the sample
variance. Whatever the true population mean, we can estimate the margin of
error that goes with 95% of the sampling distribution. We can then construct
an interval that stretches the length of about twice (i.e., 1.96) the margin of
error around any value. We can do that for the real population mean (in blue),
but the problem that we face in practice is that we don’t know the population
mean. We do know the sample mean, and if we centre the interval around that
value, we get what is called the 95% confidence interval. We see that it ranges
from 3.248 to 3.272. This we can use as a range of plausible values for the
unknown population mean. With some level of ‘confidence’ we can say that the
population mean is somewhere in this interval.
Note that when we say: the 95% confidence interval runs from 3.248 to 3.272, we
cannot say, we are 95% sure that the population mean is in there. ‘Confidence’
is not the same as probability. We’ll talk about this in a later section. First,
we look at the situation where sample size is small so that we cannot use the
Central Limit Theorem.

2.6 The 𝑡-statistic

In the previous section, we constructed a 95% confidence interval based on the
standard normal distribution. We know from the standard normal distribution

91



MoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoE MoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoEMoE

0

20

40

60

3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29
Height in m

de
ns

ity

Figure 2.7: Illustration of the construction of a 95% confidence interval. Suppose
we find a sample mean of 3.26 and a sample variance of 0.15, with 𝑛 = 4000. The
black curve represents the sampling distribution if the population mean would
be 3.26 and a variance of 0.15. In reality, we don’t know the population mean,
it could be 3.25 or any other value. The sampling distribution for 3.25 is shown
by the blue curve. Whatever the case, the length of an interval that contains
95% of the sample means is always the same: twice the margin of error. This
interval centred around the sample mean, is called the 95% confidence interval.
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that 95% of the values are between -1.96 and +1.96. We used the standard
normal distribution because the sampling distribution will look normal if sample
size is large. We took the example of a sample size of 4000, and then this
approach works fine, but remember that the actual sample size was 4. What if
sample size is not large? Let’s see what the sampling distribution looks like in
that case.
Remember from the previous section that we standardised the sample means.

𝑧 ̄𝑦 = ̄𝑦 − 𝜇
𝜎 ̄𝑦

and that 𝑧 ̄𝑦 has a standard normal distribution. But, this only works if we
have a good estimate of 𝜎 ̄𝑦, the standard error. If sample size is limited, our
estimate is not perfect. You can probably imagine that if you take one sample
of 4 randomly selected elephants, you get one value for the estimated standard
error (√ 𝑠2

𝑛 ), and if you take another sample of 4 elephants, you get a slightly
different value for the estimated standard error. Because we do not always have
a good estimate for 𝜎 ̄𝑦, the standardisation becomes a bit more tricky. Let’s
call the standardised sample mean 𝑡 instead of 𝑧:

𝑡 ̄𝑦𝑖
= ̄𝑦𝑖 − 𝜇

√ 𝑠2
𝑖

𝑛

Thus, a standardised sample mean for sample 𝑖, will be constructed using an
estimate for the standard error by computing the sample variance 𝑠2 for sample
𝑖.
If you standardise every sample mean, each time using a slighly different
standard deviation, and you plot a histogram of the 𝑡-values, you do not get a
standard normal distribution, but a slightly different one.
In summary: if you know the standard error (because you know the population
variance), the standardised sample means will show a normal distribution. If
you don’t know the standard error, you have to estimate it based on the sample
variance. If sample size is really large, you can estimate the population variance
pretty well, and the sample variances will be very similar to each other. In that
case, the sampling distribution will look very much like a normal distribution.
But if sample size is relatively small, each sample will show a different sample
variance, resulting in different standard error estimates. If you standardise each
sample mean with a different standard error, the sampling distribution will
not look normal. This distribution is called a 𝑡-distribution. The difference
between this distribution and the standard normal distribution is shown in
Figure 2.8. The blue curve is the standard normal distribution, the red curve is
the distribution we get if we have sample size 4 and we compute 𝑡 ̄𝑦𝑖

= ̄𝑦𝑖−𝜇
√ 𝑠2

𝑖
𝑛

for

many different samples.
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Figure 2.8: Distribution of *t* with sample size 4, compared with the standard
normal distribution.

When you compare the two distributions, you see that compared to the normal
curve, there are fewer observations around 0 for the 𝑡-distribution: the density
around 0 is lower for the red curve than for the blue curve. That’s because
there are more observations far away from 0: in the tails of the distributions,
you see a higher density for the red curve (𝑡) than for the blue curve (normal).
They call this phenomenon ‘heavy-tailed’: relatively more observations in the
tails than around the mean.

That the 𝑡-distribution is heavy-tailed has important implications. From the
standard normal distribution, we know that 5% of the observations lie more
than 1.96 away from the mean. But since there are relatively more observations
in the tails of the 𝑡-distribution, 5% of the values lie farther away from the
mean than 1.96. This is illustrated in Figure 2.9. If we want to construct a 95%
confidence interval, we can therefore no longer use the 1.96 value.

With this 𝑡-distribution, 95% of the observations lie between -3.18 and +3.18.
Of course, that is in the standardised situation. If we move back to our scale
of elephant heights with a sample mean of 3.26, we have to transform this back
to elephant heights. So -3.18 times the standard error away from the mean of
3.26, is equal to 3.26 − 3.18 × √ 0.15

4 = 2.64, and +3.18 times the standard

error away from the mean of 3.26, is equal to 3.26 + 3.18 × √ 0.15
4 = 3.88.

So the 95% interval runs from 2.64 to 3.88. This interval is called the 95%
confidence interval, because 95% of the sample means will lie in this interval, if
the population mean would be 3.26.

Notice that the interval includes the population mean of 3.25. If we would
interpret this interval around 3.26 as containing plausible values for the
population mean, we see that in this case, this is a fair conclusion, because the
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Figure 2.9: Distribution of *t* with sample size 4, compared with the standard
normal distribution. Shaded areas represent 2.5% of the respective distribution.

true value 3.25 lies within this interval.

2.7 Interpreting confidence intervals

The interpretation of confidence intervals is very difficult, and it often goes
wrong, even in many textbooks on the matter.

One thing that should be very clear is that a confidence interval is constructed
as if you know the population mean and variance, which, of course, you don’t.
We assume that the population mean is a certain value, say 𝜇 = 𝑚0, we assume
that the standard error of the mean is equal to 𝜎 ̄𝑦, and we know that if we
would look at many many samples and compute standardised sample means
(by using sample means ̄𝑦 and sample variances 𝑠2), their distribution would be
a 𝑡-distribution. Based on that 𝑡-distribution, we know in which interval 95% of
the standardised sample means would lie and we use that to compute the margin
of error and to construct an interval around the sample mean that we actually
obtain. A lot of this reasoning is imagination: imagining that you know the
population mean and the population variance. Then you imagine what sample
means would be reasonable to find and what sample variances. But of course,
it’s in fact the opposite: you only know the mean and variance of one sample
and you want to know what are plausible values for the population mean.

You have to bear this reversal in mind when interpreting the 95% confidence
interval around a sample mean. Many people state the following: with 95%
probability, the 95% confidence interval contains the population mean. This
is wrong. It is actually the opposite: the 95% interval around the population
mean contains 95% of the sample means.
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If you know the population mean 𝜇, then 95% of the confidence intervals that
you construct around the sample means that you get from random sampling
will contain the mean 𝜇. This is illustrated in Figure 2.10. Suppose we take
𝜇 = 3.25. Then if we imagine that we take 100 random samples from this
population distribution, we can calculate 100 sample means and 100 sample
variances. If we then construct 100 confidence intervals around these 100 sample
means, we obtain the confidence intervals displayed in Figure 2.10. We see that
95 of these intervals contain the value 3.25, and 5 of them don’t: only in samples
1, 15, 20, 28 and 36, the interval does not contain 3.25.

It can be mathematically shown that given a certain population mean, when
taking many, many samples and constructing 95% confidence intervals, you can
expect 95% of them will contain that population mean. That does not mean
however that given a sample mean with a certain 95% interval, that interval
contains the population mean with a probability of 95%. It only means that were
this procedure of constructing confidence intervals to be repeated on numerous
samples, the fraction of calculated confidence intervals that contain the true
population mean would tend toward 95%. If you only do it once (you obtain a
sample mean and you calculate the 95% confidence interval) it either contains
the population mean or it doesn’t: you cannot calculate a probability for this.
In the statistical framework that we use in this book, one can only say something
about the probability of data occurring given some population values:

Given that the population value is 3.25, and if you take many, many independent
samples from the population, you can expect that 95% of the confidence intervals
constructed based on resulting sample means will contain that population value
of 3.25.

Using this insight, we therefore conclude that the fact we see the value of 3.25
in our 95% confidence interval around 2.9, gives us some reason to believe
(‘confidence’) that 3.25 could also be a plausible candidate for the population
mean.

Summarising, if we find a sample mean of say 2.9, we know that 2.9 is
a reasonable guess for the population mean (it’s an unbiased estimator).
Moreover, if we construct a 95% confidence interval around this sample mean,
this interval contains other plausable candidates for the population mean.
However, it might be possible that the true population mean is not included.

2.8 𝑡-distributions and degrees of freedom

The standardised deviation of a sample mean from a hypothesised population
mean has a 𝑡-distribution. This happens when the population variance is not
known, and we therefore have to estimate the standard error based on the
sample variance. Because of this uncertainty about the population variance and
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consequently the standard error, the standardised score does not have a normal
distribution but a 𝑡-distribution.
In the previous section we saw the distribution for the case that we had a sample
size of 4. With such a small sample size, we have a very inaccurate estimate
of the population variance. The sample variance 𝑠2 will be very different for
every new sample of size 4. But if sample size increases, our estimates for the
population variance will become more precise, and they will show less variability.
This results in the sampling distribution to become less heavy-tailed, until it
closely resembles the normal distribution for very large sample sizes.
This means that the shape of the sampling distribution is a 𝑡-distribution but
that the shape of this 𝑡-distribution depends on sample size. More precisely,
the shape of the 𝑡-distribution depends on its so-called degrees of freedom
(explained below). Degrees of freedom are directly linked to the sample size.
Degrees of freedom can be as small as 1, very large like 250, or infinitely
larger. The 𝑡-distribution with many degrees of freedom like 2500, is practically
indistinguishable from a normal distribution. However for a relatively low
number of degrees of freedom, the shape is very different: relatively more
observations are in the tails of the distribution and less so in the middle,
compared to the normal distribution, see Figure 2.11.
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Figure 2.11: Difference in the shapes of the standard normal distribution and
*t*-distributions with 1, 3 and 9 degrees of freedom.

The shape of the 𝑡-distribution is determined by its degrees of freedom: the
higher the degrees of freedom, the more it resembles the normal distribution.
So which 𝑡-distribution do we have to use when we are dealing with sample
means and we want to infer something about the population mean, and what
are degrees of freedom? As stated already above, the degrees of freedom is
directly related to sample size: sample size determines the degrees of freedom
of the 𝑡-distribution that we need. Degrees of freedom stands for the amount
of information that we have and of course that depends on how many data
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values we have. In its most general case, the number of degrees of freedom is
the number of values in the final calculation of a statistic that are free to vary.
More specifically in our case, the degrees of freedom for a statistic like 𝑡 are
equal to the number of independent scores that go into the estimate, minus
the number of parameters used as intermediate steps in the estimation of the
parameter itself.

In the example above we had information about 4 elephants (4 values), so our
information content is 4. However, remember that when we construct our 𝑡-
value, we have to first compute the sample mean in order to compute the sample
variance 𝑠2. But, suppose you know the sample mean, you don’t have to know
all the 4 values anymore. Suppose the heights of the first three elephants are
3.24, 3.25 and 3.26, and someone computes the mean of all four elephants as
3.25, then you automatically know that the fourth elephant has a height of 3.25
(why?). Thus, once you know the mean of 𝑛 elephants, you can give imaginary
values for the heights of only 𝑛 − 1 elephants, because given the other heights
and the mean, it is already determined.

The same is true for the 𝑡-statistic: once you know 3 elephant heights and
statistic 𝑡, then you know the height of the fourth elephant automatically.

Because we assume the mean in our computation of 𝑠2 (we fix it) we loose one
information point, leaving 3. The shape of the standardised scores of fictitious
new samples then looks like a 𝑡-distribution with 3 degrees of freedom.

Generally, if we have a sample size of 𝑛 and the population variance is unknown,
the shape of the standardised sample means (i.e., 𝑡-scores) of fictitious new
samples is that of a 𝑡-distribution with 𝑛 − 1 degrees of freedom.

2.9 Constructing confidence intervals

In previous sections we discussed the 95% confidence interval, because it is the
most widely used interval. But other intervals are also seen, for instance 99%
confidence intervals or 90% confidence intervals. A 99% confidence interval
is wider than a 95% confidence interval, which in turn is wider than a 90%
confidence interval. The width of the confidence interval also depends on the
sample size. Here we show how to construct 90%, 99% and other intervals, for
different sample sizes.

As we discussed for the 95% interval above, we looked at the 𝑡-distribution of
3 degrees of freedom because we had a sample size of 4 elephants. Suppose
we have a sample size of 200, then we would have to look at a 𝑡-distribution of
200−1 = 199 degrees of freedom. Table 2.2 shows information about a couple of
𝑡-distributions with different degrees of freedom. In the first column, cumulative
probabilities are given, and the next column gives the respective quantiles. For
instance, the column ‘norm’ shows that a cumulative proportion of 0.025 is
associated with a quantile of -1.96 for the standard normal distribution. This
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Table 2.2: Quantiles for the standard normal and several 𝑡-distributions with
varying degrees of freedom.

$t$-distribution
probs norm t199 t99 t9 t5 t3
0.0005 -3.29 -3.34 -3.39 -4.78 -6.87 -12.92
0.0010 -3.09 -3.13 -3.17 -4.30 -5.89 -10.21
0.0050 -2.58 -2.60 -2.63 -3.25 -4.03 -5.84
0.0100 -2.33 -2.35 -2.36 -2.82 -3.36 -4.54
0.0250 -1.96 -1.97 -1.98 -2.26 -2.57 -3.18
0.0500 -1.64 -1.65 -1.66 -1.83 -2.02 -2.35
0.1000 -1.28 -1.29 -1.29 -1.38 -1.48 -1.64
0.9000 1.28 1.29 1.29 1.38 1.48 1.64
0.9500 1.64 1.65 1.66 1.83 2.02 2.35
0.9750 1.96 1.97 1.98 2.26 2.57 3.18
0.9900 2.33 2.35 2.36 2.82 3.36 4.54
0.9950 2.58 2.60 2.63 3.25 4.03 5.84
0.9990 3.09 3.13 3.17 4.30 5.89 10.21
0.9995 3.29 3.34 3.39 4.78 6.87 12.92

means that for the normal distribution, 2.5% of the observations are smaller
than -1.96. In the same column we see that the quantile 1.96 is associated with
a cumulative probability of 0.975. This means that 97.5% of the observations in
a normal distribution are smaller than 1.96. This implies that 100% - 97.5% =
2.5% of the observations are larger than 1.96. Thus, if 2.5% of the observations
are larger than 1.96 and 2.5% of the observations are smaller than -1.96, then
5% of the observations are outside the interval (-1.96, 1.96), and 95% are inside
this interval.

From Table 2.2, we see that for such a 95% interval, we have to use the values
-1.96 and 1.96 for the normal distribution, but for the 𝑡-distribution we have to
use other values, depending on the degrees of freedom. We see that for 3 degrees
of freedom, we have to use the values -3.18 and 3.18, and for 199 degrees of
freedom the values -1.97 and +1.97. This means that for a 𝑡-distribution with
3 degrees of freedom, 95% of the observations lie in the interval from -3.18 to
3.18. Similarly, for a 𝑡-distribution with 199 degrees of freedom, the values for
cumulative probabilities 0.025 and 0.975 are -1.97 and 1.97 respectively, so we
can conclude that 95% of the observations lie in the interval from -1.97 to 1.97.

Now instead of looking at 95% intervals for the 𝑡-distribution, let’s try to
construct a 90% confidence interval around an observed sample mean. With
a 90% confidence interval, 10% lies outside the interval. We can divide that
equally to 5% on the low side and 5% on the high side. We therefore have to
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look at cumulative probabilities 0.05 and 0.95 in Table 2.2. The corresponding
quantiles for the normal distribution are -1.64 and 1.64, so we can say that for
the normal distribution, 90% of the values lie in the interval (-1.64, 1.64). For
a 𝑡-distribution with 9 degrees of freedom, we see that the corresponding values
are -1.83 and 1.83. Thus we conclude that with a 𝑡-distribution with 9 degrees
of freedom, 90% of the observed values lie in the interval (-1.83, 1.83).

However, now note that we are not interested in the values of the 𝑡-distribution,
but in likely values for the population mean. The standard normal and the
𝑡-distribution are standardised distributions. In order to get values for the
confidence interval around the sample mean, we have to unstandardise the
values. The value of 1.83 above means ”1.83 standard errors away from the mean
(the sample mean)”. So suppose we find a sample mean of 3, with a standard
error of 0.5, then we say that a 90% confidence interval for the population mean
runs from 3 − 1.83 × 0.5 to 3 + 1.83 × 0.5, so from 2.09 to 3.92.

Follow these steps to compute a 𝑥% confidence interval:

Constructing confidence intervals

1. Compute the sample mean ̄𝑦.
2. Estimate the population variance 𝑠2 = Σ𝑖(𝑦𝑖− ̄𝑦)

𝑛−1 .
3. Estimate the standard error 𝜎̂ ̄𝑦 = √ 𝑠2

𝑛 .
4. Compute degrees of freedom as 𝑛 − 1.
5. Look up 𝑡 1−𝑥

2
. Take the 𝑡-distribution with the right number

of degrees of freedom and look for the critical 𝑡-value for the
confidence interval: if 𝑥 is the confidence level you want, then
look for quantile 1−𝑥

2 . Then take its absolute value. That’s your
𝑡 1−𝑥

2
.

6. Compute margin of error (MoE) as MoE = 𝑡 1−𝑥
2

× 𝜎̂ ̄𝑦.
7. Subtract and sum the sample mean with the margin of error:

( ̄𝑦 − MoE, ̄𝑦 + MoE).

Note that for a large number of degrees of freedom, the values are very close to
those of the standard normal.

2.10 Obtaining a confidence interval for a
population mean in R

Suppose we have values on miles per gallon (mpg) in a sample of 32 cars, and we
wish to construct a 99% confidence interval for the population mean. We can
do that in the following manner. We take all the mpg values from the mtcars
data set, and set our confidence level to 0.99 in the following manner:
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mtcars$mpg %>% mean()

## [1] 20.09062

t.test(mtcars$mpg, conf.level = 0.99)$conf.int

## [1] 17.16706 23.01419
## attr(,"conf.level")
## [1] 0.99

It shows that the 99% confidence interval runs from 17.2 to 23.0. In a report
we can state:

”In a our sample of 32 cars, we found a mean mileage of 20.1 miles
per gallon. The 99% confidence interval for the mean miles per gallon
in the population of cars runs from 17.2 to 23.0 miles per gallon.”

or, somewhat shorter:

”Based on our sample of 32 cars, we found an estimate for the mean
mileage in the population of 20.1 miles per gallon (99% CI: 17.2,
23.0).”

The t.test() function does more than simply constructing confidence intervals.
That is the topic of the next section.

2.11 Null-hypothesis testing

Suppose a professor of biology claims, based on years of measuring the height
of elephants in Tanzania, that the mean height of elephants in Tanzania is
3.38 m. Suppose that you come up with data on a relatively small number of
South-African elephants and the professor would like to know whether the two
groups of elephants have the same population mean. Do both the Tanzanian
and South-African populations have the same mean of 3.38, or is there perhaps
a difference in the means? A difference in means could indicate that there are
genetic differences between the two elephant populations. The professor would
like to base her conclusion on your sample of data, and you assume that the
professor is right in that the population mean of Tanzanian elephants is 3.38 m.

One way of addressing a question like this is to look at the confidence interval
for the South-African mean. Suppose you construct a 95% confidence interval.
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Based on a sample mean of 3.27, a sample variance 𝑠2 of 0.14 and a sample
size of 40, you calculate that the interval runs from 3.15 to 3.39. Based on that
interval, you can conclude that 3.38 is a reasonable value for the population
mean, and that it could well be that the both the Tanzanian and South-African
populations have the same mean height of 3.38 m.

However, as we have seen in the previous section, there are many confidence
intervals that we could compute. If instead of the 95% confidence interval, we
would compute a 90% confidence interval, we would end up with an interval
that runs from 3.17 to 3.37. In that case, the Tanzanian population mean is
no longer included in the confidence interval for the South-African population
mean, and we’d have to conclude that the populations have different means.

What interval to choose? Especially if you have questions like ”Do the two
populations have the same mean” and you want to have a clear yes or no answer,
then null-hypothesis testing might be a solution. With null-hypothesis testing, a
null-hypothesis is stated, after which you decide based on sample data whether
or not the evidence is strong enough to reject that null-hypothesis. In our
example, the null-hypothesis is that the South-African population mean has the
value 3.38 (the Tanzanian mean). We write that as follows:

𝐻0 ∶ 𝜇𝑆𝐴 = 3.38

We then look at the data on South-African elephants that could give us evidence
that is either in line with this hypothesis or not. If it is not, we say that we
reject the null-hypothesis.

The objective of null-hypothesis testing is that we either reject the null-
hypothesis, or not. This is done using the data from a sample. In the
null-hypothesis procedure, we simply assume that the null-hypothesis is true,
and compare the sample data with data that would result if the null-hypothesis
were true.

So, let’s assume the null-hypothesis is true. In our case that means that the
mean height of all South-African elephants is equal to that of all Tanzanian
elephants, namely 3.38 m. Next, we compare our actual observed data with
data that would theoretically result from a population mean of 3.38. What
would sample data theoretically look like if the population mean is 3.38? In
the previous sections, we learned what possible sample means would look like.
Thus, let’s focus on the sample mean.2

Based on what we learned about the sampling distribution of the sample mean,
we know that possible values for the sample mean come from this distribution.

2The sample mean is called a sufficient statistic for the population mean. That means, if
you want to know something about the population mean, the only information you need to
get from the sample data is the mean of the sample values. Knowing the exact values does
not give you extra information: the sample mean suffices. The proof for this is beyond this
book.
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It is more or less a normal distribution with mean 3.38, but what the variance
is (the standard error), we don’t know. We’d have to take a guess, based on
the sample data that we have. Based on the sample data, we could compute
the sample variance 𝑠2, and then estimate the standard error as 𝜎̂ ̄𝑦 = √ 𝑠2

𝑛 .
However, as we saw earlier, because we have to estimate the standard error, the
sample means are no longer normally distributed, but 𝑡-distributed.

Suppose we observe 40 South-African elephants, and we obtain a sample mean
of 3.27 and a sample variance 𝑠2 of 0.14. The hypothesised population mean
is 3.38. We know that the sampling distribution is a 𝑡-distribution because
we do not know the population variance. To know the shape of the sampling
distribution, we need three things: the mean of the sampling distribution
(assuming the population mean is 3.38), the standard deviation (or variance)
of the distribution, and the exact shape of the 𝑡-distribution (the degrees of
freedom). The mean is easy: that is equal to the hypothesised population mean
of 3.38 (why?). The standard deviation (standard error) is more difficult, but
we can use the sample data to estimate it. We compute it using the sample
variance: 𝜎̂ ̄𝑦 = √ 𝑠2

𝑛 = 0.059. And the last bit is easy: the degrees of freedom
is simply sample size minus 1: 40 − 1 = 39.

We plot this sampling distribution of the sample mean in Figure 2.12. This
figure tells us that if the null-hypothesis is really true and that the South-
African mean height is 3.38, and we would take many different random samples
of 40 elephants, we would see only sample means between 3.20 and 3.55. Other
values are in fact possible, but very unlikely. But how likely is our observed
sample mean of 3.27: do we feel that it is a likely value to find if the population
mean is 3.38, or is it rather unlikely?
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Figure 2.12: The sampling distribution under the null-hypothesis that the
South-African population mean is 3.38. The blue line represents the sample
mean for our observed sample mean of 3.27.
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What do you think? Think this over for a bit before you continue to read.

In fact, every unique value for a sample mean is rather unlikely. If the population
mean is 3.38, it will be very improbable that you will find a sample mean of
exactly 3.38, because by sheer chance it could also be 3.39, or 3.40 or 3.37. But
relatively speaking, those values are all more likely to find than more deviant
values. The density curve tells you that values around 3.38 are more likely than
values around 3.27 or 3.50, because the density is higher around the value of
3.38 than around those other values.

What to do?

The solution is to define regions for sample means where we think the sample
mean is no longer probable under the null-hypothesis, and a region where it is
probable enough to believe that the null-hypothesis could be true.

For example, we could define an acceptance region where 95% of the sample
means would fall if the null-hypothesis is true, and a rejection region where only
5% of the sample means would fall if the null-hypothesis is true. Let’s put the
rejection region in the tails of the distribution, where the most extreme values
can be found (farthest away from the mean). We put half of the rejection region
in the left tail and half of it in the right tail of the distribution, so that we have
two regions that each covers 2.5% of the sampling distribution. These regions
are displayed in Figure 2.13. The red ones are the rejection regions, and the
green one is the acceptance region (covering 95% of the area).

Why 5%, why not 10% or 1%? Good question. It is just something that is
accepted in a certain group of scientists. In the social and behavioural sciences,
researchers feel that 5% is a small enough chance. In contrast, in quantum
mechanics, researchers feel that 0.000057% is a small enough chance. Both
values are completely arbitrary. We’ll dive deeper into this arbitrary chance
level in a later section. For now, we continue to use 5%.

From Figure 2.13 we see that the sample mean that we found for your 40 South-
African elephants (3.27) does not lie in the red rejection region. We see that
3.27 lies well within the green section where we decide that sample means are
likely to occur when the population is 3.38. Because this is likely, we think that
the null-hypothesis is plausible: if the population mean is 3.38, it is plausible to
expect a sample mean of 3.27, because in 95% of random samples we would see
a sample mean between 3.255 and 3.500. The value 3.27 is a very reasonable
value and we therefore do not reject the null-hypothesis. We conclude therefore
that it could well be that both Tanzanian and South-African elephants have
the same average height of 3.38, that is, we do not have any evidence that the
population mean is not 3.38.

This is the core of null-hypothesis testing for a population mean: 1) you
determine a null-hypothesis that states that the population mean has a certain
value, 2) you figure out what kind of sample means you would get if the
population mean would have that value, 3) you check whether the sample mean

105






0.0

0.1

0.2

0.3

0.4

3.175 3.200 3.225 3.250 3.275 3.300 3.325 3.350 3.375 3.400 3.425 3.450 3.475 3.500 3.525 3.550 3.575
sample mean

de
ns

ity

Figure 2.13: The sampling distribution under the null-hypothesis that the
South-African population mean is 3.38. The red area represents the range of
values for which the null-hypothesis is rejected (rejection region), the green
area represents the range of values for which the null-hypothesis is not rejected
(acceptance region).
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that you actually have is far enough from the population mean to say that it
is unlikely enough to result from the hypothesised population mean. If that is
the case, then you reject the null-hypothesis, meaning you don’t believe in it.
If it is likely to result from the hypothesised population, you do not reject the
null-hypothesis: there is no reason to suspect that the null-hypothesis is false.

2.12 Null-hypothesis testing with 𝑡-values

In the above example, we looked explicitly at the sampling distribution for
a hypothesised value for the population mean. By determining what the
distribution would look like (determining the mean, standard error and degrees
of freedom), we could see whether a certain sample mean would give enough
evidence to reject the null-hypothesis.
In this section we will show how to do this hypothesis testing more easily by
first standardising the problem. The trick is that we do not have to make a
picture of the sampling distribution every time we want to do a null-hypothesis
test. We simply know that its shape is that of a 𝑡-distribution with degrees of
freedom equal to 𝑛 − 1. 𝑡-distributions are standardised distributions, always
with a mean of 0. They are the distribution of standardised 𝑡-statistics, where a
sample mean is standardised by subtracting the population mean and dividing
the result by the standard error.
Let’s do this standardisation for our observed sample mean of 3.27. With a
population mean of 3.38 and a standard error of 𝜎̂ ̄𝑦 = √ 𝑠2

𝑛 = √ 0.14
40 = 0.059,

we obtain:

𝑡 = 3.27 − 3.38
0.059 = −1.864

We can then look at a 𝑡-distribution of 40 − 1 = 39 degrees of freedom to see
how likely it is that we find such a 𝑡-score if the null-hypothesis is true. The 𝑡-
distribution with 39 degrees of freedom is depicted in Figure 2.14. Again we see
the population mean represented, now standardised to a 𝑡-score of 0 (why?), and
the observed sample mean, now standardised to a 𝑡-score of -1.864. As you can
see, this graph gives you the same information as the sampling distribution in
Figure 2.13. The advantage of using standardisation and using the 𝑡-distribution
is that we can now easily determine whether or not an observed sample mean
is somewhere in the red zone or in the green zone, without making a picture.
We have to find the point in the 𝑡-distribution where the red and green zones
meet. These points in the graph are called critical values. From Figure 2.14 we
can see that these critical values are around -2 and 2. But where exactly? This
information can be looked up in the 𝑡-tables that were discussed earlier in this
chapter. We plot such a table again in Table 2.3. A larger version is given in
Appendix B.
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Figure 2.14: A *t*-distribution with 39 degrees of freedom to test the null-
hypothesis that the South-African population mean is 3.38. The blue line
represents the *T*-score for our observed sample mean of 3.27.

Table 2.3: Quantiles for the standard normal and several 𝑡-distributions with
varying degrees of freedom.

$t$-distributions
probs norm t199 t99 t47 t39 t9 t5 t3
0.0005 -3.29 -3.34 -3.39 -3.51 -3.56 -4.78 -6.87 -12.92
0.0010 -3.09 -3.13 -3.17 -3.27 -3.31 -4.30 -5.89 -10.21
0.0050 -2.58 -2.60 -2.63 -2.68 -2.71 -3.25 -4.03 -5.84
0.0100 -2.33 -2.35 -2.36 -2.41 -2.43 -2.82 -3.36 -4.54
0.0250 -1.96 -1.97 -1.98 -2.01 -2.02 -2.26 -2.57 -3.18
0.0500 -1.64 -1.65 -1.66 -1.68 -1.68 -1.83 -2.02 -2.35
0.1000 -1.28 -1.29 -1.29 -1.30 -1.30 -1.38 -1.48 -1.64
0.9000 1.28 1.29 1.29 1.30 1.30 1.38 1.48 1.64
0.9500 1.64 1.65 1.66 1.68 1.68 1.83 2.02 2.35
0.9750 1.96 1.97 1.98 2.01 2.02 2.26 2.57 3.18
0.9900 2.33 2.35 2.36 2.41 2.43 2.82 3.36 4.54
0.9950 2.58 2.60 2.63 2.68 2.71 3.25 4.03 5.84
0.9990 3.09 3.13 3.17 3.27 3.31 4.30 5.89 10.21
0.9995 3.29 3.34 3.39 3.51 3.56 4.78 6.87 12.92
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In such a table, you can look up the 2.5th percentile. That is, the value for which
2.5% of the 𝑡-distribution is equal or smaller. Because we are dealing with a
𝑡-distribution with 39 degrees of freedom, we look in the column t39, and then
in the row with cumulative probability 0.025 (equal to 2.5%), we see a value of
-2.02. This is the critical value for the lower tail of the 𝑡-distribution. To find
the critical value for the upper tail of the distribution, we have to know how
much of the distribution is lower than the critical value. We know that 2.5% is
higher, so it must be the case that the rest of the distribution, 100−2.5 = 97.5%
is lower than that value. This is the same as a probability of 0.975. If we look
for the critical value in the table, we see that it is 2.02. Of course this is the
opposite of the other critical value, because the 𝑡-distribution is symmetrical.

Now that we know that the critical values are -2.02 and +2.02, we know that
for our standardised 𝑡-score of -1.864 we are still in the green area, so we do
not reject the null-hypothesis. We don’t need to draw the distribution any
more. For any value, we can directly compare it to the critical values. And not
only for this example of 40 elephants and a sample mean of 3.27, but for any
combination.

Suppose for example that we would have had a sample size of 10 elephants, and
we would have found a sample mean of 3.28 with a slightly different sample
variance, 𝑠2 = 0.15. If we want to test the null-hypothesis again that the
population mean is 3.38 based on these results, we would have to do the following
steps:

Null-hypothesis testing

1. Estimate the standard error 𝜎̂ ̄𝑌 = √ 𝑠2
𝑛 .

2. Calculate the 𝑡-statistic 𝑡 = ̄𝑌 −𝜇
𝜎̂𝑌̄

, 𝜇 is the population mean under
the null-hypothesis.

3. Determine the degrees of freedom, 𝑛 − 1.
4. Determine the critical values for lower and upper tail of the

appropriate 𝑡-distribution, using 2.3.
5. If the 𝑡-statistic is between the two critical values, then we’re in

the green, we still believe the null-hypothesis is plausible.
6. If the 𝑡-statistic is not between the two critical values, we are in

the red zone and we reject the null-hypothesis.

So let’s do this for our hypothetical result:

1. Estimate the standard error: √ 0.15
10 = 0.122

2. Calculate the 𝑡-statistic: 𝑡 = 3.28−3.38
0.122 = -0.82

3. Determine the degrees of freedom: sample size minus 1 equals 9
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4. In Table 2.3 we look for the row with probability 0.025 and the column
for t9. We see a value of -2.26. The other critical value then must be 2.26.

5. The 𝑡-statistic of -0.82 lies between these two critical values, so these
sample data do not lead to a rejection of the null-hypothesis that the
population mean is 3.38. In other words, these data from 10 elephants do
not give us reason to doubt that the population mean is 3.38.

2.13 The 𝑝-value

What we saw in the previous section was the classical null-hypothesis testing
procedure: calculating a 𝑡-statistic and determine whether or not this 𝑡-score is
in the red zone or green zone, by comparing them to critical values. In the old
days, this was done by hand: the calculation of 𝑡 and looking up the critical
values in tables published in books.

These days we have the computer do the work for us. If you have a data set,
a program can calculate the 𝑡-score for you. However, when you look at the
output, you actually never see whether this 𝑡-score leads to a rejection of the
null-hypothesis or not. The only thing that a computer prints out is the 𝑡-score,
the degrees of freedom, and a so-called 𝑝-value. In this section we explain what
a 𝑝-value is and how you can use it for null-hypothesis testing.

Let’s go back to our example in the previous section, where we found a sample
mean height of 3.28 with only 10 elephants. We computed the 𝑡-score and
obtained -0.82. We illustrate this result in Figure 2.15 where the red line
indicates the 𝑡-score. By comparing this 𝑡-value with the critical values, we
could decide that we do not reject the null-hypothesis. However, if you would
do this calculation with a computer program like R, we would get the following
result:

t = -0.82, df = 9, p-value = 0.434

Figure 2.15 shows what this 𝑝-value of 0.434 means. The green area in the
middle represents the probability that a 𝑡-score lies between -0.82 and +0.82.
That probability is shown in the figure as 0.567, so 56.7%. The left blue region
represents the probability that if the null-hypothesis is true, the 𝑡-score will be
less than -0.82. That probability is 0.217, so 21.7%. Because of symmetry, the
probability that the 𝑡-score is more than 0.82 is also 0.217. The blue regions
together therefore represent the probability that you find a 𝑡-score of less than
-0.82 or more than 0.82, and that probability equals 0.217 + 0.217 = 0.434.
Therefore, the probability that you find a 𝑡-value of ±0.82 or more extreme
equals 0.434. This probability is called the 𝑝-value.
Why is this value useful?
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Figure 2.15: Illustration of what a *p*-value is. The total blue area represents
the probability that under the null-hypothesis, you find a more extreme value
than the *t*-score or its opposite. The blue area covers a proportion of 0.217
+ 0.217 = 0.434 of the *t*-distribution. This amounts to a *p*-value of 0.434.

Let’s imagine that we find a 𝑡-score of exactly equal to one of the critical
values. The critical value for a sample size of 10 animals related to a cumulative
proportion of 0.025 equals -2.26 (see Table 2.3). Based on this table, we know
that the probability of a 𝑡-value of -2.26 or lower equals 0.025. Because of
symmetry, we also know that the probability of a 𝑡-value of 2.26 or higher also
equals 0.025. This brings us to the conclusion that the probability of a 𝑡-score
of ±2.26 or more extreme, is equal to 0.025 + 0.025 = 0.05 = 5%. Thus, when
the 𝑡-score is equal to the critical value, then the 𝑝-value is equal to 5%. You
can imagine that if the 𝑡-score becomes more extreme than the critical value
the 𝑝-value will become less than 5%, and if the 𝑡-score becomes less extreme
(closer to 0), the 𝑝-value becomes larger.

In the previous section, we said that if a 𝑡-score is more extreme than one of
the critical values (i.e., when it doesn’t have a value between them) then we
reject the null-hypothesis. Thus, a 𝑝-value of 5% or less means that we have
a 𝑡-score more extreme than the critical values, which in turn means we have
to reject the null-hypothesis. Thus, based on the computer output, we see that
the 𝑝-value is larger than 0.05, so we do not reject the null-hypothesis.
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Overview

• critical value: the minimum (or maximum) value that a 𝑡-score
should have to be in the red zone (the rejection region). If a 𝑡-value
is more extreme than a critical value, then the null-hypothesis is
rejected. The red zone is often chosen such that a 𝑡-score will be
in that zone 5% of the time, assuming that the null-hypothesis is
true.

• 𝑝-value: indicates the probability of finding a 𝑡-value equal
or more extreme than the one found, assuming that the null-
hypothesis is true. Often a 𝑝-value of 5% or smaller is used to
support the conclusion that the null-hypothesis is not tenable.
This is equivalent to a rejection region of 5% when using critical
values.

Let’s apply this null-hypothesis testing to our luteinising hormone (LH) data.
Based on the medical literature, we know that LH levels for women in their
child-bearing years vary between 0.61 and 56.6 IU/L. Values vary during the
menstrual period. If values are lower than normal, this can be an indication that
the woman suffers from malnutrition, anorexia, stress or a pituitary disorder.
If the values are higher, this is an indication that the woman has gone through
menopause.
We’re going to use the LH data presented earlier in this chapter to make a
decision whether the woman has a healthy range of values for a woman in her
child-bearing years by testing the null-hypothesis that the mean LH level in this
woman is the same as the mean of LH levels in healthy non-menopausal women.
First we specify the null-hypothesis. Suppose we know that the mean LH level
in this woman should be equal to 2.54, given her age and given the timing of her
menstrual cycle. Thus our null-hypothesis is that the mean LH in our particular
woman is equal to 2.54:

𝐻0 ∶ 𝜇 = 2.54

Next, we look at our sample mean and see whether this is a likely or unlikely
value to find under this null-hypothesis. The sample mean is 2.40. To know
whether this is a likely value to find, we have to know the standard error of the
sampling distribution, and we can estimate this by using the sample variance.
The sample variance happens to be 𝑠2 = 0.304 and we had 48 measures, so we
estimate the standard error as 𝜎̂ ̄𝑦 = √ 𝑠2

𝑛 = √ 0.304
48 = 0.080. We then apply

standardisation to get a 𝑡-value:

𝑡 = 2.40 − 2.54
0.080 = −1.75
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Next, we look up in a table whether this 𝑡-value is extreme enough to be
considered unlikely under the null-hypothesis. In Table 2.3, we see that for
47 degrees of freedom, the critical value for the 0.025 quantile equals -2.01. For
the 0.975 quantile it is 2.01. Our observed 𝑡-value of -1.75 lies within this range.
This means that a sample mean of 2.40 is likely to be found when the population
mean is 2.54, so we do not reject the null-hypothesis. We conclude that the LH
levels are healthy for a woman her age.

When we report the results from a null-hypothesis test, we often talk about
significance. When the results show that the null-hypothesis can be rejected,
we talk about a statistically significant result. When the null-hypothesis cannot
be rejected, we call the results non-significant. Note that this says nothing
about the importance or size of the results.

In a report, you could state:

”We tested the null-hypothesis that the mean LH level is 2.54.
Taking a sample of 48 measurements, we obtained a mean of 2.40. A
𝑡-test showed that this sample mean was not significantly different
from 2.54, 𝑡(47) = −1.75, 𝑝 > .05.”

2.14 Null-hypothesis testing using R

We can do the null-hypothesis testing also with R. Let’s analyse the data in R
and do the computations with the following code. First we load the LH data:

data(lh)

Next, we test whether the population mean could be 2.54:

t.test(lh, mu = 2.54)

##
## One Sample t-test
##
## data: lh
## t = -1.7584, df = 47, p-value = 0.08518
## alternative hypothesis: true mean is not equal to 2.54
## 95 percent confidence interval:
## 2.239834 2.560166
## sample estimates:
## mean of x
## 2.4
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In the output we see that the 𝑡-value is equal to -1.7584, similar to our -1.75. The
difference is due to our rounding of the sample variance. The sample variance
𝑠2 can be obtained by

var(lh)

## [1] 0.3042553

We see that the number of degrees of freedom is 47 (𝑛 − 1) and that the 𝑝-
value equals 0.085. This 𝑝-value is larger than 0.05, so we do not reject the
null-hypothesis that the mean LH level in this woman equals 2.54. Her LH level
is healthy.
When reporting a null-hypothesis test, the convention is to report the exact
𝑝-value. We can omit the 0 in front of the decimal sign since a 𝑝-value is always
between 0 and 1 (i.e., .085 instead of 0.085). Three decimals are usually more
than enough.

”We tested the null-hypothesis that the mean LH level is 2.54.
Taking a sample of 48 measurements, we obtained a mean of 2.40. A
𝑡-test showed that this sample mean was not significantly different
from 2.54, 𝑡(47) = −1.758, 𝑝 = .085.”

2.15 One-sided versus two-sided testing

In the previous sections, we tested a null-hypothesis in order to find evidence
that an observed sample mean was either too large or too small to result from
random sampling. For example, in the previous section we saw that the observed
LH levels were not too low and we did not reject the null-hypothesis. But had
the LH levels been too high or too low, then we would have rejected the null-
hypothesis.
In the reasoning that we followed, there were actually two hypotheses: the
null-hypothesis that the population mean was exactly 2.54, and the alternative
hypothesis that the population is not exactly 2.54:

𝐻0 ∶ 𝜇 = 2.54
𝐻𝐴 ∶ 𝜇 ≠ 2.54

This kind of null-hypothesis testing is called two-sided or two-tailed testing: we
look at two critical values, and if the computed 𝑡-score is outside this range (i.e.,
somewhere in the two tails of the distribution), we reject the null-hypothesis.
The alternative to two-sided testing is one-sided or one-tailed testing.
Sometimes before an analysis you already have an idea of what direction the
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data will go. For instance, imagine a zoo where they have held elephants for
years. These elephants always were of Tanzanian origin, with a mean height
of 3.38. Lately however, the manager observes that the opening that connects
the indoor housing with the outdoor housing gets increasingly damaged.
Since the zoo recently acquired 4 new elephants of South-African origin, the
manager wonders whether South-African elephants are on average taller than
the Tanzanian elephants. To figure out whether South-African elephants are on
average taller than the Tanzanian average of 3.38 or not, the manager decides
to apply null-hypothesis testing. She has two hypotheses: null-hypothesis 𝐻0
and alternative hypothesis 𝐻𝐴:

𝐻0 ∶ 𝜇𝑆𝐴 = 3.38
𝐻𝐴 ∶ 𝜇𝑆𝐴 > 3.38

This set of hypotheses leaves out one option: the South-African mean might be
lower than the Tanzanian one. Therefore, one often writes the set of hypotheses
like this:

𝐻0 ∶ 𝜇𝑆𝐴 ≤ 3.38
𝐻𝐴 ∶ 𝜇𝑆𝐴 > 3.38

She next tests the null-hypothesis, more specifically the one where 𝜇𝑆𝐴 = 3.38.
From the damaged doorway she expects the sample mean to be higher than
3.38, but is it high enough to serve as evidence that the population mean is also
higher than 3.38? She decides that when the sample mean is in the rejection
zone in the right tail of the sampling distribution, then she will decide that the
null-hypothesis is not true, but that the alternative hypothesis must be true.

This is illustrated in Figure 2.16. It shows the sampling distribution if we
happen to have 4 new South-African elephants, with a sample mean of 3.45 and
a standard error of 0.059. In red, we see the rejection region: if the sample mean
happens to be in that zone we decide to reject the null-hypothesis. Similar to
two-tailed testing, we decide that an area of 5% is small enough to suggest that
the null-hypothesis is not true. Note that in two-tailed testing, this area of 5%
was divided equally into the upper tail and the lower tail of the distribution,
but with one-tailed testing we put it all in the tail where we expect to find the
sample mean based on a theory or a hunch.

In this sampling distribution, based on 3 degrees of freedom, we see that the
sample mean is not in the red zone – the rejection region – therefore we do not
reject the null-hypothesis. We conclude that based on this random sample of 4
elephants, there is no evidence to suggest that South-African elephants are on
average taller than Tanzanian elephants.

The same procedure can be done with standardisation. We compute the 𝑡-
statistic as
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Figure 2.16: The sampling distribution under the null-hypothesis that the
South-African population mean is 3.38. In one-tailed testing, the rejection
area is located in only one of the tails. The red area represents the range
of values for which the null-hypothesis is rejected (rejection region), the green
area represents the range of values for which the null-hypothesis is not rejected
(acceptance region).

𝑡 = 3.45 − 3.38
0.059 = 1.19

In Table 2.3 we have to look up where the red zone starts: that is for the 0.95
quantile, because below that value lies 95% (green zone) and above it 5% (the
red zone). We see that the 95th percentile for a 𝑡-distribution with 3 degrees
of freedom is equal to 2. Our 𝑡-value 1.19 is less than that, so that we do not
reject the null-hypothesis.

A third way is to compute a one-tailed 𝑝-value. This is illustrated in Figure
2.17. The one-tailed 𝑝-value for a 𝑡-statistic of 1.19 and 3 degrees of freedom
turns out to be 0.16. That is the proportion of the 𝑡-distribution that is blue.
That means that if the null-hypothesis is true, you will find a 𝑡-value of 1.19 or
larger in 16% of the cases. Because this proportion is more than 5%, we do not
reject the null-hypothesis.

2.16 One-tailed testing applied to LH levels

As we have seen, LH levels that are too high are indicative of menopause, a
normal transition for women. However, LH levels that are too low are indicative
of an illness or malnutrition. In that case, it is important that the source of this
malnutrition or the specific illness is diagnosed. You could therefore say that if
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Figure 2.17: The sampling distribution under the null-hypothesis that the
South-African population mean is 3.38. For one-tailed testing, the rejection area
is located in only one of the tails. The green area represents the probability of
seeing a *t*-value smaller than 1.19, the blue are represents the probability of
seeing a *t*-value larger than 1.19. The latter probability is the *p*-value.

LH levels are too low, a red flag should be put up, whereas if the LH levels are
normal or higher, then there is usually no reason to worry.

LH levels can therefore be used to construct a diagnostic red flag decision system.
If normal or high, then nothing happens, if too low, then something should
be done. We could formulate these two alternative states of reality as two
hypotheses:

𝐻0 ∶ 𝜇𝐿𝐻 ≥ 2.54
𝐻𝐴 ∶ 𝜇𝐿𝐻 < 2.54

We decide beforehand that if a 𝑡-value is too far out in the left tail of the
distribution, the LH levels are too low. We again use 5% of the area of the
𝑡-distribution. This decision process is illustrated in Figure 2.18 where we see a
critical 𝑡-value of -1.68 when we we have 47 degrees of freedom (see Table 2.3).

We calculate our 𝑡-value and find -1.75, see section 2.13. We see that this 𝑡-value
is smaller than the critical value -1.68, so it is in the red rejection area. This is
the area that we use for the rejection of the null-hypothesis, so based on these
data we decide that the mean LH level in this woman is abnormally low.

Importantly, note that when we applied two-tailed hypothesis testing, we
decided to not reject the null-hypothesis, whereas here with one-tailed testing,
we decide to reject the null-hypothesis. All based on the same data, and
the same null-hypothesis. The difference lies in the choice of the alternative
hypothesis. When doing one-tailed testing, we put all of the critical region
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Figure 2.18: One-tailed decision process for deciding whether the average LH
level in a woman is too low.

in only one tail of the 𝑡-distribution. This way, it becomes easier to reject a
null-hypothesis, if the mean LH level is indeed lower than normal. However, it
could also be easier to make a mistake: if the mean LH level is in fact normal,
we could make a mistake in thinking that the sample mean is deviant, where it
is actually not. Making mistakes in inference is the topic of the next section.

It is generally advised to use two-tailed testing rather than one-tailed testing.
The reason is that in hypothesis testing, it is always the null-hypothesis that
is being used as the starting point: what would the sample means (or their
standardised versions: 𝑡-scores) look like if the null-hypothesis is true? Based
on a certain null-hypothesis, say population mean 𝜇 equals 2.54, sample means
could be as likely higher or lower than the population mean (since the sampling
distribution is symmetrical). Even if you suspect that 𝜇 is actually lower, based
on a very good theory, you would help yourself too much to falsify the null-
hypothesis by putting the rejection area only in the left tail of the distribution.
And what do you actually do if you find a sample mean that is in the far end
of the right tail? Do you still accept the null-hypothesis? That would not make
much sense. It is therefore better to just stick to the null-hypothesis, and see
whether the sample mean is far enough removed to reject the null-hypothesis.
If the sample mean is in the anticipated tail of the distribution, that supports
the theory you had, and if the sample mean is in the opposite tail, it does not
support the theory you had.

2.17 One-tailed testing using R

Compare one-tailed and two-tailed testing in R using the LH data. By default,
R applies two-tailed testing. R gives the following output:
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t.test(lh, mu = 2.54)

##
## One Sample t-test
##
## data: lh
## t = -1.7584, df = 47, p-value = 0.08518
## alternative hypothesis: true mean is not equal to 2.54
## 95 percent confidence interval:
## 2.239834 2.560166
## sample estimates:
## mean of x
## 2.4

If you want one-tailed testing, where you expect that the mean LH level is lower
than 2.54, you do that in the following manner3:

t.test(lh, mu = 2.54, alternative = "less")

##
## One Sample t-test
##
## data: lh
## t = -1.7584, df = 47, p-value = 0.04259
## alternative hypothesis: true mean is less than 2.54
## 95 percent confidence interval:
## -Inf 2.533589
## sample estimates:
## mean of x
## 2.4

With one-tailed testing, you can report:

”We tested the null-hypothesis that the mean LH level is 2.54,
against the alternative hypothesis that the mean LH level is less
than 2.54. Taking a sample of 48 measurements, we obtained a
mean of 2.40. A one-tailed 𝑡-test showed that this sample mean was
significantly less than 2.54, 𝑡(47) = −1.758, 𝑝 = .043.”

When you compare the 𝑝-values, you see that the 𝑝-value using one-tailed testing
is half the size of the 𝑝-value using two-tailed testing (.04259 vs .08518). Based

3If you expect that the LH level will higher than 2.54, you use ”greater” instead of ”less”.
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on the previous sections, you should know why the 𝑝-value is halved! (Because
the 𝑡-distribution is symmetrical and you placed all of the 5% rejection area
only on the left of the 𝑡-distribution). In the second output, using a critical
𝑝-value of 5% you would reject the null-hypothesis, whereas in the first output,
you would not reject the null-hypothesis. Using one-tailed testing could lead to
a big mistake: thinking that the sample mean is deviant enough to reject the
null-hypothesis, while the null-hypothesis is actually true. We delve deeper into
such mistakes in the next section.

2.18 Type I and type II errors

In the preceding sections, we have used the value of 5% a lot of times. We
deemed that this was a fairly low probability, that allows us to take the decision
to reject the null-hypothesis. We looked at the distribution of sample means,
given that there was a certain population mean, and we looked at how often we
can expect a sample mean that is smaller or larger than certain critical values.
These critical values were based on 5% of the area of the sampling distribution.
With two-tailed testing, this 5% was divided over the two extreme tails of the
sampling distribution, and with one-tailed testing, this 5% rejection area was
put in the tail end where we expected the population to be according to the
alternative hypothesis (based on theory).

In this null-hypothesis testing procedure there is always the risk that we take
the wrong decision. Let’s return to our elephant example where we had the
null-hypothesis that the population mean for South-African elephants equals
3.38. The alternative two-sided hypothesis was that the population mean was
not equal to 3.38. After calculating the standard error, we calculated the 𝑡-
score. We said that we reject the null-hypothesis when the obtained 𝑡-score was
somewhere in the extreme ends of the tail: more specifically, in the rejection
area that made up 5% of the area of the 𝑡-distribution. That means that if the
null-hypothesis is true, there is a 5% probability that we find such a 𝑡-score. In
that case we reject the null-hypothesis. But that could be the wrong decision:
if the null-hypothesis is true it will happen in 5% of the cases that a 𝑡-score
will be in the 5% rejection region. We then reject the null-hypothesis while it
is actually true! Such a mistake is called a type I error. In this case, type I
error rate is 5%. It is a conditional probability. Conditional probabilities are
probabilities that start from some given information. In this case, the given
information is that the null-hypothesis is true: given that the null-hypothesis is
true, it is the probability that we reject the null-hypothesis. Because we do not
like to make mistakes, we want to have the probability of a mistake as low as
possible.

In the social and behavioural sciences, one thinks that a probability of 5% is
low enough to take the risk of making the wrong decision. As stated earlier, in
quantum mechanics one is even more careful, using a probability of 0.000057 %.
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So why don’t we also use a much lower probability of making a type I error?
The answer is that we do not want to make another type of mistake: a type II
error. A type II error is the mistake that we make when we do not reject the
null-hypothesis, while it is not true. Taking the example of the elephants again,
suppose that the population mean is not equal to 3.38, but the 𝑡-score is not in
the rejection area, so we believe that the population mean is 3.38. This is then
the wrong decision. The type of mistake we then make is a type II error.

Let’s take this example further. Suppose we have a two-tailed decision process,
where we compare two hypotheses about South-African elephants: either their
mean height is equal to 3.38 (𝐻0), or it is not (𝐻𝐴). We compute the 𝑡-
statistic and determine the critical values based on 5% area in the tails of the
𝑡-distribution. This means that we allow ourselves to make a mistake in 5% of
the cases: the probability that we find a 𝑡-score in one of the 2.5% tails equals
2.5% + 2.5% = 5%. This is the probability of a type I error. Note that we chose
this value deliberately. This 5% we call 𝛼 (‘alpha’): it is the relative frequency
we allow ourselves to make a type I error. We say then that our 𝛼 is fixed to
0.05, or 5%. This means that if the null-hypothesis is true, the probability that
the 𝑡-statistic will be in in the tails will be 5%.

Then what is the probability of a type II error? A type II error is based on
the premise that the alternative hypothesis is true. That alternative hypothesis
states that the population mean is not equal to 3.38. Given that, what is the
probability that we do not reject the null-hypothesis?

This is impossible to compute, because the alternative hypothesis is very vaguely
stated: it could be anything, as long as it is not 3.38. Let’s make it a bit easier
and state that the alternative hypothesis states that the population mean equals
3.42.

𝐻0 ∶ 𝜇𝑆𝐴 = 3.38
𝐻𝐴 ∶ 𝜇𝑆𝐴 = 3.42

If the population mean height is equal to 3.42, what would sample means look
like? That’s easy, that is the sampling distribution of the sample mean. The
mean of that sampling distribution would be 3.42. This is illustrated in Figure
2.19. The left curve is the sampling distribution for a population mean of
3.38. The red area represents the probability of a type I error. The right
curve is the sampling distribution for a population mean of 3.42. The blue
area represents the probability of rejecting the null-hypothesis. This is because
if the sample mean is smaller than 3.26 or larger than 3.50, the sample mean
is in the rejection area of the null-hypothesis testing and the null-hypothesis
will therefore be rejected. The probability of this happening given that the
alternative hypothesis is true (𝐻𝐴 = 3.42), is represented by the area under
that curve: the blue area. If we determine the two blue areas in Figure 2.19,
we end up with 0.004 + 0.097 = 0.101. This is the probability of rejecting the
null-hypothesis while it is not true, so this is no mistake at all. We would make

121



a mistake when the alternative hypothesis is true, and we would not reject the
null-hypothesis. This is represented by the dark green area. That area is equal
to 1 minus the blue area: 1 − 0.101 = 0.899.
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Figure 2.19: Two sampling distributions, one for a population mean of 3.38 (null-
hypothesis) and one for a population mean of 3.42 (alternative hypothesis). The
red areas represent the probability of a type I error, the dark green area the
probability of a type II error. The blue areas represent the probability of making
the (correct) decision that the null-hypothesis is not true when it is indeed not
true.

When we have to draw a conclusion about a population mean, the null-
hypothesis framework can be used for that. Usually we don’t want to make
type I error mistakes, so we pick a low probability like 5% for the tails
of the sampling distribution under the 𝐻0. This value is called 𝛼: if the
null-hypothesis is true, we don’t want to reject it, so we allow this to happen in
only 5% of the cases. One chooses 𝛼 before collecting the data. You have to be
careful with this choice of 𝛼 though because it directly affects the probability
of making a type II error. This probability is denoted by 𝛽 (‘beta’): how
often does it happen that if the alternative hypothesis is true, we do not reject
the null-hypothesis. This relationship is illustrated in Figure 2.20. There, an
𝛼 of 1% is chosen, using both tails (a two-tailed null-hypothesis test). You
immediately see that the blue areas have also become smaller, and that by
consequence the dark green area becomes larger: the probability of a type II
error.

Thus, the 𝛼 should be chosen wisely: if it is too large, you run a high risk of a
type I error. But if it is too low, you run a high risk of a type II error. Let’s
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Figure 2.20: Two sampling distributions, one for a population mean of 3.38 (null-
hypothesis) and one for a population mean of 3.42 (alternative hypothesis). The
red areas represent the probability of a type I error, the dark green area the
probability of a type II error. The blue area represents the probability of making
the (correct) decision that the null-hypothesis is not true when it is indeed not
true.
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think about this in the context of our luteinising hormone problem.

We saw that if the LH level is low, this could be an indication of malnutrition
or a disease and the patient should have further checks to see what the problem
is. But if the LH level is normal or above normal, there is no disease and no
further checks are required. Again we take the null-hypothesis that the mean
LH level in this woman equals 2.54. What would be a type I error in this case,
and what would be a type II error?

The type I error is the mistake of rejecting the null-hypothesis while it is in fact
true. Thus, the woman’s mean LH level is 2.54, but by coincidence, the mean
of the 48 measurements that we have turns out to be in the rejection area of the
sampling distribution. If this happens we make the mistake that we do a lot of
tests with this woman to find out what’s wrong with her, while in fact she is
perfectly healthy! How bad would such a mistake be? It would certainly lead to
extra costs, but also a lot of the woman’s time. She would also probably start
worrying that something is wrong with her. So we definitely don’t want this to
happen. We can minimise the risk of a type I error by choosing a low 𝛼.

The type II error is the mistake of not rejecting the null-hypothesis while it is
in fact not true. Thus, the woman’s mean LH level is lower than 2.54, but by
coincidence, the sample mean of the 48 measurements that we have turns out
to be in the acceptance area of the sampling distribution. This means that the
woman’s LH level does not seem to be abnormal, and the woman is sent home.
How bad would such a mistake be? Well, pretty bad because the woman’s
hormone level is not normal, but everybody thinks that she is OK. She could
be very ill but nothing is found in further tests, because there are no further
tests. So we definitely don’t want this to happen. We can minimise the risk of
a type II error by choosing a higher 𝛼.

So here we have a conflict, and we have to make a balanced choice for 𝛼: too
low we run the risk of type II errors, too high we run the risk of a type I error.
Then you have to decide what is worse: a type I mistake or a type II mistake.
In this case, you could defend that sending the woman home while she is ill, is
worse than spending money on tests that are actually not needed. Then you
would choose a rather high 𝛼, say 10%. That means that if you have several
women who are in fact healthy, 10% of them would receive extra testing. This
is a fairly high percentage, but you are more sure that women with an illness
will be detected and receive proper care.

But if you think it is most important that you don’t spend too much money
and that you don’t want women to start worrying when it is not needed, you
can pick a low 𝛼 like 1%: then when you have a lot of healthy women, only 1%
of them will receive unnecessary testing.
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2.19 Take-away points

• In statistics, inference refers to drawing conclusions about population
(complete) data on the basis of sample data (a selection of data).

• When you randomly draw equally-sized samples from a population, and
for each sample you compute the mean, you can make a histogram of all
sample means. This histogram represents the sampling distribution of the
sample mean.

• When you randomly draw equally-sized samples from a population, and
for each sample you compute the variance, you can make a histogram of
all sample variances. This histogram represents the sampling distribution
of the sample variance.

• The sample mean is an unbiased estimator of the population mean.

• The sample variance is a biased estimator of the population variance.

• The standard deviation of the sampling distribution is called the standard
error.

• The larger the sample size, the smaller the standard error.

• A 95% confidence interval contains 95% of the sample means had the
population mean been equal to the sample mean. Its construction is based
on the estimated sampling distribution of the sample mean.

• If you know the standard error (because you know the population
variance), the standardised sample means will show a normal distribution.
If you don’t know the standard error, you have to estimate it based on
the sample variance. If sample size is really large, you can estimate the
population variance pretty well, and the sample variances will be very
similar to each other. In that case, the sampling distribution will look
very much like a normal distribution. But if sample size is relatively
small, each sample will show a different sample variance, resulting in
different standard error estimates. If you standardise each sample mean
with a different standard error, the sampling distribution will not look
normal. This distribution is called a 𝑡-distribution.

• The shape of the sampling distribution is a 𝑡-distribution. The shape
of this 𝑡-distribution depends on sample size (expressed as degrees of
freedom).

• The objective of null-hypothesis testing is that we either reject the null-
hypothesis, or not. This is done using the data from a random sample.
In the null-hypothesis procedure, we assume that the null-hypothesis is
true, and compare the sample data with data that would result if the
null-hypothesis were true.
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• The 𝑝-value represents the probability of finding a 𝑡-value equal or more
extreme than the one found, assuming that the null-hypothesis is true.
Often a 𝑝-value of 5% or smaller is used to support the conclusion that
the null-hypothesis is not tenable.

• In two-tailed testing, we have rejection regions on both sides of the 𝑡-
distribution. In one-tailed testing, we have only one rejection region.

• A type I error is the mistake of rejecting the null-hypothesis while it is in
fact true.

• A type II error is the mistake of not rejecting the null-hypothesis while it
is in fact not true.

Key concepts

• Inference
• Population
• Sample
• Random sample
• Standard error
• Sampling distribution
• Central Limit Theorem
• Confidence interval
• 𝑡-statistic
• 𝑡-distribution
• Degrees of freedom
• Null-hypothesis testing
• Rejection region
• Acceptance region
• Critical value
• 𝑝-value
• One-sided and two-sided testing
• Alternative hypothesis
• Type I and type II errors
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Chapter 3

Inference about a
proportion

3.1 Sampling distribution of the sample proportion

So far, we focused on inference about a population mean: starting from a sample
mean, what can we infer about the population mean? However, there are also
other sample statistics we could focus on. We briefly touched on the variance in
the sample and what it tells us about the population variance. In this section,
we focus on inference regarding a proportion.

Let’s go back to the example of the elephants in the zoo, and that the manager
saw a damaged doorway. This is most likely caused by elephants that are taller
than a certain height, making their heads bump the doorway when moving from
one space to the other. Let’s suppose the height of the doorway is 3.40 m and
that the manager observes that of the 4 elephants in the zoo, 3 bump their head
when passing the doorway. Suppose that the 4 elephants are randomly sampled
from the entire population of elephants worldwide. What could we say based on
these observations about the proportion of elephants worldwide that are taller
than 3.40 m?

Let’s again start from the population. Let’s do the thought experiment that the
population proportion of elephants taller than 3.40 m equals 0.6: 60% of all the
elephants in the world are taller than 3.40 m. Let’s randomly pick 4 elephants
from this population. We might get 2 tall elephants and 2 less tall elephants.
This means we get a sample proportion of 2

4 = 0.5. If we do this sampling a
lot of times, we obtain the sampling distribution of the sample proportion. It is
shown in Figure 3.1. It is a discrete (non-continuous) distribution that is clearly
not a normal distribution. But, as we know from the Central Limit Theorem
(Chapter 2), it will become a normal distribution when sample size increases.
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Figure 3.1: Sampling distribution of the sample proportion, when the population
proportion is 0.60.

Actually, the sampling distribution that we see in Figure 3.1 is based on the
binomial distribution. Using the binomial distribution, we can calculate the
probabilities of getting various sample proportions in a straightforward manner,
without relying on the normal distribution.

3.2 The binomial distribution (advanced)

The binomial distribution gives us the probability of obtaining a certain number
of elements, given how many elements there are in total and the population
probability. In our case, the binomial distribution gives us the probability of
having exactly 2 elephants taller than 3.40 m, given that there are 4 elephants
in our sample and the population proportion equals 0.6. Let’s go through the
reasoning step by step.

The proportion of tall elephants in the population is 𝑝 = 0.6. The sample size
equals 𝑛 = 4. Let’s begin with randomly picking the first elephant: what’s the
probability that we select an elephant that is taller than 3.40 m? Well, that
probability is equal to the proportion of 0.6. Next, what is the probability that
the second elephant is taller than 3.40? Again, this is equal to 0.6.

Now something more complicated: what is the probability that both the first
and the second elephant are taller than 3.40? This is equal to 0.6 × 0.6 = 0.36.
What is the probability that all 4 elephants are taller than 3.40 m? That is
equal to 0.6×0.6×0.6×0.6 = 0.604 = 0.130. The probability that all 4 elephants
are shorter than 3.40 m is equal to (1 − 0.6)4 = 0.44 = 0.026.
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The probability for a mix of 2 tall elephants and 2 shorter elephants is more
difficult to compute. You might remember from high school that it involves
combinations. For example, the probability that the first 2 elephants are taller
than 3.40, and the last 2 elephants shorter, is equal to 0.62 × (1 − 0.6)2 = 0.058,
but there are many other ways in which we can find 2 tall elephants and 2
shorter elephants when we randomly and sequentially pick 4 elephants. There
are in fact 6 different ways of randomly selecting 4 elephants where only 2 are
tall. When we use A to denote a tall elephant and B to denote a short elephant,
the 6 possible combinations of having two As and two Bs are in fact: AABB,
BBAA, ABAB, BABA, ABBA, and BAAB.

This number of combinations is calculated using the binomial coefficient:

(4
2) = 4!

2!2! = 6

This number (4
2) (‘four choose two’) is called the binomial coefficient. It can

be calculated using factorials: the exclamation mark ! stands for factorial. For
instance, 5! (‘five factorial’) means 5 × 4 × 3 × 2 × 1.
In its general form, the binomial coefficient looks like:

(𝑛
𝑟) = 𝑛!

𝑟!(𝑛 − 𝑟)!

So suppose sample size 𝑛 is equal to 4 and 𝑟 equal to 2 (the number of tall
elephants in the sample), we get:

(4
2) = 4!

2!(𝑛 − 𝑟)! = 4!
2!2! = 4 × 3 × 2 × 1

2 × 1 × 2 × 1 = 6

Going back to the elephant example, there are (4
2) = 6 possible ways of getting

2 tall elephants and 2 short elephants when we sequentially pick 4 elephants.
Each of these possibilities has a probability of 0.62 × (1 − 0.6)2 = 0.058. This
is explained in Table 3.1. For instance, the probability of getting the ordering
ABAB, is equal to the multiplication of the respective probabilities: 0.6 × 0.4 ×
0.6 × 0.4. In the table you can see that the probability for any ordering is
always 0.058. Since any ordering will qualify as obtaining 2 tall elephants from
a total of 4, we can sum these probabilities: the probability of getting the
ordering AABB or BBAA or ABAB or BABA or ABBA or BAAB, is equal
to 0.058 + 0.058 + 0.058 + 0.058 + 0.058 + 0.058 = 6 × 0.058 = 0.348. Here 6
is the number of combinations, calculated as the binomial coefficient (4

2). We
could therefore in general compute the probability of having 2 tall elephants in
a sample of 4 as
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Table 3.1: Four possible ways of selecting 2 tall elephants (A) and 2 short
elephants (B), together with the probability for each selection.

ordering computation of probability probability
AABB 0.6 x 0.6 x 0.4 x 0.4 0.058
ABAB 0.6 x 0.4 x 0.6 x 0.4 0.058
ABBA 0.6 x 0.4 x 0.4 x 0.6 0.058
BAAB 0.4 x 0.6 x 0.6 x 0.4 0.058
BABA 0.4 x 0.6 x 0.4 x 0.6 0.058
BBAA 0.4 x 0.4 x 0.6 x 0.6 0.058

𝑝(#𝐴 = 2|𝑛 = 4, 𝑝 = 0.6) = (4
2) × 0.62 × (1 − 0.6)2 = 6 × 0.058 = 0.348

The probability of ending up with 2 tall elephants in a sample of 4 elephants, in
any order, and where the proportion of tall elephants in the population is 0.6,
is therefore equal to 0.348.

In the more general case, if you have a population with a proportion 𝑝 of As, a
sample size of 𝑛, and you want to know the probability of finding 𝑟 instances of
A in your sample, it can be computed with the formula

𝑝(#𝐴 = 𝑟|𝑛, 𝑝) = (𝑛
𝑟) × 𝑝𝑟 × (1 − 𝑝)(𝑛−𝑟)

For example, the probability of obtaining 3 tall elephants when the total number
of elephants is 4, is (4

3) × 0.63 × (1 − 0.6)1 = 4 × 0.216 × 0.4 = 0.346.
When we calculate the probabilities of finding 0, 1, 2, 3, or 4 tall elephants in
a sample of 4 when the population proportion is 0.6, we obtain the binomial
distribution that is plotted in Figure 3.2. It is exactly the same as the sampling
distribution in Figure 3.1, except that we plot the number of tall elephants in
the sample on the horizontal axis, instead of the proportion. This means that
we can use the binomial distribution to describe the sampling distribution of
the sample proportion. To get the proportions, we simply divide the number of
tall elephants in our sample by the total number of elephants (𝑛) and we get
Figure 3.1.

3.3 Confidence intervals (advanced)

Based on what we know about the binomial distribution, we can perform
inference on proportions. In Chapter 2 we saw that inference is very much based
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Figure 3.2: Binomial distribution with 𝑛 = 4 and 𝑝 = 0.60.

on the standard error (i.e., the standard deviation of the sampling distribution).
We know from theory that the variance of the binomial distribution can be
easily calculated as 𝑛 × 𝑝 × (1 − 𝑝). Because we want to have the variance in
proportions rather than in numbers, we have to divide this variance by 𝑛 to
get the variance of proportions: 𝑛×𝑝×(1−𝑝)

𝑛 = 𝑝 × (1 − 𝑝). Next, because the
variance of a sampling distribution gets smaller with increasing 𝑛, we divide
by 𝑛 again, in a similar way as we did for the sampling distribution of the
sample mean in Chapter 2. Taking the square root of this variance gives us the
standard deviation of the sampling distribution (i.e., the standard error):

𝜎𝑝̂ = √𝑝(1 − 𝑝)
𝑛

This standard error makes it easy to construct confidence intervals. We know
from the Central Limit Theorem that if 𝑛 becomes infinitely large, the sampling
distribution will become normal. When 𝑛 = 50, the sampling distribution is
already close to normal, as is shown in Figure 3.3. This fact, together with the
standard error makes it easy to construct approximate confidence intervals.

Suppose that we had 50 elephants in our zoo, and the manager observed that 42
of them bump their head against the doorway. That is a sample proportion of
42
50 = 0.84. When we want to have a range of plausible values for the population
proportion, we can construct a 95% confidence interval around this sample
proportion. Because we know that for the standard normal distribution, 95% of
the observations are between -1.96 and +1.96, we construct the 95% confidence
interval by multiplying 1.96 with the standard error, 𝜎𝑝̂ = √ 𝑝(1−𝑝)

𝑛 .
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Figure 3.3: Sampling distribution with 𝑛 = 50 and 𝑝 = 0.60.

However, since we do not know the population proportion 𝑝, we have to
estimate it. From theory, we know that an unbiased estimator for the
population proportion is the sample proportion: ̂𝑝 = 42

50 = 0.84. Our estimate
for the standard error is then √ 𝑝̂(1−𝑝̂)

𝑛 = 0.052.
If we use that value, we get the interval from 0.84 − 1.96 × 0.052 to 0.84 +
1.96 × 0.052: thus, our 95% confidence interval for the population proportion
runs from 0.738 to 0.942.

3.4 Null-hypothesis concerning a proportion
using the Central Limit Theorem

To do statistical computations by hand using the binomial distribution is often
tedious. Because of the central limit theorem, we know that for large sample
sizes, the sampling distribution becomes normal. The mean of the sampling
distribution is then equal to the proportion 𝑝 in the population, and the standard
error is equal to 𝜎𝑝̂ = √ 𝑝(1−𝑝)

𝑛 . If the sample size, 𝑛, is large, we can perform
null-hypothesis testing using the more familiar normal distribution.

Here we show how to do that with an example using a somewhat larger sample
size of 50. Suppose that a researcher has measured all Tanzanian elephants and
noted that a proportion of 0.60 was taller than 3.40 m. Suppose also that the
manager in the zoo finds that 42 out of the 50 zoo elephants bump their head
and are therefore taller than 3.40. How can we test the hypothesis that the zoo
elephants could be a random sample of Tanzanian elephants?
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To answer this question with a yes or a no, we could apply the logic of null-
hypothesis testing. Let the null-hypothesis be that the population of elephants
that the zoo elephants were drawn from has a proportion of 0.6 of elephants
taller than 3.40 m, and the alternative hypothesis that it this proportion is not
equal to 0.60.

𝐻0 ∶ 𝑝 = 0.60
𝐻𝐴 ∶ 𝑝 ≠ 0.60

Is the proportion of 0.84 that we observe in the sample (the zoo) a probable
value to find if the proportion for all elephants is equal to 0.60? If this is the
case, we do not reject the null-hypothesis, and believe that the zoo data could
have been randomly selected from the Tanzanian population. However, if the
proportion of 0.84 is very unprobable given that the population proportion is
0.60, we reject the null-hypothesis and believe that the zoo elephants were not
randomly drawn from the population of Tanzanian elephants.

With null-hypothesis testing we always have to fix our 𝛼 first: the probability
with which we are willing to accept a type I error. We feel it is really important
that the sample is representative of the population, so we definitely do not want
to make the mistake that we think the sample is representative (not rejecting
the null-hypothesis) while it isn’t (𝐻𝐴 is true). This would be a type II error
(check this for yourself!). If we want to minimise the probability of a type II
error (𝛽), we have to pick a relatively high 𝛼 (see Chapter 2), so let’s choose
our 𝛼 = .10.
Next, we have to choose a test statistic and determine critical values for it that
go with an 𝛼 of .10. Because we have a relatively large sample size of 50, we
assume that the sampling distribution for a proportion of 0.60 is normal. From
the standard normal distribution, we know that 90% (1 − 𝛼!) of the values
lie between −1.64 and 1.64 (see Table 2.3). If we therefore standardise our
proportion, we have a measure that should show a standard normal distribution:

𝑧𝑝 = 𝑝𝑠 − 𝑝0
𝑠𝑑

where 𝑧𝑝 is the 𝑧-score for a proportion, 𝑝𝑠 is the sample proportion, 𝑝0 is the
population proportion assuming 𝐻0, and 𝑠𝑑 is the standard deviation of the
sampling distribution, which is the standard error. Note that we should take
the standard error that we get when the null-hypothesis is true. We then get

𝑧𝑝 = 0.84 − 0.6
𝑠𝑒 = 0.24

√ 𝑝0(1−𝑝0)
𝑛

= 0.24
0.069 = 3.478

90% of the values in any normal distribution lie between ±1.64 standard
deviations away from the mean (see Table 2.3). Here we see a 𝑧-score that
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exceeds these critical values, and we therefore reject the null-hypothesis. We
conclude that the proportion of tall elephants observed in the sample is larger
than to be expected under the assumption that the population proportion is
0.6. We decide that the zoo data are not randomly drawn from the Tanzanian
population data.
The decision process is illustrated in Figure 3.4.
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Figure 3.4: A normal distribution to test the null-hypothesis that the population
proportion is 0.6. The blue line represents the *z*-score for our observed sample
proportion of 0.84.

To get a feel for what critical z-values go together with what type I error rate,
try out the interactive app in Figure 3.5. Choose a type I error rate of 10% and
check that the critical z-value will be ±1.64. Next choose a type I error rate of
5% and check that the critical z-value will become ±1.96. Note that we apply
two-tailed (two-sided) hypothesis testing here.

Please	Wait

Figure 3.5: [Interactive] The relationship between the type I error rate 𝛼, and
the critical 𝑧-values to reject the null-hypothesis for a proportion. Change the
type I error rate, and see how that affects the critical 𝑧-value.

3.5 Inference on proportions using R

Using the normal distribution as shown in the previous section is a nice trick
when you have to do the calculations by hand. However, the normal distribution
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is only a good approximation of the binomial distribution when you have a large
sample size. Using the binomial distribution always gives you the most exact
answers, but it can be very tiresome to do all the computations by hand. In
this section we discuss how to let R do the calculations for you.

Suppose we have a sample of 50 elephants, and we see that 42 of them bump
their head against the doorway. What can we say about the population: what
proportion of elephants in the entire population will bump their heads? In R, we
use the binom.test() function to do inference on proportions. This function
does all the calculations using the binomial distribution, so that the results
are always trustworthy, even for small sample sizes. We state the number of
observed elephants that bump their head (x = 42), the sample size (n = 50),
the kind of confidence interval (95%: conf.level = 0.95) and the proportion
that we want to use for the null-hypothesis (p = 0.6):

binom.test(x = 42, n = 50, conf.level = 0.95, p = 0.6)

##
## Exact binomial test
##
## data: 42 and 50
## number of successes = 42, number of trials = 50, p-value = 0.0004116
## alternative hypothesis: true probability of success is not equal to 0.6
## 95 percent confidence interval:
## 0.7088737 0.9282992
## sample estimates:
## probability of success
## 0.84

The output shows the sample proportion: the probability of success is 0.84.
This is of course 42

50 . If we want to know what the most reasonable values for
the population proportion are, we look at the 95% confidence interval that runs
from 0.71 to 0.93. If you want to test the null-hypothesis that the population
proportion is equal to 0.60, then we see that the 𝑝-value for that test is .0004.
Using only three decimals, we can say the 𝑝-value is less than .001. With an 𝛼
of 0.10, this test is significant. We therefore conclude:

”With a binomial test, we tested the null-hypothesis that the
population proportion of elephants taller than 3.40 m is equal
to 0.60, with an 𝛼 of 0.10. Our sample proportion, based on
50 elephants, was 0.84, which is significantly different from 0.6,
𝑝 < .001. We therefore reject the null-hypothesis.”

As said, the binomial test also works fine for small sample sizes. Let’s go back
to the very first example of this chapter: the zoo manager sees that of the 4

135



elephants they have, 3 bump their head and are therefore taller than 3.40 m.
What does that tell us about the proportion of elephants worldwide that are
taller than 3.40 m? If we assume that the 4 zoo elephants were randomly selected
from the entire population of elephants, we can use the binomial distribution.
In this case we type in R:

binom.test(x = 3, n = 4)

##
## Exact binomial test
##
## data: 3 and 4
## number of successes = 3, number of trials = 4, p-value = 0.625
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.1941204 0.9936905
## sample estimates:
## probability of success
## 0.75

By default, binom.test() yields 95% confidence intervals, as can be seen in the
output.1 We see that the confidence interval for the population proportion runs
from 0.194 to 0.994. Thus, based on this sample proportion of 0.75, we can state
with some degree of confidence that the population proportion is somewhere
between 0.194 and 0.994. That’s of course not very informative, which makes
sense considering we only observe 4 elephants.
We could report:

”In our sample of 4 elephants, 3 were taller than 3.40 m. The 95%
confidence interval for the proportion of elephants in the population
that are taller than 3.40 m runs from 0.194 to 0.994.”

or, somewhat shorter:

”Based on a sample of 4 elephants, our estimate for the proportion
of elephants in the population that are taller than 3.40 m is 0.75
(95% CI: 0.194, 0.994).”

3.6 Take-away points

• The sampling distribution of a sample proportion is closely related to the
binomial distribution.

1Note in the output that by default, binom.test() chooses the null-hypothesis that the
population proportion is 0.5.

136



• With increasing sample size, the binomial distribution becomes normal,
hence the sampling distribution of a sample proportion also becomes
normal (Central Limit Theorem).

Key concepts

• Sampling distribution of a sample proportion
• Binomial distribution
• Binomial coefficient
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Chapter 4

Linear modelling:
introduction

4.1 Dependent and independent variables

In the previous two chapters we discussed single variables. In Chapter 2 we
discussed a numeric variable that had a certain mean, for instance we talked
about the height of elephants. In Chapter 3 we talked about a dichotomous
categorical variable: elephants being taller than 3.40 m or not, with a certain
proportion of tall elephants. This chapter deals with the relationship between
two variables, more specifically the relationship between two numeric variables.

In Chapter 1 we discussed the distinction between numeric, ordinal and
categorical variables. In linear modelling, there is also another important
distinction between variables: dependent and independent variables.
Dependency of a variable is not really a property of a variable but it is
the result of the data analyst’s choice. Let’s first think about relationships
between two variables. Determining whether a variable is to be treated as
independent or not, is often either a case of logic or a case of theory. When
studying the relationship between the height of a mother and that of her child,
the more logical it would be to see the height of the child as dependent on the
height of the mother. This is because we assume that the genes are transferred
from the mother to the child. The mother comes first, and the height of
the child is partly the result of the mother’s genes that were transmitted
during fertilisation. The height of a child depends in part on the height of
the mother. The variable that measures the result is usually taken as the
dependent variable. The theoretical cause or antecedent is usually taken as the
independent variable.

The dependent variable is often called the response variable. An independent
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variable is often called a predictor variable or simply predictor. Independent
variables are also often called explanatory variables. We can explain a very tall
child by the genes that it got from its very tall mother. The height of a child
is then the response variable, and the height of the mother is the explanatory
variable. We can also predict the adult height of a child from the height of the
mother.

The dependent variable is usually the most central variable. It is the variable
that we’d like to understand better, or perhaps predict. The independent
variable is usually an explanatory variable: it explains why some people have
high values for the dependent variable and other people have low values. For
instance, we’d like to know why some people are healthier than others. Health
may then be our dependent variable. An explanatory variable might be age
(older people tend to be less healthy), or perhaps occupation (working with
paint all day induces more health problems than working with students all day).

Sometimes we’re interested to see whether we can predict a variable. For
example, we might want to predict longevity. Age at death would then be our
dependent variable and our independent (predictor) variables might concern
lifestyle and genetic make-up.

Thus, we often see four types of relations:

• Variable 𝐴 affects/influences another variable 𝐵
• Variable 𝐴 causes variable 𝐵
• Variable 𝐴 explains variable 𝐵
• Variable 𝐴 predicts variable 𝐵

In all these four cases, variable 𝐴 is the independent variable and variable 𝐵 is
the dependent variable.

Note that in general, dependent variables can be either numeric, ordinal, or
categorical. Also independent variables can be numeric, ordinal, or categorical.

4.2 Linear equations

From secondary education you might remember linear equations. Suppose you
have two quantities, 𝑋 and 𝑌 , and there is a straight line that describes best
their relationship. An example is given in Figure 4.1. We see that for every
value of 𝑋, there is only one value of 𝑌 . Moreover, the larger the value of 𝑋,
the larger the value of 𝑌 . If we look more closely, we see that for each increase
of 1 unit in 𝑋, there is an increase of 2 units in 𝑌 . For instance, if 𝑋 = 1, we
see a 𝑌 -value of 2, and if 𝑋 = 2 we see a 𝑌 -value of 4. So if we move from
𝑋 = 1 to 𝑋 = 2 (a step of one on the 𝑋-axis), we move from 2 to 4 on the
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Figure 4.1: Straight line with intercept 0 and slope 2.

𝑌 -axis, which is an increase of 2 units. This increase of 2 units for every step
of 1 unit in 𝑋 is the same for all values of 𝑋 and 𝑌 . For instance, if we move
from 2 to 3 on the 𝑋-axis, we go from 4 to 6 on the 𝑌 -axis: an increase of again
2 units. This constant increase is typical for linear relationships. The increase
in 𝑌 for every unit increase in 𝑋 is called the slope of a straight line. In Figure
4.1, the slope is equal to 2.

The slope is one important feature of a straight line. The second important
feature of a straight line is the intercept. The intercept is the value of 𝑌 , when
𝑋 = 0. In Figure 4.1 we see that when 𝑋 = 0, 𝑌 is 0, too. Therefore the
intercept of this straight line is 0.

With the intercept and the slope, we completely describe this straight line: no
other information is necessary. Such a straight line describes a linear relationship
between 𝑋 and 𝑌 . The linear relationship can be formalised using a linear
equation. The general form of a linear equation for two variables 𝑋 and 𝑌 is
the following:

𝑌 = intercept + slope × 𝑋

For the linear relationship between 𝑋 and 𝑌 in Figure 4.1 the linear equation
is therefore

𝑌 = 0 + 2𝑋
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which can be simplified to

𝑌 = 2𝑋

With this equation, we can find the 𝑌 -value for all values of 𝑋. For instance, if
we want to know the 𝑌 -value for 𝑋 = 3.14, then using the linear equation we
know that 𝑌 = 2×3.14 = 6.28. If we want to know the 𝑌 -value for 𝑋 = 49876.6,
we use the equation to obtain 𝑌 = 2 × 49876.6 = 99753.2. In short, the linear
equation is very helpful to quickly say what the 𝑌 -value is on the basis of the
𝑋-value, even if we don’t have a graph of the relationship or if the graph does
not extent to certain 𝑋-values.

In the linear equation, we call 𝑌 the dependent variable, and 𝑋 the independent
variable. This is because the equation helps us determine or predict our value
of 𝑌 on the basis of what we know about the value of 𝑋. When we graph the
line that the equation represents, such as in Figure 4.1, the common way is to
put the dependent variable on the vertical axis, and the independent variable
on the horizontal axis.

Figure 4.2 shows a different linear relationship between 𝑋 and 𝑌 . First we look
at the slope: we see that for every unit increase in 𝑋 (from 1 to 2, or from 4 to
5) we see an increase of 0.5 in 𝑌 . Therefore the slope is equal to 0.5. Second,
we look at the intercept: we see that when 𝑋 = 0, 𝑌 has the value -2. So
the intercept is -2. Again, we can describe the linear relationship by a linear
equation, which is now:

𝑌 = −2 + 0.5𝑋

Linear relationships can also be negative, see Figure 4.3. There, we see that if
we move from 0 to 1, we see a decrease of 2 in 𝑌 (we move from 𝑌 = −2 to
𝑌 = −4), so −2 is our slope value. Because the slope is negative, we call the
relationship between the two variables negative. Further, when 𝑋 = 0, we see
a 𝑌 -value of -2, and that is our intercept. The linear equation is therefore:

𝑌 = −2 − 2𝑋

4.3 Linear regression

In the previous section, we saw perfect linear relationships between quantities
𝑋 and 𝑌 : for each 𝑋-value there was only one 𝑌 -value, and the values are all
described by a straight line. Such relationships we hope to see in physics, but
mostly see only in mathematics.
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Figure 4.2: Straight line with intercept -2 and slope 0.5.
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Figure 4.3: Straight line with intercept -2 and slope -2.
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In social sciences we hardly ever see such perfectly linear relationships between
quantities (variables). For instance, let us plot the relationship between yearly
income and the amount of Euros spent on holidays. Yearly income is measured in
thousands of Euros (kEuros), and money yearly spent on holidays is measured
in Euros. Let us regard money spent on holidays as our dependent variable
and yearly income as our independent variable (we assume money needs to be
saved before it can be spent). We therefore plot yearly income on the 𝑋-axis
(horizontal axis) and holiday spendings on the 𝑌 -axis (vertical axis). Let’s
imagine we find the data from 100 women between 30 and 40 years of age that
are plotted in Figure 4.4.
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Figure 4.4: Data on holiday spending.

In the scatter plot, we see that one woman has a yearly income of 100,000
Euros, and that she spends almost 1100 Euros per year on holidays. We also
see a couple of women who earn less, between 10,000 and 20,000 Euros a year,
and they spend between 200 and 300 Euros per year on holiday.

The data obviously do not form a straight line. However, we tend to think
that the relationship between yearly income and holiday spending is more or
less linear: there is a general linear trend such that for every increase of 10,000
Euros in yearly income, there is an increase of about 100 Euros.

Let’s plot such a straight line that represents that general trend, with a slope
of 100 straight through the data points. The result is seen in Figure 4.5. We
see that the line with a slope of 100 is a nice approximation of the relationship
between yearly income and holiday spendings. We also see that the intercept of
the line is around 100.
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Figure 4.5: Data on holiday spending with an added straight line.

Given the intercept and slope, the linear equation for the straight line
approximating the relationship is

HolidaySpendings = 100 + 100 × YearlyIncome

In summary, data on two variables may not show a perfect linear relationship,
but in many cases, a perfect straight line can be a very reasonable approximation
of the data. Another word for a reasonable approximation of the data is a
prediction model. Finding such a straight line to approximate the data points
is called linear regression. In this chapter we will see what method we can
use to find a straight line. In linear regression we describe the behaviour of
the dependent variable (the 𝑌 -variable on the vertical axis) on the basis of
the independent variable (the 𝑋-value on the horizontal axis) using a linear
equation. We say that we regress variable 𝑌 on variable 𝑋.

4.4 Residuals

Even though a straight line can be a good approximation of a data set consisting
of two variables, it is hardly ever perfect: there are always discrepancies between
what the straight line describes and what the data actually tell us.

For instance, in Figure 4.5, we see a woman, Sandra Schmidt, who makes 69 k
Euros a year and who spends 809 Euros on holidays. According to the linear
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equation that describes the straight line, a woman that earns 69 kEuros a year
would spend 100 + 100 × 69 = 786 Euros on holidays. The discrepancy between
the actual amount spent and the amount prescribed by the linear equation
equals 809 − 786 = 23 Euros. This difference is rather small and the same holds
for all the other women in this data set. Such discrepancies between the actual
amount spent and the amount as prescribed or predicted by the straight line
are called residuals or errors. The residual (or error) is the difference between
a certain data point (the actual value) and what the linear equation predicts.

Let us look at another fictitious data set where the residuals (errors) are a bit
larger. Figure 4.6 shows the relationship between variables 𝑋 and 𝑌 . The dots
are the actual data points and the blue straight line is an approximation of the
actual relationship. The residuals are also visualised: sometimes the observed 𝑌 -
value is greater than the predicted 𝑌 -value (dots above the line) and sometimes
the observed 𝑌 -value is smaller than the predicted 𝑌 -value (dots below the
line). If we denote the 𝑖th predicted 𝑌 -value (predicted by the blue line) as
𝑌𝑖 (pronounced as ‘y-hat-i’), then we can define the residual or error as the
discrepancy between the observed 𝑌𝑖 and the predicted 𝑌𝑖:

𝑒𝑖 = 𝑌𝑖 − 𝑌𝑖

where 𝑒𝑖 stands for the error (residual) for the 𝑖th data point .
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Figure 4.6: Data on variables 𝑋 and 𝑌 with an added straight line.

If we compute residual 𝑒𝑖 for all 𝑌 -values in the data set, we can plot them
using a histogram, with a density plot that smooths the histogram to convey
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the general pattern, see Figure 4.7. We see that the residuals are on average
0, and that the histogram is symmetrical. We see that most of the residuals
are around 0, and that means that most of the values 𝑌 -values are close to the
line (where the predicted values are). We also see some large residuals but that
there are not so many of these. Here, the residuals show a distribution with
mean 0 and variance of 13336 (i.e., a standard deviation of 115).

The general assumption of linear models is that the distribution of the residuals
is a normal distribution. Sometimes you see a distribution of residuals that
is clearly normal, sometimes you don’t. It’s a bit hard to see from a rough
histogram like this, but since the distribution is more or less symmetrical and
shows a bell-shaped form, the normality assumption seems reasonable.
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Figure 4.7: Histogram of the residuals (errors).

4.5 Least squares regression lines

You may ask yourself how to draw a straight line through the data points: How
do you decide on the exact slope and the exact intercept? And what if you don’t
want to draw the data points and the straight line by hand? That can be quite
cumbersome if you have more than 2000 data points to plot!

First, because we are lazy, we always use a computer to draw the data points
and the line, that we call a regression line. Second, since we could draw
many different straight lines through a scatter of points, we need a criterion
to determine a nice combination of intercept and slope. With such a criterion
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we can then let the computer determine the regression line with its equation for
us.
The criterion that we use in this chapter is called Least Squares, or Ordinary
Least Squares (OLS). To explain the Least Squares principle, look again at
Figure 4.6 where we see both small and large residuals. About half of them
are positive (above the blue line) and half of them are negative (below the blue
line).
The most reasonable idea is to draw a straight line that is more or less in the
middle of the 𝑌 -values, in other words, with about half of the residuals positive
and about half of them negative. Or perhaps we could say that on average, the
residuals should be 0. A third way of saying the same thing is that the sum of
the residuals should be equal to 0.
However, the criterion that all residuals should sum to 0 is not sufficient. In
Figure 4.8 we see a straight line with a slope of 0 where the residuals sum to 0.
However, this regression line does not make intuitive sense: it does not describe
the structure in the data very well. Moreover, we see that the residuals are
generally much larger than in Figure 4.6.
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Figure 4.8: Data on variables 𝑋 and 𝑌 with an added straight line. The sum
of the residuals equals 0.

We therefore need a second criterion to find a nice straight line. We want the
residuals to sum to 0, but also want the residuals to be as small as possible: the
discrepancies between what the linear equation predicts (the 𝑌 -values) and the
actual 𝑌 -values should be as small as possible.
So now we have two criteria: we want the sum of the residuals to be 0 (about
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half of them negative, half of them positive), and we want the residuals to be
as small as possible. We can achieve both of these when we use as our criterion
the idea that the sum of the squared residuals be as small as possible. Recall
from Chapter 1 that the sum of the squared deviations from the mean is closely
related to the variance. So if the sum of the squared residuals is as small as
possible, we know that the variance of the residuals is as small as possible. Thus,
as our criterion we can use the regression line for which the sum of the squared
differences between predicted and observed 𝑌 -values is as small as possible.

Figure 4.9 shows three different regression lines for the same data set. Figure
4.10 shows the respective distributions of the residuals. For the first line, we see
that the residuals sum to 0, for the residuals are on average 0 (the red vertical
line). However, we see quite large residuals. The residuals for the second line
are smaller: we see very small positive residuals, but the negative residuals are
still quite large. We also see that the residuals do not sum to 0. For the third
line, we see both criteria optimised: the sum of the residuals is zero and the
residuals are all very small. We see that for regression line 3, the sum of squared
residuals is at its minimum value. It can also be mathematically shown that if
we minimise the sum of squared differences between the predicted and observed
𝑌 -values, they automatically show a mean of 0, satisfying the first criterion.
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Figure 4.9: Three times the same data set, but with different regression lines.

In summary, when we want to have a straight line that describes our data best
(i.e., the regression line), we’d like a line such that the residuals are on average
0 (i.e, sum to 0), and where we see the smallest residuals possible. We reach
these criteria when we use the line in such a way that we have the lowest value
for the sum of the squared residuals possible. This line is therefore called the
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Figure 4.10: Histogram of the residuals (errors) for three different regression
lines, and the respective sums of squared residuals (SSR).

least squares or OLS regression line.

Technical details

There are generally two ways of finding the intercept and the slope values that
satisfy the Least Squares principle.

1. Numerical search Try some reasonable combinations of values for the
intercept and slope, and for each combination, calculate the sum of the
squared residuals. For the combination that shows the lowest value, try to
tweak the values of the intercept and slope a bit to find even lower values
for the sum of the squared residuals. Use some stopping rule otherwise
you keep looking forever.

2. Analytical approach For problems that are not too complex, like this
linear regression problem, there are simple mathematical equations to find
the combination of intercept and slope that gives the lowest sum of squared
residuals.

Using the analytical approach, it can be shown that the Least Squares slope can
be found by solving:

slope = ∑(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − ̄𝑌 )
∑(𝑋𝑖 − 𝑋̄)2 (4.1)
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and the Least Squares intercept can be found by:

intercept = ̄𝑌 − slope × 𝑋̄

where 𝑋̄ and ̄𝑌 are the means of the independent 𝑋𝑖 and dependent 𝑌𝑖
observations, respectively.

In daily life, we do not compute this by hand but let computers do it for us,
with software like for instance R.

4.6 Linear models

By performing a regression analysis of 𝑌 on 𝑋, we try to predict the 𝑌 -value
from a given 𝑋 on the basis of a linear equation. We try to find an intercept
and a slope for that linear equation such that our prediction is ‘best’. We define
‘best’ as the linear equation for which we see the lowest possible value for the
sum of the squared residuals (least squares principle).

Thus, the prediction for the 𝑖th value of 𝑌 (𝑌𝑖) can be computed by the linear
equation

𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖

where we use 𝑏0 to denote the intercept, 𝑏1 to denote the slope and 𝑋𝑖 as the
𝑖th value of 𝑋.
In reality, the predicted values for 𝑌 always deviate from the observed values of
𝑌 : there is practically always an error 𝑒 that is the difference between 𝑌𝑖 and
𝑌𝑖. Thus we have for the observed values of 𝑌

𝑌𝑖 = 𝑌𝑖 + 𝑒𝑖 = 𝑏0 + 𝑏1𝑋𝑖 + 𝑒𝑖

Typically, we assume that the residuals 𝑒 have a normal distribution with a
mean of 0 and a variance that is often unknown but that we denote by 𝜎2

𝑒 . Such
a normal distribution is denoted by 𝑁(0, 𝜎2

𝑒). Taking the linear equation and
the normally distributed residuals together, we have a model for the variables
𝑋 and 𝑌 .

𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖 + 𝑒𝑖 (4.2)
𝑒𝑖 ∼ 𝑁(0, 𝜎2

𝑒) (4.3)

A model is a specification of how a set of variables relate to each other. Note that
the model for the residuals, the normal distribution, is an essential part of the
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model. The linear equation only gives you predictions of the dependent variable,
not the variable itself. Together, the linear equation and the distribution of the
residuals give a full description of how the dependent variable depends on the
independent variable.

Note that the linear model prescribes that the residual always comes from the
same normal distribution with the same variance parameter 𝑁(0, 𝜎2

𝑒). It doesn’t
matter whether the predicted 𝑌 -value equals 10, 100 or -100: we expect that the
errors (the residuals) always show a distribution that is normal with the same
variation around the predicted variable. The prescription that the residuals
show a normal distribution is called the normality assumption. The assumption
that the variation around the predicted value is always of the same magnitude is
called homogeneity of residual variance. Both are important assumptions when
applying linear models. We will come back to them in Chapter 7.

The model prescribes not only that the residuals come from a normal
distribution, but also that they are random draws from the normal distribution.
That means that whether a residual is positive or negative, and whether it
is large or small, is completely unpredictable. The model equation describes
the predictable part of the data, the normal distribution of the residuals the
unpredictable part. If in some way, there is some systematic pattern in the
residuals, the model is incorrect. Any systematic pattern in the residuals is
called dependency, which will also be discussed further in Chapter 7.

A model may be an adequate description of how variables relate to each other or
it may not, that is for the data analyst to decide. If it is an adequate description,
it may be used to predict yet unseen data on variable 𝑌 (because we can’t see
into the future), or it may be used to draw some inferences on data that can’t
be seen, perhaps because of limitations in data collection. Remember Chapter
2 where we made a distinction between sample data and population data. We
could use the linear equation that we obtain using a random sample of data to
make predictions for data in the population. We delve deeper into that issue in
Chapter 5.

The model that we see in Equations (4.3) is a very simple form of the linear
model. The linear model that we see here is generally known as the simple
regression model: the simple regression model is a linear model for one numeric
dependent variable, an intercept, a slope for only one (hence ‘simple’) numeric
independent variable, and normally distributed residuals with a single variance
parameter 𝜎2

𝑒 . In the remainder of this book, we will see a great variety of
linear models: with one or more independent variables, with numeric or with
categorical independent variables, and with numeric or categorical dependent
variables. All these models can be seen as extensions of this simple regression
model. What they all have in common is that they aim to predict one dependent
variable from one or more independent variables using a linear equation.
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Note on the term linear

We saw thus far that linear models and linear regression are about straight lines.
But strictly speaking, the term linear in linear model refers to the fact that we
use a linear equation in the form of 𝑏0 +𝑏1𝑋. In the linear equation, we see that
the increase in Y is predicted by changes in X. For every change in X, we expect
to see a change in Y : we add something to the predicted Y. For every change
of 1 in X, we add the value of the slope to the predicted value of Y. In linear
regression, a basic form of a linear model, this simple idea results in a perfect
straight line between the predictor X and the dependent variable Y. However,
for more sophisticated linear models that we discuss later in this book, we will
see relationships that are not straight lines.

Linear models are called linear because they are based on linear equations
with an intercept and a slope, not because they result in straight lines for the
relationship between X and Y.

4.7 Linear regression in R
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Figure 4.11: Data set on number of cylinders (cyl) and miles per gallon (mpg)
in 32 cars.

Figure 4.11 shows the relationship between the number of cylinders (cyl) and
miles per gallon (mpg) in cars, based on a data set available in R under the
name mtcars. The blue line is the least squares regression line. The coefficients
for this line can be found with R using the following code:
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model <- mtcars %>%
lm(mpg ~ cyl, data = .)

model

In the code we first indicate that we start from the mtcars data frame. Next,
we use the lm() function to indicate that we want to apply the linear model
to these data. Next, we say that we want to model the variable mpg. The ∼
(‘tilde’) sign means ”is modelled by” or ”is predicted by”, and next we plug in
the independent variable cyl. Thus, this code says we want to model the mpg
variable by the cyl variable, or predict mpg scores by cyl. Next, because we
already indicated we use the mtcars data set, the data argument for the lm()
function should be left empty. Finally, we store the results in the object model.

In the last line of code we indicate that we want to see the results, that we
stored in model.

model <- mtcars %>%
lm(mpg ~ cyl, data = .)

model

##
## Call:
## lm(formula = mpg ~ cyl, data = .)
##
## Coefficients:
## (Intercept) cyl
## 37.885 -2.876

The output above shows us a repetition of the lm() analysis, and then two
coefficients. These are the regression coefficients that we wanted: the first is
the intercept, and the second is the slope. These coefficients are the parameters
of the regression model. Parameters are parts of a model that can vary from
data set to data set, but that are not variables (variable values vary within a
data set, parameter values do not). Here we use the linear model from Equation
(4.3) where 𝑏0, 𝑏1 and 𝜎2

𝑒 are parameters since they are different for different
data sets.

The output does not look very pretty. Using the tidy() function from the
broom package, we can get the same information about the analysis, and more:

library(broom)
model <- mtcars %>%
lm(mpg ~ cyl, data = .)

model %>%
tidy()
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## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 37.9 2.07 18.3 8.37e-18
## 2 cyl -2.88 0.322 -8.92 6.11e-10

R then shows two rows of values, one for the intercept and one for the slope
parameter for cyl. For now, we only look at the first two columns. In these
columns we find the least squares values for these parameters for this data set
on 32 cars that we are analysing here.

In the second column, called estimate, we see that the intercept parameter has
the value 37.9 (when rounded to 1 decimal) and the slope has the value -2.88.
Thus, with this output, the linear equation for the regression equation can be
filled in:

mpg = 37.9 − 2.88 × cyl + 𝑒

With this equation we can predict values for mpg for number of cylinders that
are not even in the data set displayed in Figure 4.11. For instance, that plot
does not show a car with 2 cylinders, but on the basis of the linear equation,
the best bet would be that such a car would run 37.9 − 2.88 × 2 = 32.14 miles
per gallon.

The model and the data can be plotted, as in Figure 4.11, using the code:

mtcars %>%
ggplot(aes(x = cyl, y = mpg)) +
geom_point() +
geom_smooth(se = FALSE, method = lm)

The OLS linear model parameters are in the estimate column of the R output,
but there are also a number of other columns: standard error, statistic (𝑡), and
𝑝-value, terms that we encountered earlier in Chapter 2. These columns will be
discussed further in Chapter 5.

4.8 Pearson correlation

For any set of two numeric variables, we can determine the least squares
regression line. However, it depends on the data set how well that regression
line describes the data. Figure 4.12 shows two different data sets on variables
𝑋 and 𝑌 . Both plots also show the least squares regression line, and they both
turn out to be exactly the same: 𝑌 = 100 + 10𝑋.
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Figure 4.12: Two data sets with the same regression line.

We see that the regression line describes data set A very well (left panel): the
observed dots are very close to the line, which means that the residuals are
very small. The regression line does a worse job for data set B (right panel)
since there are quite large discrepancies between the observed 𝑌 -values and
the predicted 𝑌 -values. Put differently, the regression equation can be used
to predict 𝑌 -values in data set A very well, almost without error, whereas the
regression line cannot be used to predict 𝑌 -values in data set B very precisely.
The regression line is also the least squares regression line for data set B, so any
improvement by choosing another slope or intercept is not possible.
Francis Galton was the first to think about how to quantify this difference in the
ability of a regression line to predict the dependent variable. Karl Pearson later
worked on this measure and therefore it came to be called Pearson’s correlation
coefficient. It is a standardised measure, so that it can be used to compare
different data sets.
In order to get to Pearson’s correlation coefficient, you first need to standardise
both the independent variable, 𝑋, and the dependent variable, 𝑌 . You
standardise scores by taking their values, subtract the mean from them, and
divide by the standard deviation (see Chapter 1). So, in order to obtain a
standardised value for 𝑋 = 𝑥 we compute 𝑧𝑋,

𝑧𝑋 = 𝑥 − 𝑋̄
𝜎𝑋

and in order to obtain a standardised value for 𝑌 = 𝑦 we compute 𝑧𝑌 ,
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𝑧𝑌 = 𝑦 − ̄𝑌
𝜎𝑌

.

Let’s do this both for data set A and data set B, and plot the standardised
scores, see Figure 4.13. If we then plot the least squares regression lines for
the standardised values, we obtain different equations. For both data sets, the
intercept is 0 because by standardising the scores, the means become 0. But
the slopes are different: in data set A, the slope is 0.997 and in data set B, the
slope is 0.376.

𝑍𝑌 = 0 + 0.997 × 𝑍𝑋
𝑍𝑌 = 0 + 0.376 × 𝑍𝑋

A B
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Figure 4.13: Two data sets, with different regression lines after standardisation.

These two slopes, the slope for the regression of standardised 𝑌 -values on
standardised 𝑋-values, are the correlation coefficients for data sets A and B,
respectively. For obvious reasons, the correlation is sometimes also referred to
as the standardised slope coefficient or standardised regression coefficient.

Correlation stands for the co-relation between two variables. It tells you how
well one variable can be predicted from the other using a regression line. The
correlation is bi-directional: the correlation between 𝑌 and 𝑋 is the same as
the correlation between 𝑋 and 𝑌 . For instance in Figure 4.13, if we would have
put the 𝑍𝑋-variable on the 𝑍𝑌 -axis, and the 𝑍𝑌 -variable on the 𝑍𝑋-axis, the
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slopes would be exactly the same. This is true because the variances of the 𝑌 -
and 𝑋-variables are equal after standardisation (both variances equal to 1).

Since a slope can be negative, a correlation can be negative too. Furthermore,
a correlation is always between -1 and 1. Look at Figure 4.13: the correlation
between 𝑋 and 𝑌 is 0.997. The dots are almost on a straight line. If the dots
would all be exactly on the straight line, the correlation would be 1.



−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04−0.04

−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99−0.99

−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42−0.42

2

1

2

2

1

1

1

2

90 100 110 90 100 110

−1000

−500

0

500

−1000

−500

0

500

X

Y

Figure 4.14: Various plots showing different correlations between variables X
and Y.

Figure 4.14 shows a number of scatter plots of 𝑋 and 𝑌 with different
correlations. Note that if dots are very close to the regression line, the
correlation can still be close to 0: if the slope is 0 (bottom-left panel), then one
variable cannot be predicted from the other variable, hence the correlation is
0, too.

Interactive Figure 4.15 can be used to get an idea of what a correlation means
in terms of the relationship between two variables. Change the correlation and
see what happens. When the correlation is 1, the dots are on a perfect straight
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line; when the correlation is 0, there is complete randomness.

Correlation
0 10.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.15: [Interactive] How well one variable can be predicted from a second
variable can be quantified using the Pearson correlation. It is the slope of the
linear regression when both variables are standardised. Change the value of the
correlation, and see how that affects the relationship between the variables 𝑋
and 𝑌 .

In summary, the correlation coefficient indicates how well one variable can be
predicted from the other variable. It is the slope of the regression line if both
variables are standardised. If prediction is not possible (when the regression
slope is 0), the correlation is 0, too. If the prediction is perfect, without errors
(no residuals) and with a slope unequal to 0, then the correlation is either -1
or +1, depending on the sign of the slope. The correlation coefficient between
variables 𝑋 and 𝑌 is usually denoted by 𝑟𝑋𝑌 for the sample correlation and
𝜌𝑋𝑌 (pronounced ‘rho’) for the population correlation.

4.9 Covariance

The correlation 𝜌𝑋𝑌 as defined above is a standardised measure for how much
two variables co-relate. It is standardised in such a way that it can never be
outside the (-1, 1) interval. This standardisation happened through the division
of 𝑋 and 𝑌 -values by their respective standard deviation. There exists also an
unstandardised measure for how much two variables co-relate: the covariance.
The correlation 𝜌𝑋𝑌 is the slope when 𝑋 and 𝑌 each have variance 1. When
you multiply correlation 𝜌𝑋𝑌 by a quantity indicating the variation of the two
variables, you get the covariance. This quantity is the product of the two
respective standard deviations.

The covariance between variables 𝑋 and 𝑌 , denoted by 𝜎𝑋𝑌 , can be computed
as:

𝜎𝑋𝑌 = 𝜌𝑋𝑌 × 𝜎𝑋 × 𝜎𝑌

For example, if the variance of 𝑋 equals 49 and the variance of 𝑌 equals 25, then
the respective standard deviations are 7 and 5. If the correlation between 𝑋 and
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𝑌 equals 0.5, then the covariance between 𝑋 and 𝑌 is equal to 0.5×7×5 = 17.5.
Similar to the correlation, the covariance of two variables indicates by how much
they co-vary. For instance, if the variance of 𝑋 is 3 and the variance of 𝑌 is
5, then a covariance of 2 indicates that 𝑋 and 𝑌 co-vary: if 𝑋 increases by
a certain amount, 𝑌 also increases. If you want to know how many standard
deviations 𝑌 increases if 𝑋 increases with one standard deviation, you can turn
the covariance into a correlation by dividing the covariance by the respective
standard deviations.

𝜌𝑋𝑌 = 𝜎𝑋𝑌
𝜎𝑋𝜎𝑌

= 2√
3
√

5 = 0.52

Similar to correlations and slopes, covariances can also be negative.
Instead of computing the covariance on the basis of the correlation, you can also
compute the covariance using the data directly. The formula for the covariance
is

𝜎𝑋𝑌 = ∑(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − ̄𝑌 )
𝑛

so it is the mean of the squared cross-products of two variables.1 Note that
the numerator bears close resemblance to the numerator of the equation that
we use to find the least squares slope, see Equation (4.1). This is not strange
since both the slope and the covariance say something about the relationship
between two variables. Also note that in the equation that we use to find the
least squares slope the denominator bears close relationship to the formula for
the variance, since 𝜎2

𝑋 = ∑(𝑋𝑖−𝑋̄)2

𝑛 (see Chapter 1). We could therefore rewrite
Equation (4.1) that finds the least squares or OLS slope as:

slope𝑂𝐿𝑆 = ∑(𝑋𝑖 − 𝑋̄)(𝑌𝑖 − ̄𝑌 )
∑(𝑋𝑖 − 𝑋̄)2

= 𝜎𝑋𝑌 × 𝑛
𝜎2

𝑋 × 𝑛
= 𝜎𝑋𝑌

𝜎2
𝑋

(4.4)

This shows how all three quantities slope, correlation and covariance say
something about the linear relationship between two variables. The slope

1Again, similar to what was said about the formula for the variance of a variable, on-line
you will often find the formula ∑(𝑋𝑖−𝑋̄)(𝑌𝑖− ̄𝑌 )

𝑛−1 . The difference is that here we are talking about
the definition of the covariance of two observed variables, and that elsewhere one talks about
trying to estimate the covariance between two variables in the population. Similar to the
variance, the covariance in a sample is a biased estimator of the covariance in the population.
To remedy this bias, we divide the sum of the cross-products not by 𝑛 but by 𝑛 − 1.
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Table 4.1: Computing cross-products for the covariance of two variables.

X Y X - meanX Y - meanY Crossproduct
-1 2 -0.6 2.2 -1.32
0 -1 0.4 -0.8 -0.32
1 -2 1.4 -1.8 -2.52
-2 1 -1.6 1.2 -1.92
0 -1 0.4 -0.8 -0.32

says how much the dependent variable increases if the independent variable
increases by 1, the correlation says how much of a standard deviation the
dependent variable increases if the independent variable increases by one
standard deviation (alternatively: the slope after standardisation), and the
covariance is the mean cross-product of two variables (alternatively: the
unstandardised correlation).

Numerical example of covariance, correlation and least square slope

Table 4.1 shows a small data set on two variables 𝑋 and 𝑌 with 5 observations.
The mean value of 𝑋 is -0.4 and the mean value of 𝑌 is -0.2. If we subtract
the respective mean from each observed value and multiply, we get a column of
cross-products. For example, take the first row: 𝑋 − 𝑋̄ = −1 − (−0.4) = −0.6
and 𝑌 − ̄𝑌 = 2 − (−0.2) = 2.20. If we multiply these numbers we get the
cross-product −0.6 × 2.20 = −1.32. If we compute all cross-products and sum
them, we get -6.40. Dividing this by the number of observations (5), yields the
covariance: -1.28.

If we compute the variances of 𝑋 and 𝑌 (see Chapter 1), we obtain 1.04 and 2.16,
respectively. Taking the square roots we obtain the standard deviations: 1.02
and 1.47. Now we can calculate the correlation on the basis of the covariance
as 𝜌𝑋𝑌 = 𝜎𝑋𝑌

𝜎𝑋𝜎𝑌
= −1.28

1.02×1.47 = −0.85.

We can also calculate the least squares slope as 𝜎𝑋𝑌
𝜎2

𝑋
= −1.28

1.04 = −1.23.
The original data are plotted in Figure 4.16 together with the regression line.
The standardised data and the corresponding regression line are plotted in
Figure 4.17. Note that the slopes are different, and that the slope of the
regression line for the standardised data is equal to the correlation.

4.10 Correlation, covariance and slopes in R

Let’s use the mtcars dataframe and compute the correlation between the
number of cylinders (cyl) and miles per gallon (mpg). We do that with the
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Figure 4.16: Data example and the regression line.
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Figure 4.17: Data example (standardised values) and the regression line.
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function cor():

mtcars %>%
select(cyl, mpg) %>%
cor()

## cyl mpg
## cyl 1.000000 -0.852162
## mpg -0.852162 1.000000

In the output we see a correlation matrix. On the diagonal are the correlations
of cyl and mpg with themselves, which are perfect (a correlation of 1). On the
off-diagonal, we see that the correlation between cyl and mpg equals -0.85. This
is a strong negative correlation, which means that generally, the more cylinders
a car has, the lower the mileage. We can also compute the covariance, with the
function cov():

mtcars %>%
select(cyl, mpg) %>%
cov()

## cyl mpg
## cyl 3.189516 -9.172379
## mpg -9.172379 36.324103

On the off-diagonal we see that the covariance between cyl and mpg equals
-9.17. On the diagonal we see the variances of cyl and mpg.
To determine the least squares slope for the regression line of mpg on cyl, we
divide the covariance by the variance of cyl (Equation (4.4)):

cov(mtcars$cyl, mtcars$mpg) / var(mtcars$cyl)

## [1] -2.87579

Note that both cov() and var() use 𝑛 − 1. Since this cancels out if we do the
division, it doesn’t matter whether we use 𝑛 or 𝑛 − 1.
If we first standardise the data with the function scale() and then compute
the least squares slope, we get

z_mpg <- mtcars$mpg %>% scale() # standardise mpg
z_cyl <- mtcars$cyl %>% scale() # standardise cyl

cov(z_mpg, z_cyl) / var(z_cyl)
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## [,1]
## [1,] -0.852162

cor(z_mpg, z_cyl)

## [,1]
## [1,] -0.852162

cov(z_mpg, z_cyl)

## [,1]
## [1,] -0.852162

We see from the output that the slope coefficient for the standardised situation
is equal to both the correlation and the covariance of the standardised values.

The same slope coefficient can of course also be obtained with a linear regression
analysis using the standardised values:

tibble(z_mpg, z_cyl) %>%
lm(z_mpg ~ z_cyl, data = .)

##
## Call:
## lm(formula = z_mpg ~ z_cyl, data = .)
##
## Coefficients:
## (Intercept) z_cyl
## 0.0000000000000006083 -0.8521619594266127695

In research practice one often wants to do inference on a correlation: Is the
correlation that we find in a sample indicative of a correlation in the population,
and if so, how large would that population correlation be?

In the above example, the correlation between the number of cylinders in a car
and the miles per gallon was -0.85. This is the sample correlation, based on
the sample data available in the mtcars dataset. If we want to test the null-
hypothesis that the population correlation between the number of cylinders and
miles per gallon is 0, we can do that in R with cor.test():

cor.test(mtcars$cyl,
mtcars$mpg)
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##
## Pearson's product-moment correlation
##
## data: mtcars$cyl and mtcars$mpg
## t = -8.9197, df = 30, p-value = 0.0000000006113
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.9257694 -0.7163171
## sample estimates:
## cor
## -0.852162

At the end of the output, you find the correlation again, -0.85. In addition, we
see a null-hypothesis test in the form of a t-test and a 95% confidence interval.
Based on this output we can report:

”The correlation between the number of cylinders in a car
and the miles per gallon is significantly different from 0,
𝑡(30) = −8.92, 𝑝 < 0.001. The 95% confidence interval for
the correlation in the population is between -0.93 and -0.72. ”

4.11 Explained and unexplained variance

So far in this chapter, we have seen relationships between two variables: one
dependent variable and one independent variable. The dependent variable we
usually denote as 𝑌 , and the independent variable we denote by 𝑋. The
relationship was modelled by a linear equation: an equation with an intercept
𝑏0 and a slope parameter 𝑏1:

𝑌 = 𝑏0 + 𝑏1𝑋

Further, we argued that in most cases, the relationship between 𝑋 and 𝑌 cannot
be completely described by a straight line. Not all of the variation in 𝑌 can be
explained by the variation in 𝑋. Therefore, we have residuals 𝑒, defined as the
difference between the observed 𝑌 -value and the 𝑌 -value that is predicted by
the straight line, (denoted by 𝑌 ):

𝑒 = 𝑌 − 𝑌

Therefore, the relationship between 𝑋 and 𝑌 is denoted by a regression equation,
where the relationship is approached by a linear equation, plus a residual part
𝑒:
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𝑌 = 𝑏0 + 𝑏1𝑋 + 𝑒

The linear equation gives us only the predicted 𝑌 -value, 𝑌 :

𝑌 = 𝑏0 + 𝑏1𝑋

We’ve also seen that the residual 𝑒 is assumed to have a normal distribution,
with mean 0 and variance 𝜎2

𝑒 :

𝑒 ∼ 𝑁(0, 𝜎2
𝑒)

Remember that linear models are used to explain (or predict) the variation in 𝑌 :
why are there both high values and low values for 𝑌 ? Where does the variance
in 𝑌 come from? Well, the linear model tells us that the variation is in part
explained by the variation in 𝑋. If 𝑏1 is positive, we predict a relatively high
value for 𝑌 for a high value of 𝑋, and we predict a relatively low value for 𝑌
if we have a low value for 𝑋. If 𝑏1 is negative, it is of course in the opposite
direction. Thus, the variance in 𝑌 is in part explained by the variance in 𝑋,
and the rest of the variance can only be explained by the residuals 𝑒.

Var(𝑌 ) = Var(𝑌 ) + Var(𝑒) = Var(𝑏0 + 𝑏1𝑋) + 𝜎2
𝑒

Because the residuals do not explain anything (we don’t know where these
residuals come from), we say that the explained variance of 𝑌 is only that part
of the variance that is explained by independent variable 𝑋: Var(𝑏0 +𝑏1𝑋). The
unexplained variance of 𝑌 is the variance of the residuals, 𝜎2

𝑒 . The explained
variance is often denoted by a ratio: the explained variance divided by the total
variance of 𝑌 :

Var𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 = Var(𝑏0 + 𝑏1𝑋)
Var(𝑌 ) = Var(𝑏0 + 𝑏1𝑋)

Var(𝑏0 + 𝑏1𝑋) + 𝜎2𝑒

From this equation we see that if the variance of the residuals is large, then the
explained variance is small. If the variance of the residuals is small, the variance
explained is large.

4.12 More than one predictor

In regression analysis, and in linear models in general, we try to make the
explained variance as large as possible. In other words, we try to minimise the
residual variance, 𝜎2

𝑒 . One way to do that is to use more than one independent
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variable. If not all of the variance in 𝑌 is explained by 𝑋, then why not include
multiple independent variables?
Let’s use an example with data on the weight of books, the size of books (area),
and the volume of books. These data are available in R, and we will show how
to perform the following analyses in a later section. Let’s try first to predict
the weight of a book, weight, on the basis of the volume of the book, volume.
Suppose we find the following regression equation and a value for 𝜎2

𝑒 :

weight = 107.7 + 0.71 × volume + 𝑒
𝑒 ∼ 𝑁(0, 15362)

In the data set, the variance of the weight, Var(weight) is equal to 72274. Since
we also know the variance of the residuals (15362), we can solve for the variance
explained by volume:

Var(weight) = 72274 = Var(107.7 + 0.7 × volume) + 15362
Var(107.7 + 0.7 × volume) = 72274 − 15362 = 56912

So the proportion of explained variance is equal to 56912
72274 = 0.79. This is quite a

high proportion: nearly all of the variation in the weight of books is explained
by the variation in volume.

But let’s see if we can explain even more variance if we add an extra independent
variable. Suppose we know the area of each book. We expect that books with
a large surface area weigh more. Our linear equation then looks like this:

weight = 22.4 + 0.71 × volume + 0.5 × area + 𝑒
𝑒 ∼ 𝑁(0, 6031)

How much of the variance in weight does this equation explain? The amount of
explained variance equals the variance of weight minus the residual variance:
72274 − 6031 = 66243. The proportion of explained variance is then equal to
66243
72274 = 0.92. So the proportion of explained variance has increased!
Note that the variance of the residuals has decreased; this is the main reason
why the proportion of explained variance has increased. By adding the extra
independent variable, we can explain some of the variance that without this
variable could not be explained! In summary, by adding independent variables
to a regression equation, we can explain more of the variance of the dependent
variable. A regression analysis with more than one independent variable we
call multiple regression. Regression with only one independent variable is called
simple regression.
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4.13 R-squared

With regression analysis, we try to explain the variance of the dependent
variable. With multiple regression, we use more than one independent variable
to try to explain this variance. In regression analysis, we use the term R-squared
to refer to the proportion of explained variance, usually denoted with the
symbol 𝑅2. The unexplained variance is of course the variance of the residuals,
Var(𝑒), usually denoted as 𝜎2

𝑒 . So suppose the variance of dependent variable
𝑌 equals 200, and the residual variance in a regression equation equals say 80,
then 𝑅2 or the proportion of explained variance is (200 − 80)/200 = 0.60.

𝑅2 = 𝜎2
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑/𝜎2

𝑌
= (𝜎2

𝑌 − 𝜎2
𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑)/𝜎2

𝑌
= (𝜎2

𝑌 − 𝜎2
𝑒)/𝜎2

𝑌 (4.5)

This is the definition of R-squared at the population level, where we know the
exact values of the variances. However, we do not know these variances, since
we only have a sample of all values.
As we saw in Section 4.5, in a regression analysis, the intercept and slope
parameters are found by minimising the sum of squares of the residuals. Since
the variance of the residuals is based on this sum of squares, in any regression
analysis, the variance of the residuals is always as small as possible. The values
of the parameters for which the residual variance is smallest, are the least squares
regression parameters. And if the variance of the residuals is always minimised
in a regression analysis, the explained variance is always maximised!
This is a good thing, since we want to have a model that makes the smallest
errors possible. However, there is also a danger that we are too optimistic
drawing conclusions about the population based on only a limited data sample.
Maybe the best linear regression in the sample is not the same as the best linear
regression in the population data.
Because in any least squares regression analysis based on a sample of data,
the explained variance is always maximised, we may overestimate the variance
that is explained in the population data. In regression analysis, we therefore
very often use an adjusted R-squared that takes this possible overestimation
(inflation) into account. The adjustment is based on the number of independent
variables and sample size.
The formula is

𝑅2
𝑎𝑑𝑗 = 1 − (1 − 𝑅2) 𝑛 − 1

𝑛 − 𝑝 − 1
where 𝑛 is sample size and 𝑝 is the number of independent variables.
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The more independent variables you have (𝑝), and the smaller your data set (𝑛),
the larger the difference between the R-squared and the adjusted R-squared.

Computational example

For example, if 𝑅2 equals 0.60 and we have a sample size of 100, and 2
independent variables, the adjusted 𝑅2 is equal to 1 − (1 − 0.60) 100−1

100−2−1 =
1 − (0.40) 99

97 = 0.59. Thus, the estimated proportion of variance explained at
population level, corrected for inflation, equals 0.59. Because 𝑅2 is inflated,
the adjusted 𝑅2 is never larger than the unadjusted R-squared.

𝑅2
𝑎𝑑𝑗 ≤ 𝑅2

4.14 Multiple regression in R

Let’s use the book data and run a multiple regression in R. The data set is called
allbacks and is available in the R package DAAG (you may need to install that
package first). The code looks very similar to simple regression, except that we
now specify two independent variables, volume and area, instead of one. We
combine these two independent variables using the +-sign. Below we see the
code and the output:

library(DAAG)
library(broom)
model <- allbacks %>%
lm(weight ~ volume + area, data = .)

model %>%
tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 22.4 58.4 0.384 0.708
## 2 volume 0.708 0.0611 11.6 0.0000000707
## 3 area 0.468 0.102 4.59 0.000616

There we see an intercept, a slope parameter for volume and a slope parameter
for area. Remember from Section 4.2 that the intercept is the predicted value
when the independent variable has value 0. This extends to multiple regression:
the intercept is the predicted value when the independent variables all have
value 0. Thus, the output tells us that the predicted weight of a book that has
a volume of 0 and an area of 0, is 22.4. The slopes tell us that for every unit
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increase in volume, the predicted weight increases by 0.708, and for every unit
increase in area, the predicted weight increases by 0.468.

So the linear model looks like:

weight = 22.4 + 0.708 × volume + 0.468 × area + 𝑒

We can use this equation to make predictions about the weight of a particular
book. For example, the predicted weight of a book that has a volume of 10 and
an area of 5, the expected weight is equal to 22.4+0.708×10+0.468×5 = 31.82.
In R, the R-squared and the adjusted R-squared can be obtained by first making
a summary of the results, and then accessing these statistics directly.

model %>% summary() %>%
pluck("r.squared")

## [1] 0.9284738

model %>% summary() %>%
pluck("adj.r.squared")

## [1] 0.9165527

The output tells you that the R-squared equals 0.93 and the adjusted R-squared
0.92. The variance (actually, the standard deviation sigma) of the residuals can
also be found in the summary object, where it is called sigma. If you square
that value, you get the variance of the residuals.

model %>% summary() %>%
pluck("sigma") %>%
.^2

## [1] 6031.052

4.15 Multicollinearity

In general, if you add independent variables to a regression equation, the
proportion explained variance, 𝑅2, increases. Suppose you have the following
three regression equations for the relationship between the weight of a book
and its volume and area:
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Table 4.2: Part of Cape Fur Seal data.

age weight heart
33 27.5 127.7
10 24.3 93.2
10 22.0 84.5
10 18.5 85.4
12 28.0 182.0
18 23.8 130.0

weight = 𝑏0 + 𝑏1 × volume + 𝑒
weight = 𝑏0 + 𝑏1 × area + 𝑒
weight = 𝑏0 + 𝑏1 × volume + 𝑏2 × area + 𝑒

If we carry out these three analyses, we obtain an 𝑅2 of 0.8026 if we only use
volume as predictor, and an 𝑅2 of 0.1268 if we only use area as predictor. So
perhaps you’d think that if we take both volume and area as predictors in the
model, we would get an 𝑅2 of 0.8026 + 0.1268 = 0.9294. However, if we carry
out the multiple regression with volume and area, we obtain an 𝑅2 of 0.9285,
which is slightly less! This is not a rounding error, but results from the fact
that there is a correlation between the volume of a book and the area of a book.
Here it is a tiny correlation of 0.002, but nevertheless it affects the proportion
of variance explained when you use both these variables.

Let’s look at what happens when independent variables are strongly correlated.
Table 4.2 shows measurements on a breed of seals (only measurements on the
first 6 seals are shown). These data are in the dataframe cfseals in the package
DAAG.

Often, the age of an animal is gauged from its weight: we assume that heavier
seals are older than lighter seals. If we carry out a simple regression of age on
weight, we get the output

library(DAAG)
out1 <- cfseal %>%
lm(age ~ weight , data = .)

out1 %>% tidy()

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>

171



## 1 (Intercept) 11.4 4.70 2.44 2.15e- 2
## 2 weight 0.817 0.0716 11.4 4.88e-12

var(cfseal$age) # total variance of age

## [1] 1090.855

sigma <- out1 %>% summary() %>%
pluck("sigma") %>%
.^2 # taking the square

resulting in the equation:

age = 11.4 + 0.82 × weight + 𝑒
𝑒 ∼ 𝑁(0, 200)

From the data we calculate the variance of age, and we find that it is 1090.86.
The variance of the residuals is 200, so that the proportion of explained variance
is (1090.86 − 200)/1090.86 = 0.82.
Since we also have data on the weight of the heart alone, we could try to predict
the age from the weight of the heart. Then we get output

out2 <- cfseal %>%
lm(age ~ heart , data = .)

out2 %>%
tidy()

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 20.6 5.21 3.95 0.000481
## 2 heart 0.113 0.0130 8.66 0.00000000209

sigma <- out2 %>% summary() %>%
pluck("sigma") %>%
.^2 # taking the square

that leads to the equation:

age = 20.6 + 0.11 × heart + 𝑒
𝑒 ∼ 𝑁(0, 307)
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Here the variance of the residuals is 307, so the proportion of explained variance
is (1090.86 − 307)/1090.86 = 0.72.
Now let’s see what happens if we include both total weight and weight of the
heart into the linear model. This results in the following output

out3 <- cfseal %>%
lm(age ~ heart + weight , data = .)

out3 %>% tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 10.3 4.99 2.06 0.0487
## 2 heart -0.0269 0.0373 -0.723 0.476
## 3 weight 0.993 0.254 3.91 0.000567

sigma <- out3 %>% summary() %>%
pluck("sigma") %>%
.^2 # taking the square

with model equation:

age = 10.3 − 0.03 × heart + 0.99 × weight + 𝑒
𝑒 ∼ 𝑁(0, 204)

Here we see that the regression parameter for weight has increased from 0.82
to 0.99. At the same time, the regression parameter for heart has decreased,
has even become negative, from 0.11 to -0.03. From this equation we see that
there is a strong relationship between the total weight and the age of a seal, but
on top of that, for every unit increase in the weight of the heart, there is a very
small decrease in the expected age. The slope for heart has become practically
negligible, so we could say that on top of the effect of total weight, there is no
remaining relationship between the weight of the heart and age. In other words,
once we can use the total weight of a seal, there is no more information coming
from the weight of the heart.

This is because the total weight of a seal and the weight of its heart are strongly
correlated: heavy seals generally have heavy hearts. Here the correlation turns
out to be 0.96, almost perfect! This means that if you know the total weight
of a seal, you practically know the weight of its heart. This is logical of course,
since the total weight is a composite of all the weights of all the parts of the
animal: the total weight variable includes the weight of the heart.
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Here we have seen, that if we use multiple regression, we should be aware of how
strongly the independent variables are correlated. Highly correlated predictor
variables do not add extra predictive power. Worse: they can cause problems in
obtaining regression parameters because it becomes hard to tell which variable
is more important: if they are strongly correlated (positive or negative), then
they measure almost the same thing!

A situation where there are correlations among the independent variables is
called multicollinearity. When two predictor variables are perfectly correlated,
either 1 or -1, regression is no longer possible, the software stops and you
get a warning. But also if the correlation is much smaller, you should be
very careful interpreting the regression parameters. With strongly correlated
variables, select the variable that makes most theoretical sense and consider to
omit the other one.

In our seal data, there is a very high correlation between the variables heart and
weight that can cause computational and interpretation problems. It makes
theoretically more sense to use only the total weight variable, since when seals
get older, all their organs and limbs grow larger, not just their heart. It also
makes sense in terms of explained variance: weight on its own explains more
variance (82%) than heart on its own (72%).

4.16 Simpson’s paradox

With multiple regression, you may uncover very surprising relationships between
two variables, that can never be found using simple regression. In the previous
section, we saw that there is a general positive relationship between the weight
of a seal’s heart and its age. However, when we included the overall weight of
the seal into the regression, we saw that suddenly the regression coefficient for
the heart variable became small and changed direction from positive to negative.
It is therefore not a trivial matter to decide which variables to add to a linear
equation.

Here’s an example from Paul van der Laken2, who simulated a data set on the
topic of Human Resources (HR). It nicely illustrates that you have to be very
careful interpreting the regression coefficients in multiple regression, and linear
models in general.

Assume you run a company with 1000 employees and you have asked all of
them to fill out a Big Five personality survey. Per individual, you therefore
have a score depicting their personality characteristic Neuroticism, which can
run from 0 (not at all neurotic) to 7 (very neurotic). Now you are interested
in the extent to which this Neuroticism of employees relates to their salary
(measured in Euros per year).

2https://paulvanderlaken.com/2017/09/27/simpsons-paradox-two-hr-examples-with-r-
code/
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We carry out a simple regression, with salary as our dependent variable and
Neuroticism as our independent variable. We then find the following regression
equation:

salary = 45543 + 4912 × Neuroticism + 𝑒

Figure 4.18 shows the data and the regression line. From this visualisation it
looks like neuroticism relates positively to yearly salary: more neurotic people
earn more salary than less neurotic people. More precisely, we see in the
equation that for every unit increase on the Neuroticism scale, the predicted
salary increases with 4912 Euros a year.
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Figure 4.18: Simulated HR data set.

Next we run a multiple regression analysis. We suspect that one other very
important predictor for how much people earn is their educational background.
The Education variable has three levels: 0, 1 and 2. If we include both
Education and Neuroticism as independent variables and run the analysis,
we obtain the following regression equation:

salary = 50935 − 3176 × Neuroticism + 20979 × Education + 𝑒

Note that we now find a negative slope parameter for the effect of Neuroticism!
This implies there is a relationship in the data where neurotic employees earn
less than their less neurotic colleagues! How can we reconcile this seeming
paradox? Which result should we trust: the one from the simple regression, or
the one from the multiple regression?
The answer is: neither. Or better: both! Both analyses give us different pieces
of information.
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Let’s look at the last equation more closely. Suppose we make a prediction
for a person with a low educational background (Education = 0). Then the
equation tells us that the expected salary of a person with a neuroticism score
of 0 is around 50935, and of a person with a neuroticism score of 1 is around
47759. That’s an increase of -3176, which is the slope for Neuroticism in the
multiple regression. So for employees with low education, the more neurotic
employees earn less! If we do the same exercise for average education and high
education employees, we find exactly the same pattern: for each unit increase
in neuroticism, the predicted yearly salary drops by 3176 Euros.

It is true that in this company, the more neurotic persons generally earn a higher
salary. But if we take into account educational background, the relationship
flips around. This can be seen from Figure 4.19: looking only at the people
with a low educational background (Education = 0, the red data points),
then the more neurotic people earn less than their less neurotic colleagues with
a similar educational background. And the same is true for people with an
average education (Education = 1, the green data points) and a high education
(Education = 2, the blue data points). Only when you put all employees
together in one group, you see a positive relationship between Neuroticism
and salary.

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

0 2 4 6
Neuroticism

S
al

ar
y

Education

0

1

2

Figure 4.19: Same HR data, now with markers for different education levels.

The paradox is resolved when we look more closely at Figure 4.19. Look at
the red dots in the bottom left of the graph: most of them have relatively
low scores on the Neuroticsm scale (most of them less than 4). Now look
at the green dots at the top right: most of them have relatively high scores
on the Neuroticism scale (practically all of them more than 2). The blue
dots show average Neuroticism scores. Thus, there seems to be a positive
correlation between the level of education and neuroticism: employees with
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higher education levels are also more neurotic. Again, similar to the previous
section, we see that a correlation between independent variables can cause
problems with the interpretation. Yes, there is a general tendency that neurotic
people earn more money. But that is not due to their neuroticism. It is the
educational background that explains the differences in salary, and because
neuroticism tends to be correlated with educational background, there seems
to be a positive relationship between neuroticism and salary. However, if you
take into account education (i.e., put Education into the model as an extra
predictor), the positive correlation disappears, even becomes negative. This
negative correlation means that within the educational levels, there is a tendency
that neurotic people earn less than non-neurotic people.

Diving deeper into multiple regression: confounders, mediators and
colliders

Figure 4.20 shows the conceptual model of how the world might work: education
has an effect on neuroticism: the higher the education level, the more neurotic
people are. But neuroticism in and of itself also influences salary: given a certain
education level, more neuroticism leads to a lower salary. Note that this is only
a theory, you might have a better idea about how these variables interact in the
world.

When noting the positive correlation between neuroticism and salary, you
might conclude that more neurotic people earn more money than less neurotic
people. But the figure shows that education completely explains that positive
relationship: because high education people have higher neuroticism scores (an
arrow pointing from education to neuroticism), and because high education
people have bigger salaries (an arrow pointing from education to salary),
there appears to be positive relationship between neuroticism and salary.
The positive relationship is however completely explained by the effects of
education. Education is called here a confounder variable: a variable that
induces a correlation between two other variables. In general, it is always good
to add a confounder variable to your multiple regression. Looking at the effect
of neuroticism on salary and including education, we see that we get to the
truth: that there is actually a negative correlation between neuroticism and
salary when you look at the education levels separately.

However, when you are interested in establishing the effect of education on
salary, we should not use the neuroticism variable in the regression. That is
because neuroticism is a mediator variable in the model: it is in the middle
between education and salary and therefore mediates the effect of education on
salary. To some extent neuroticism explains the correlation between education
and salary: education makes people more neurotic, and neuroticism has in turn
a negative effect on salary, hence it mediates a negative effect of education on
salary. In addition there is non-mediated or direct effect of education on salary
that is positive and strong. Taken together, the weak negative relationship
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mediated by neuroticism and the strong direct positive relationship result in
a positive correlation. In general, in multiple regression, one should not add
mediating variables in a regression analysis. Thus, when analysing the effect of
education on salary, and you believe that the model in Figure 4.20 represents
the state of the world, you should not include neuroticism into the regression
analysis.

So far we talked about confounder and mediator variables. There is also a third
kind: a collider variable. An example of a collider is when you are interested in
the effect of education on neuroticism. If the model in Figure 4.20 is the correct
one, both education and neuroticism have an effect on a third variable: salary.
If you are interested in the effect of education on neuroticism, you should not
add a variable that is affected by both these variables. An easy explanation of
why you should not add collider variables into your regression analysis is based
on a basketball example. If we look at the top 100 best professional basketball
players, we might see that the smaller players are also the more skilled ones.
This is not necessarily true for all people in the world that play basketball. In
everyday life, there might be no connection between a person’s height and their
skill. It is because taller people have a higher chance of becoming a professional
than shorter people, and because more skilled players have a higher chance
of becoming a professional than less skilled ones, you end up with a negative
correlation between height and skill when you only look at the professional
players. That’s because people who are not exceptionally tall, will have to be
exceptionally skilled, whereas people who are not exceptionally skilled, will have
to be exceptionally tall to become drafted as a professional and become one of
the best. Returning to our employee data: if we are interested in the effect of
education on neuroticism, and we control for salary, we will most likely see a
correlation that we are not interested in. That’s because people end up in the
lowest pay scale either because they have no or very low levels of education,
or if they have mental problems (high neuroticism score). People within each
pay-scale therefore might show a correlation between neuroticism and education
level that is not particularly informative about causation.

Thinking about confounders, colliders and mediators helps us think about the
problem, and helps us decide in what cases to add a variable in our regression
analysis, and when it is best not to. For more on these concepts, look into the
literature on causal inference, for instance Counterfactuals and Causal Inference:
Methods and Principles for Social Research, by Morgan and Winship (2014), or
Causal Inference in Statistics: A primer, by Pearl et al. (2016).

Simpson’s paradox tells us that we should always be careful when interpreting
positive and negative correlations between two variables: what might be true
at the total group level, might not be true at the level of smaller subgroups.
Multiple linear regression helps us investigate correlations more deeply and
uncover exciting relationships between multiple variables.
Simpson’s paradox helps us in interpreting the slope coefficients in multiple
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neuroticism

salaryeducation

Figure 4.20: A path diagram for the assumed relationship between education,
salary and neuroticism in the real world.

regression. In simple regression, when we only have one independent variable,
we saw that the slope for an independent variable 𝐴 is the increase in the
dependent variable if we increase variable 𝐴 by one unit. In multiple regression,
we have multiple independent variables, say 𝐴, 𝐵 and 𝐶. The interpretation for
the slope coefficient for variable 𝐴 is then the increase in the dependent variable
if we increase variable 𝐴 by one unit, with the other independent variables 𝐵
and 𝐶 held constant. For example, the slope for variable 𝐴 is the increase when
we take particular values for variables 𝐵 and 𝐶, say 𝐵 = 5 and 𝐶 = 7.

Multiple regression therefore plays an important part in studying causation.
Suppose that a researcher finds in South-African beach data that on days with
high ice cream sales there are also more shark attacks. Might this indicate
that there is a causal relationship between ice cream sales and shark attacks?
Might bellies full of ice cream be more attractive to sharks? Or when there
are many shark attacks, might people prefer eating ice cream over swimming?
Alternatively, there might be a third variable that explains both the shark
attacks and the ice cream sales: temperature! Sharks attack during the summer
when temperature is high, and that’s also the time people eat more ice cream.
There is no causal relationship, since if you only look at data from sunny summer
days (holding temperature constant), you don’t see a relationship between shark
attacks and ice cream sales (just many shark attacks and high ice cream sales).
And if you only look at cold wintry days, you also see no relationship (no
shark attacks and no ice cream sales). But if you take all days into account,
you see a relationship between shark attacks and ice cream sales. Because this
correlation is non-causal and explained by the third variable temperature, we
call this correlation a spurious correlation. The spurious correlation is induced
by the confounder variable temperature.

This spurious correlation is plotted in Figure 4.21. If you look at all the data
points at once, you see a steep slope in the least squares regression line for
shark attacks and ice cream sales. However, if you hold temperature constant
by looking at only the light blue data points (high temperatures), there is no
linear relationship. Neither is there a linear relationship when you only look at
the dark blue data points (low temperatures).
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Figure 4.21: A spurious correlation between the number of shark attacks and
ice cream sales.

4.17 Take-away points

• A simple linear equation represents a straight line.

• A straight line has an intercept and a slope.

• The intercept is the value of 𝑌 given that 𝑋 = 0.

• Data usually do not show a straight line, but a straight line might be a
good approximation (prediction model) for the data.

• Finding a reasonable straight line is called regression.

• A residual is the difference between an observed 𝑌 -value and the predicted
𝑌 -value.

• Finding the best regression line is usually based on the least squares
principle.

• Correlation stands for the co-relation between two variables. It tells you
how well one variable can be predicted from the other using a linear
equation.

• Correlation is standardised to be between -1 and 1. It is the slope of the
regression line for standardised 𝑋- and 𝑌 -values.

• Covariance is an unstandardised measure for the co-relation.
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• Unexplained variance is the variance of the residuals.

• Explained variance is total variance of the dependent variable minus the
residual variance.

• R-squared is the proportion of explained variance.

• It is possible to include more than one independent variable in a linear
model. We then talk about multiple regression.

• It is not wise to include two independent variables that are highly
correlated with each other. Having correlations among independent
variables is called collinearity.

• The relationship between one independent variable and the dependent
variable can change, depending on what other independent variables
are included in the regression model. An extreme example of this is
Simpson’s paradox. Whether to include or exclude variables from a
regression analysis should be based on the theoretical model that lies
behind the analysis.

Key concepts

• Dependent and independent variables
• Intercept
• Slope
• Regression
• Residual
• Ordinary Least Squares
• Correlation coefficient
• Explained and unexplained variance
• 𝑅2 (R-squared)
• Multiple regression
• Multicollinearity
• Simpson’s paradox
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Chapter 5

Inference for linear models

In Chapter 4 on regression we saw how a linear equation can describe a data
set: the linear equation describes the behaviour of one variable, the dependent
variable, on the basis of one or more other variables, the independent variable(s).
Sometimes we are indeed interested in the relationship between two variables in
one given data set. For instance, a primary school teacher wants to know how
well the exam grades in her class of last year predict how well the same students
do on another exam a year later.

But very often, researchers are not interested in the relationships between
variables in one data set on one specific group of people, but interested in the
relationship between variables in general, not limited to only the observed data.
For example, a researcher would like to know what the relationship is between
the temperature in a brewery and the amount of beer that goes into the beer
bottles. In order to study the effect of temperature on volume, the researcher
measures the volume of beer in a limited collection of 200 bottles under standard
conditions of 20 degrees Celsius and determines from log files the temperature
in the factory during production for each measured bottle. The linear equation
might be volume = 32.35 − 0.1207 × temp + 𝑒, see Figure 5.1. Thus, for every
unit increase in degrees Celsius, say from 20 to 21 degrees, the volume of beer
that is measured increases by -0.1207 centilitres, or put differently, the volume
of beer decreases by 0.1207.

But the researcher is not at all interested in these 200 bottles specifically:
the question is what would the linear equation be if the researcher had used
information about all bottles produced in the same factory? In other words,
we may know about the linear relationship between temperature and volume
in a sample of bottles, but we might really be interested to know what the
relationship would look like had we been able to measure the volume in all
bottles.

In this chapter we will see how to do inference in the case of a linear model.
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Figure 5.1: The relationship between temperature and volume in a sample of
200 bottles.

Many important concepts that we already saw in earlier chapters will be
mentioned again. Some repetition of those rather difficult concepts will be
helpful, especially when now discussed within the context of linear models.

5.1 Population data and sample data

In the beer bottle example above, the volume of beer was measured in a total
of 200 bottles. Let’s do a thought experiment, similar to the one in Chapter
2. Suppose we could have access to volume data about all bottles of beer on
all days on which the factory was operating, including information about the
temperature for each day of production. Suppose that the total number of
bottles produced is 80,000 bottles. When we plot the volume of each bottle
against the temperature of the factory we get the scatter plot in Figure 5.2.

In our thought experiment, we could determine the regression equation using all
bottles that were produced: all 80,000 of them. We then find the blue regression
line displayed in Figure 5.2. Its equation is volume = 29.98 + 0.001 × temp + 𝑒.
Thus, for every unit increase in temperature, the volume increases by 0.001
centilitres. Thus, the slope is slightly positive in the population, but negative
in the sample of 200 bottles.

In the data example above, data were only collected on 200 bottles. These
bottles were randomly selected1: there were many more bottles but we could

1Random selection means that each of the 80,000 bottles had an equal probability to end
up in this sample of 200 bottles.
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Figure 5.2: The relationship between temperature and volume in all 80,000
bottles.

measure only a limited number of them. This explains why the regression
equation based on the sample differed from the regression equation based on
all bottles: we only see part of the data.

Here we see a discrepancy between the regression equation based on the sample,
and the regression equation based on the population. We have a slope of 0.001 in
the population, and we have a slope of -0.1207 in the sample. Also the intercepts
differ. To distinguish between the coefficients of the population and coefficients
of the sample, a population coefficient is often denoted by the Greek letter 𝛽
and a sample coefficient by the Roman letter 𝑏.

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∶ volume = 𝛽0 + 𝛽1 × temp = 29.98 + 0.001 × temp
𝑆𝑎𝑚𝑝𝑙𝑒 ∶ volume = 𝑏0 + 𝑏1 × temp = 32.35 − 0.1207 × temp

The discrepancy between the two equations is simply the result of chance: had
we selected another sample of 200 bottles, we probably would have found a
different sample equation with a different slope and a different intercept. The
intercept and slope based on sample data are the result of chance and therefore
different from sample to sample. The population intercept and slope (the
true ones) are fixed, but unknown. If we want to know something about the
population intercept and slope, we only have the sample equation to go on. Our
best guess for the population equation is the sample equation: the unbiased
estimator for a regression coefficient in the population is the sample coefficient.
But how certain can we be about how close the sample intercept and slope are
to the population intercept and slope?
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Table 5.1: Ten different sample equations based on ten different random samples
from the population of bottles.

sample equation
1 volume = 28.87 + 0.06 x temperature + e
2 volume = 30.84 – 0.05 x temperature + e
3 volume = 31.05 – 0.06 x temperature + e
4 volume = 31.67 – 0.09 x temperature + e
5 volume = 30.59 – 0.03 x temperature + e
6 volume = 29.53 + 0.02 x temperature + e
7 volume = 28.36 + 0.08 x temperature + e
8 volume = 27.78 + 0.11 x temperature + e
9 volume = 28.29 + 0.09 x temperature + e
10 volume = 30.75 – 0.03 x temperature + e

5.2 Random sampling and the standard error

In order to know how close the intercept and slope in a sample are to their
values in the population, we do another thought experiment. Let’s see what
happens if we take more than one random sample of 200 bottles.

We put the 200 bottles that we selected earlier back into the population and we
again blindly pick a new collection of 200 bottles. We then measure for each
bottle the volume of beer it contains and we determine the temperature in the
factory on the day of its production. We then apply a regression analysis and
determine the intercept and the slope. Next, we put these bottles back into
the population, draw a second random sample of 200 bottles and calculate the
intercept and slope again.

You can probably imagine that if we repeat this procedure of randomly picking
200 bottles from a large population of 80,000, each time we find a different
intercept and a different slope. Let’s carry out this procedure 100 times by a
computer. Table 5.1 shows the first 10 regression equations, each based on a
random sample of 200 bottles. If we then plot the histograms of all 100 sample
intercepts and sample slopes we get Figure 5.3. Remember from Chapters 2
and 3 that these are called sampling distributions. Here we look at the sampling
distributions of the intercept and the slope.

The sampling distributions in Figure 5.3 show a large variation in the intercepts,
and a smaller variation in the slopes (i.e., all values very close to another).

For now, let’s focus on the slope. We do that because we are mostly interested in
the linear relationship between volume and temperature. However, everything
that follows also applies to the intercept. In Figure 5.4 we see the histogram
of the slopes if we carry out the random sampling 1000 times. We see that on
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Figure 5.3: Distribution of the 100 sample intercepts and 100 sample slope.

average, the sample slope is around 0.001, which is the population slope (the
slope if we analyse all bottles). But there is variation around that mean of
0.001: the standard deviation of all 1000 sample slopes turns out to be 0.08.
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Figure 5.4: Distribution of 1000 sample slopes.

Remember from Chapter 2 that the standard deviation of the sampling
distribution is called the standard error. The standard error for the sampling
distribution of the sample slope represents the uncertainty about the population
slope. If the standard error is large, it means that if we would draw many
different random samples from the same population data, we would get very
different sample slopes. If the standard error is small, it means that if we
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would draw many different random samples from the same population data, we
would get sample slopes that are very close to one another, and very close to
the population slope.2

5.2.1 Standard error and sample size

Similar to the sample mean, the standard error for a sample slope depends on
the sample size: how many bottles there are in each random sample. The larger
the sample size, the smaller the standard error, the more certain we are about
the population slope. In the above example, the sample size is 200 bottles.

The left panel of Figure 5.5 shows the distribution of the sample slope where
the sample size is 2. You see that for quite a number of samples, the slope is
larger than 10, even if the population slope is 0.001. But when you increase the
number of bottles per sample to 20 (in the right panel), you are less dependent
on chance observations. With large sample sizes, your results from a regression
analysis become less dependent on chance, become more stable, and therefore
more reliable.

sample size 2 sample size 20
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Figure 5.5: Distribution of the sample slope when sample size is 2 (left panel)
and when sample size is 20 (right panel).

In Figure 5.5 we see the sampling distributions of the sample slope where the
sample size is either 2 (left panel) or 20 (right panel). We see quite a lot of
variation in sample slopes with sample size equal to 2, and considerably less
variation in sample slopes if sample size is 20. This shows that the larger the
sample size, the smaller the standard error, the larger the certainty about the

2Because sample slopes cluster around the population slope, the sample slope is very close
to the population slope when the standard error is small.
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population slope. The dependence of a sample slope on chance and sample size
is also illustrated in Figure 5.6.
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Figure 5.6: The averaging effect of increasing sample size. The scatter plot
shows the relationship between temperature and volume for a random sample
of 20 bottles (the dots); the first two bottles in the sample are marked in red.
The red line would be the sample slope based on these first two bottles, the blue
line is the sample slope based on all 20 bottles, and the black line represents the
population slope, based on all 80,000 bottles. This illustrates that the larger
the sample size, the closer the sample regression line is expected to be to the
population regression line.

5.2.2 From sample slope to population slope

In the previous section we saw that if we have a small standard error, we can
be relatively certain that our sample slope is close to the population slope.
We did a thought experiment where we knew everything about the population
intercept and slope, and we drew many samples from this population. In reality,
we don’t know anything about the population: we only have one sample of data.
So suppose we draw a sample of 200 bottles from an unknown population of
bottles, and we find a slope of 1, we have to look at the standard error to know
how close that sample slope is to the population slope.

For example, suppose we find a sample slope of 1 and the standard error is
equal to 0.1. Then we know that the population slope is more likely to be in
the neighbourhood of values like 0.9, 1.0, or 1.1 than in the neighbourhood of
10 or -10 (we know that when using the empirical rule, see Chap. 1).

Now suppose we find a sample slope of 1 and the standard error is equal to
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10. Then we know that the sample slope is more likely to be somewhere
in the neighbourhood of values like -9, 1 or 11, than around values in the
neighbourhood of -100 or +100. However, values like -9, 1 and 11 are quite
far apart, so actually we have no idea what the population slope is; we don’t
even know whether the population slope is positive or negative! The standard
error is simply too large.
As we have seen, the standard error depends very much on sample size. Apart
from sample size, the standard error for a slope also depends on the variance
of the independent variable, the variance of the dependent variable, and the
correlations between the independent variable and other independent variables
in the equation. We will not bore you with the complicated formula for the
standard error for regression coefficients in the case of multiple regression3. But
here is the formula for the standard error for the slope coefficient if you have
only one predictor variable 𝑋:

𝜎𝑏1
= √ 𝑠2

𝑅
𝑠2

𝑋 × (𝑛 − 1)

=
√√√
⎷

∑𝑖(𝑌𝑖−𝑌𝑖)2

𝑛−2
∑𝑖(𝑋𝑖−𝑋̄)2

𝑛−1 × (𝑛 − 1)

where 𝑏1 is the slope coefficient in the sample, 𝑛 is sample size, 𝑠2
𝑅 is the sample

variance of the residuals, and 𝑠2
𝑋 the sample variance of independent variable

𝑋. From the formula, you can see that the standard error 𝜎𝑏1
becomes smaller

when sample size 𝑛 becomes larger.
It’s not very useful to memorise this formula; you’d better let R do the
calculations for you. But an interesting part of the formula is the nominator:
𝑆𝑆𝑅
𝑛−2 . This is the sum of the squared residuals, divided by 𝑛 − 2. Remember
from Chapter 1 that the definition of the variance is the sum of squares divided
by the number of values. Thus it looks like we are looking at the variance
of the residuals. Remember from Chapter 2 that when we want to estimate
a population variance, a biased estimator is the variance in the sample. In
order to get an unbiased estimate of the variance, we have to divide by 𝑛 − 1
instead of 𝑛. This was because when computing the sum of squares, we assume
we know the mean. Here we are computing the variance of the residuals, but
it’s actually an unbiased estimator of the variance in the population, because
we divide by 𝑛 − 2: when we compute the residuals, we assume we know the
intercept and the slope. We assume two parameters, so we divide by 𝑛 − 2.
Thus, when we have a linear model with 2 parameters (intercept and slope),
we have to divide the sum of squared residuals by 𝑛 − 2 in order to obtain an
unbiased estimator of the variance of the residuals in the population.

3See https://www3.nd.edu/ rwilliam/stats1/x91.pdf for the formula. In this pdf, ‘IV’
means independent variable.
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From the equation, we see that the standard error becomes larger when there
is a large variation in the residuals, it becomes smaller when there is a large
variation in predictor variable 𝑋, and it becomes smaller with large sample size
𝑛.

5.3 𝑡-distribution for the model coefficients

When we look at the sample distribution of the sample slope, for instance
in Figure 5.4, we notice that the distribution looks very much like a normal
distribution. From the Central Limit Theorem, we know that the sampling
distribution will become very close to normal for large sample sizes. Using this
sampling distribution for the slope we could compute confidence intervals and
do null-hypothesis testing, similar to what we did in Chapters 2 and 3.

For large sample sizes, we could assume the normal distribution, and when we
standardise the slope coefficient, we can look up in tables such as in Appendix A
the critical value for a particular confidence interval. For instance, 200 bottles
is a large sample size. When we standardise the sample slope – let’s assume
we find a slope of 0.05 –, we need to use the values -1.96 and +1.96 to obtain
a 95% confidence interval around 0.05. The margin of error (MoE) is then
1.96 times the standard error. Suppose that the standard error is 0.10. The
MoE is then equal to 1.96 × 0.10 = 0.196. The 95% interval then runs from
0.05 − 0.196 = −0.146 to 0.05 + 0.196 = 0.246.
However, this approach does not work for small sample sizes. Again this can be
seen when we standardise the sampling distribution. When we standardise the
slope for each sample, we subtract the sample slope from the population slope
𝛽1, and have to divide each time by the standard error (the standard deviation).
But when we do that

𝑡 = 𝑏1 − 𝛽1
𝜎𝑏1

= 𝑏1 − 𝛽1

√ 𝑠2
𝑅

𝑠2
𝑋×(𝑛−1)

(5.1)

we immediately see the problem that when we only have sample data, we have to
estimate the standard error. In each sample, we get a slightly different estimated
standard error, because each time, the variation in the residuals (𝑠2

𝑅) is a little
bit different, and also the variation in the predictor variable (𝑠2

𝑋). If sample size
is large, this is not so bad: we then can get very good estimates of the standard
error so there is little variation across samples. But when sample size is small,
both 𝑠2

𝑅 and 𝑠2
𝑋 are different from sample to sample (due to chance), and the

estimate of the standard error will therefore also vary a lot. The result is that
the distribution of the standardised 𝑡-value from Equation (5.1) will only be
close to normal for large sample size, but will have a 𝑡-distribution in general.
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Because the standard error is based on the variance of the residuals, and because
the variance of the residuals can only be computed if you assume a certain
intercept and a certain slope, the degrees of freedom will be 𝑛 − 2.
Let’s go back to the example of the beer bottles. In our first random sample
of 200 bottles, we found a sample slope of -0.121. We also happened to know
the population slope, which was 0.001. From our computer experiment, we saw
that the standard deviation of the sample slopes with sample size 200 was equal
to 0.08. Thus, if we fill in the formula for the standardised slope 𝑡, we get for
this particular sample

𝑡 = −0.1207 − 0.001
0.08 = −1.52

In this section, when discussing 𝑡-statistics, we assumed we knew the population
slope 𝛽, that is, the slope of the linear equation based on all 80,000 bottles. In
reality, we never know the population slope: the whole reason to look at the
sample slope is to have an idea about the population slope. Let’s look at the
confidence interval for slopes.

5.4 Confidence intervals for the slope

Since we don’t know the actual value of the population slope 𝛽1, we could ask
the personnel in the beer factory what they think is a likely value for the slope.
Suppose Mark says he believes that a slope of 0.1 could be true. Well, let’s
find out whether that is a reasonable guess, given that the sample slope is -
0.121. Now we assume that the population slope 𝛽1 is 0.1, and we compute the
𝑡-statistic for our sample slope -0.121:

𝑡 = −0.121 − 0.1
0.08 = −2.7

Thus, we compute how many standard errors the sample value is away from the
hypothesised population value 0.1. If the population value is indeed 0.1, how
likely is it that we find a sample slope of -0.121?

From the 𝑡-distribution, we know that such a 𝑡-value is very unlikely: the
probability of finding a sample slope -2.7 standard deviations or more away
from a population slope of 0.1 is less than 0.0075341. How do we know that?
Well, the 𝑡-statistic is -2.7 and the degrees of freedom is 200 − 2 = 198. The
cumulative proportion of a 𝑡-value can be looked up in R:

pt(-2.7, df = 198)

## [1] 0.003767051
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That means that a proportion of 0.0037671 of all values in the 𝑡-distribution
with 198 degrees of freedom are lower than -2.7. Because the 𝑡-distribution
is symmetric, we then also know that 0.0037671 of all values are larger than
2.7. If we add up these two numbers, we know that 0.0075341 of all values
in a 𝑡-distribution are less than -2.7 or more than 2.7. That means that if the
population slope is 0.1, we only find a sample slope of ±−0.121 or more extreme
with a probability of 0.0075341. That’s very unlikely.

Because we know that such a 𝑡-value of ±2.7 or more extreme is unlikely, we
know that a sample slope of -0.1206874 is unlikely if the population slope is equal
to 0.1. Therefore, we feel 0.1 is not a realistic value for the population slope.

Now let’s ask Martha. She thinks a reasonable value for the population slope is
0, as she doesn’t believe there is a linear relationship between temperature and
volume. She suspects that the fact that we found a sample slope that was not
0 was a pure coincidence. Based on that hypothesis, we compute 𝑡 again and
find:

𝑡 = −0.121 − 0
0.08 = −1.5

In other words, if we believe Martha, our sample slope is only about 1.5 standard
deviation away from her hypothesised value. That’s not a very bad idea, since
from the 𝑡-distribution we know that the probability of finding a value more
than 1.5 standard deviations away from the mean (above or below) is 13.35%.
You can see that by asking R:

pt(-1.5, df = 198) * 2

## [1] 0.1352072

Thirteen percent, that’s about 1 in 7 or 8 times. That’s not so improbable. In
other words, if the population slope is truly 0, then our sample slope of −0.121
is quite a reasonable finding. If we reverse this line of reasoning: if our sample
slope is −0.121, with a standard error of 0.08, then a population slope of 0
is quite a reasonable guess! It is reasonable, since the difference between the
sample slope and the hypothesised value is only 1.5 standard errors.

So when do we no longer feel that a person’s guess of the population slope is
reasonable? Perhaps if the probability of finding a sample slope of at least a
certain size given a hypothesised population slope is so small that we no longer
believe that the hypothesised value is reasonable. We might for example choose
a small probability like 1%. We know from the 𝑡-distribution with 198 degrees
of freedom that 1% of the values lie at least 2.6 standard deviations above and
below the mean.
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qt(0.005, df = 198)

## [1] -2.600887

This is shown in Figure 5.7. So if our sample slope is more than 2.6 standard
errors away from the hypothesised population slope, then that population slope
is not a reasonable guess. In other words, if the distance between the sample
slope and the hypothesised population slope is more than 2.6 standard errors,
then the hypothesised population slope is no longer reasonable.
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Figure 5.7: The 𝑡-distribution with 198 degrees of freedom.

This implies that any value closer than 2.6 standard errors from the sample
slope is a collection of reasonable values for the population slope.

Thus, in our example of the 200 bottles with a sample slope of −0.121 and a
standard error of 0.08, the interval from −0.121−2.6×0.08 to −0.121+2.6×0.08
contains reasonable values for the population slope. If we do the calculations,
we get the interval from −0.33 to 0.09. If we would have to guess the value for
the population slope, our guess would be that it would lie somewhere between
between -0.33 and 0.09, if we feel that 1% is a small enough probability.

In data analysis, such an interval that contains reasonable values for the
population value, if we only know the sample value, is called a confidence
interval, as we know from Chapter 2. Here we’ve chosen to use 2.6 standard
errors as our cut-off point, because we felt that 1% would be a small enough
probability to dismiss the real population value as a reasonable candidate (type
I error rate). Such a confidence interval based on this 1% cut-off point is called
a 99% confidence interval.
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Particularly in social and behavioural sciences, one also sees 95% confidence
intervals. The critical 𝑡-value for a type I error rate of 0.05 and 198 degrees of
freedom is 1.97.

qt(0.975, df = 198)

## [1] 1.972017

Thus, 5% of the observations lie more than 1.97 standard deviations away
from the mean, so that the 95% confidence interval is constructed by
subtracting/adding 1.97 standard errors from/to the sample slope. Thus, in
the case of our bottle sample, the 95% confidence interval for the population
slope is from −0.121 − 1.97 × 0.08 to −0.121 + 1.97 × 0.08, so reasonable values
for the population slope are those values between −0.28 and 0.04.
We could report about this in the following way, mentioning sample size, the
sample slope, the standard error, and the confidence interval.

”Based on 200 randomly sampled bottles, we found a slope of -0.121
(SE = 0.08, 95% CI: -0.28, 0.04).”

Luckily, this interval contains the true value; we happen to know that the
population slope is equal to 0.001. In real life, we don’t know the population
slope and of course it might happen that the true population value is not in
the 95% confidence interval. If you want to make the likelihood of this being
the case smaller, then you can use a 99%, a 99.9% or an even larger confidence
interval.

5.5 Residual degrees of freedom in linear models

What does the term, ”degrees of freedom” mean? In Chapter 2 we discussed
degrees of freedom in the context of doing inference about a population mean.
We saw that degrees of freedom referred to the number of values in the final
calculation of a statistic that are free to vary. More specifically, the degrees of
freedom for a statistic like 𝑡 are equal to the number of independent scores that
go into the estimate, minus the number of parameters used as intermediate steps
in the estimation of the parameter itself. There, we computed a 𝑡-statistic for the
sample mean. Because in the computation of the 𝑡-statistic for a sample mean,
we divide by the standard error for the mean, and that this in turn requires
assuming a certain value for the mean, we had 𝑛 − 1 degrees of freedom.

Here, we are talking about 𝑡-statistics for linear models. In the case of a simple
regression model, we only have one intercept and one slope. In order to compute
a 𝑡-value, for the slope for example, we have to estimate the standard error as
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well. In Equation (5.1) we see that in order to estimate the standard error,
we need to compute the residuals 𝑒𝑖 = 𝑌𝑖 − ̂𝑌𝑖. But you can only compute
residuals if you have predictions for the dependent variable, ̂𝑌𝑖, and for that you
need an intercept and a slope coefficient. Thus, we need to assume we know
two parameters, in order to calculate a 𝑡-value. With sample means we only
assumed we knew the mean, and therefore had 𝑛 − 1 degrees of freedom. In
case of a linear model where we assume one intercept and one slope, we have
𝑛 − 2 degrees of freedom. For the same reason, if we have a linear model with
one intercept and two slopes (multiple regression with two predictors), we have
𝑛 − 3 degrees of freedom. In general then, if we have a linear model with 𝐾
independent variables, we have 𝑛 − 𝐾 − 1 degrees of freedom associated with
our 𝑡-statistic.
To convince you of this, we illustrate the idea of degrees of freedom in a
numerical example. Suppose that we have a sample with four 𝑌 values: 2, 6,
5, 2. There are four separate pieces of information here. There is no particular
connection between these values. They are free to take any values, in principle.
We could say that there are “four degrees of freedom” associated with this
sample of data.
Now, suppose that I tell you that three of the values in the sample are 2, 6,
and 2; and I also tell you that the sample mean is 3.75. You can immediately
deduce that the remaining value has to be 5. Were it any other value, the mean
would not be 3.75.

̄𝑌 = ∑ 𝑌𝑖
𝑛 = 2 + 6 + 𝑌3 + 2

4 = 10 + 𝑌3
4 = 3.75

10 + 𝑌3 = 4 × 3.75 = 15
𝑌3 = 15 − 10 = 5

Once I tell you that the sample mean is 3.75, I am effectively introducing
a constraint. The value of the unknown sample value is implicitly being
determined from the other three values plus the constraint. That is, once the
constraint is introduced, there are only three logically independent pieces of
information in the sample. That is to say, there are only three ”degrees of
freedom”, once the sample mean is revealed.
Let’s carry this example to regression analysis. Suppose I have four observations
of variables 𝑋 and 𝑌 , where the values for 𝑋 are 1, 2, 3 and 4. Each value of
𝑌 = 𝑦 is one piece of information. These 𝑌 -values could be anything, so we
say that we have 4 degrees of freedom. Now suppose I use a linear model for
these data points, and suppose I only use an intercept. Let the intercept be 3.75
so that we have 𝑌 = 3.75 + 𝑒. Now the first bit of information for 𝑋 = 1, 𝑌
could be anything, say 2. The second and third bits of information for 𝑋 = 2
and 𝑋 = 4 could also be anything, say 6 and 2. Figure 5.8 shows these bits of
information as dots in a scatter plot. Since we know that the intercept is equal
to 3.75, with no slope (slope=0), we can also draw the regression line.
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Figure 5.8: Illustration of residual degrees of freedom in a linear model, in case
there is no slope and the intercept equals 3.75.

Before we continue, you must know that if we talk about degrees of freedom
in regression analysis, we generally talk about residual degrees of freedom. We
therefore look at residuals. If we compute the residuals, we have residuals -1.75,
2.25 and -1.75 for these data points. When we sum them, we get -1.25. Since
we know that all residuals should sum to 0 in a regression analysis (see Chap.
4), we can derive the fourth residual to be +1.25, since only then the residuals
sum to 0. Therefore, the 𝑌 -value for the fourth data point (for 𝑋 = 3) has to
be 5, since then the residual is equal to 5 − 3.75 = 1.25.
In short, when we use a linear model with only an intercept, the degrees of
freedom is equal to the number of data points (combinations of 𝑋 and 𝑌 )
minus 1, or in short notation: 𝑛 − 1, where 𝑛 stands for sample size.

Now let’s look at the situation where we use a linear model with both an
intercept and a slope: suppose the intercept is equal to 3 and the slope is equal
to 1: 𝑌 = 3 + 1𝑋 + 𝑒. Then suppose we have the same 𝑋-values as the example
above: 1, 2 and 4. When we give these 𝑋-values corresponding 𝑌 -values, 2, 6,
and 2, we get the plot in Figure 5.9.

The black line is the regression line that we get when we analyse the complete
data set of four points, 𝑌 = 3 + 1𝑋. The blue line is the regression line based
on only the three visible data points. Now the question is, is it possible for a
fourth data point with 𝑋 = 3, to think of a 𝑌 -value such that the regression
line based on these four data points is equal to 𝑌 = 3 + 1𝑋? In other words,
can we choose a 𝑌 -value such that the blue line exactly overlaps with the black
line?

Figure 5.10 shows a number of possibilities for the value of 𝑌 if 𝑋 = 3. It can
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Figure 5.9: Illustration of residual degrees of freedom, in case of a linear model
with both intercept and slope for four data points (black line). The blue line is
the regression line only using the three known data points.

be seen, that it is impossible to pick a value for 𝑌3 such that we get a regression
equation 𝑌 = 3 + 1𝑋. The blue line and green line intersect the black line at
𝑋 = 1, but they have slopes that are less steep than the black line. If you use
lower values for 𝑌 such as 9 (red line) or higher values like 15 (purple line), the
regression lines still do not overlap. It turns out to be impossible to choose a
value for 𝑌3 in such a way that the regression line matches 𝑌 = 3 + 1𝑋.

So, with sample size 𝑛 = 4, we can never freely choose 3 residuals in order to
satisfy the constraint that a particular regression equation holds for all 4 data
points. We have less than 3 degrees of freedom because it is impossible to think
of a fitting fourth value. It turns out, that in this case we can only choose 2
residuals freely, and the remaining residuals are then already determined. To
prove this requires matrix algebra, but you can see it when you try it yourself.

The gist of it is that if you have a regression equation with both an intercept and
a slope, the degrees of freedom is equal to the number of data points (sample
size) minus 2: 𝑛 − 2. Generalising this to linear models with 𝐾 predictors:
𝑛 − 𝐾 − 1.

Generally, these degrees of freedom based on the number of residuals that could
be freely chosen, given the constraints of the model, are termed residual degrees
of freedom. When using regression models, one usually only reports these
residual degrees of freedom. Later on in this book, we will see instances where
one also should use model degrees of freedom. For now, it suffices to know what
is meant by residual degrees of freedom.

198



0

5

10

15

1 2 3 4
X

Y

line

1

2

3

4

Figure 5.10: Different regression lines for different values of 𝑌 if 𝑋 = 3.

5.6 Null-hypothesis testing with linear models

Often, data analysis is about finding an answer to the question whether there
is a relationship between two variables. In most cases, the question pertains to
the population: is there a relationship between variable 𝑌 and variable 𝑋 in
the population? In many cases, one looks for a linear relationship between two
variables.

One common method to answer this question is to analyse a sample of data,
apply a linear model, and look at the slope. However, one then knows the slope
in the sample, but not the slope in the population. We have seen that the slope
in the sample can be very different from the slope in the population. Suppose
we find a slope of 1: does that mean there is a slope in the population or that
there is no slope in the population?

In inferential data analysis, one often works with two hypotheses: the null-
hypothesis and the alternative hypothesis. The null-hypothesis states that the
population slope is equal to 0 and the alternative hypothesis states that there
is a slope that is different from 0. Remember that if the population slope is
equal to 0, that is saying that there is no linear relationship between 𝑋 and
𝑌 (that is, you cannot predict one variable on the basis of the other variable).
Therefore, the null-hypothesis states there is no linear relationship between 𝑋
and 𝑌 in the population. If there is a slope, whether positive or negative, is the
same as saying there is a linear relationship, so the alternative hypothesis states
that there is a linear relationship between 𝑋 and 𝑌 in the population.

In formula form, we have
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𝐻0 ∶ 𝛽𝑠𝑙𝑜𝑝𝑒 = 0
𝐻𝐴 ∶ 𝛽𝑠𝑙𝑜𝑝𝑒 ≠ 0

The population slope, 𝛽𝑠𝑙𝑜𝑝𝑒, is either 0 or it is not. Our data analysis is then
aimed at determining which of these two hypotheses is true. Key is that we do
a thought experiment on the null-hypothesis: we wonder what would happen
if the population slope would be really 0. In our imagination we draw many
samples of a certain size, say 40 data points, from a population where the slope
is 0, and then determine the slope for each sample. Earlier we learned that the
many sample slopes would form a histogram in the shape of a 𝑡-distribution
with 𝑛 − 2 = 38 degrees of freedom. For example, suppose we would draw
1000 samples of size 40, then the histogram of the 1000 slopes would look like
depicted Figure 5.11.
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Figure 5.11: Distribution of the sample slope when the population slope is 0
and sample size equals 40.

From this histogram we see that all observed sample slopes are well between
-0.8 and 0.8. This gives us the information we need. Of course, we have only
one sample of data, and we don’t know anything about the population data.
But we do know that if the population slope is equal to 0, then it is very unlikely
to find a sample slope of say 1 or -1. Thus, with our sample slope of 1, we know
that this finding is very unlikely if we hold the null-hypothesis to be true. In
other words, if the population slope is equal to 0, it would be quite improbable
to find a sample slope of 1 or larger. Therefore, we regard the null-hypothesis to
be false, since it does not provide a good explanation of why we found a sample
slope of 1. In that case, we say that we reject the null-hypothesis. We say that
the slope is significantly different from 0, or simply that the slope is significant.
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5.7 𝑝-values

A 𝑝-value is a probability. It represents the probability of observing certain
events, given that the null-hypothesis is true.

In the previous section we saw that if the population slope is 0, and we drew
1000 samples of size 40, we did not observe a sample slope of 1 or larger. In
other words, the frequency of observing a slope of 1 or larger was 0. If we would
draw more samples, we theoretically could observe a sample slope of 1 or larger,
but the probability that that happens for any new sample we can estimate at
less than 1 in a 1000, so less than 0.001: 𝑝 < 0.001.
This estimate of the 𝑝-value was based on 1000 randomly drawn samples of
size 40 and then looking at the frequency of certain values in that data set.
But there is a short-cut, for we know that the distribution of sample slopes
has a 𝑡-distribution if we standardise the sample slopes. Therefore we do not
have to take 1000 samples and estimate probabilities, but we can look at the
𝑡-distribution directly, using tables online or in statistical packages.
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Figure 5.12: The histogram of 1000 sample slopes and its corresponding
theoretical 𝑡-distribution with 38 degrees of freedom. The vertical blue line
represents the 𝑡-value of 5.26.

Figure 5.12 shows the 𝑡-distribution that is the theoretical distribution
corresponding to the histogram in Figure 5.11. If the standard error is equal to
0.19, and the hypothetical population slope is 0, then the 𝑡-statistic associated
with a slope of 1 is equal to 𝑡 = 1−0

0.19 = 5.26. With this value, we can
look up in the tables, how often such a value of 5.26 or larger occurs in a
𝑡-distribution with 38 degrees of freedom. In the tables or using R, we find that
the probability that this occurs is 0.00000294.
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1 - pt(5.26, df = 38)

## [1] 2.939069e-06

So, the fact that the 𝑡-statistic has a 𝑡-distribution gives us the opportunity to
exactly determine certain probabilities, including the 𝑝-value.
Now let’s suppose we have only one sample of 40 bottles, and we find a slope of
0.1 with a standard error of 0.19. Then this value of 0.1 is (0.1 − 0)/0.19 = 0.53
standard errors away from 0. Thus, the 𝑡-statistic is 0.53. We then look at the
𝑡-distribution with 38 degrees of freedom, and see that such a 𝑡-value of 0.53 is
not very strange: it lies well within the middle 95% of the 𝑡-distribution (see
Figure 5.12).

Let’s determine the 𝑝-value again for this slope of 0.1: we determine the
probability that we obtain such a 𝑡-value of 0.53 or larger. Figure 5.13 shows
the area under the curve for values of 𝑡 that are larger than 0.53. This area
under the curve can be seen as a probability. The total area under the curve of
the 𝑡-distribution amounts to 1. If we know the area of the shaded part of the
total area, we can compute the probability of finding 𝑡-values larger than 0.53.
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Figure 5.13: Probability of a 𝑡-value larger than 0.53.

In tables online, in Appendix B, or available in statistical packages, we can look
up how large this area is. It turns out to be 0.3.

1 - pt(0.53, df = 38)

## [1] 0.2995977
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So, if the population slope is equal to 0 and we draw an infinite number of
samples of size 40 and compute the sample slopes, then 30% of them will be
larger than our sample slope of 0.1. The proportion of the shaded area is what
we call a one-sided 𝑝-value. We call it one-sided, because we only look at one
side of the 𝑡-distribution: we only look at values that are larger than our 𝑡-value
of 0.53.
We conclude that a slope value of 0.1 is not that strange to find if the population
slope is 0. By the same token, it would also have been probable to find a slope of
-0.1, corresponding to a 𝑡-value of -0.53. Since the 𝑡-distribution is symmetrical,
the probability of finding a 𝑡-value of less than -0.53 is depicted in Figure 5.14,
and of course this probability is also 0.3.

pt(-0.53, df = 38)

## [1] 0.2995977
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Figure 5.14: Probability of finding a 𝑡-value smaller than -0.53.

Remember that the null-hypothesis is that the population slope is 0, and the
alternative hypothesis is that the population slope is not 0. We should therefore
conclude that if we find a very large positive or negative slope, large in the sense
of the number of standard errors away from 0, that the null-hypothesis is unlikely
to be true. Therefore, if we find a slope of 0.1 or -0.1, then we should determine
the probability of finding a 𝑡-value that is larger than 0.53 or smaller than -0.53.
This probability is depicted in Figure 5.15 and is equal to twice the one-side
𝑝-value, 2 × 0.2995977 = 0.5991953.
This probability is called the two-sided 𝑝-value. This is the one that should be
used, since the alternative hypothesis is also two-sided: the population slope can
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Figure 5.15: The blue vertical line represents a 𝑡-value of 0.53. The shaded area
represents the two-sided 𝑝-value: the probability of obtaining a 𝑡-value smaller
than -0.53 or larger than 0.53.

be positive or negative. The question now is: is a sample slope of 0.1 enough
evidence to reject the null-hypothesis? To determine that, we determine how
many standard errors away from 0 the sample slope is and we look up in tables
how often that happens. Thus in our case, we found a slope that is 0.53 standard
errors away from 0 and the tables told us that the probability of finding a slope
that is at least 0.53 standard errors away from 0 (positive or negative) is equal
to 0.5991953. We find this probability rather large, so we decide that we do not
reject the null-hypothesis.

5.8 Hypothesis testing

In the previous section, we found a one-sided 𝑝-value of 0.00000294 for a sample
slope of 1 and more or less concluded that this probability was rather small.
The two-sided 𝑝-value would be twice this value, so 0.00000588, which is still
very small. Next, we determined the 𝑝-value associated with a slope of 0.1 and
found a 𝑝-value of 0.60. This probability was rather large, and we decided to
not reject the null-hypothesis. In other words, the probability was so large that
we thought that the hypothesis that the population slope is 0 should not be
rejected based on our findings.

When should we think the 𝑝-value is small enough to conclude that the null-
hypothesis can be rejected? When can we conclude that the hypothesis that the
population slope is 0 is not supported by our sample data? This was a question
posed to the founding father of statistical hypothesis testing, Sir Ronald Fischer.
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In his book Statistical Methods for Research Workers (1925), Fisher proposed
a probability of 5%. He advocated 5% as a standard level for concluding that
there is evidence against the null-hypothesis. However, he did not see it as
an absolute rule: ”If P is between .1 and .9 there is certainly no reason to
suspect the hypothesis tested. If it is below .02 it is strongly indicated that the
hypothesis fails to account for the whole of the facts. We shall not often be
astray if we draw a conventional line at .05...”. So Fisher saw the 𝑝-value as an
informal index to be used as a measure of discrepancy between the data and the
null-hypothesis: The null-hypothesis is never proved, but is possibly disproved.

Later, Jerzy Neyman and Egon Pearson saw the 𝑝-value as an instrument in
decision making: is the null-hypothesis true, or is the alternative hypothesis
true? You either reject the null-hypothesis or you don’t, there is nothing in
between. A slightly milder view is that you either decide that there is enough
empirical evidence to reject the null-hypothesis, or there is not enough empirical
evidence to reject the null-hypothesis (not necessarily accepting 𝐻0 as true!).
This view to data-analysis is rather popular in the social and behavioural
sciences, but also in particle physics. In order to make such black-and-white
decisions, you decide before-hand, that is, before collecting data, what level of
significance you choose for your 𝑝-value to decide whether to reject the null-
hypothesis. For example, as your significance level, you might want to choose
1%. Let’s call this chosen significance level 𝛼. Then you collect your data, you
apply your linear model to the data, and find that the 𝑝-value associated with
the slope equals 𝑝. If this 𝑝 is smaller than or equal to 𝛼, you reject the null-
hypothesis, and if 𝑝 is larger than 𝛼 then you do not reject the null-hypothesis.
A slope with a 𝑝 ≤ 𝛼 is said to be significant, and a slope with a 𝑝 > 𝛼 is said to
be non-significant. If the sample slope is significant, then one should reject the
null-hypothesis and say there is a slope in the population different from zero. If
the sample slope is not significant, then one should not reject the null-hypothesis
(i.e., the population slope could well be 0). One could say there is no empirical
evidence for the existence of a slope not equal to 0. This leaves the possibility
that there is a slope in the population, but that our method of research failed to
find evidence for it. Formally, the null-hypothesis testing framework only allows
refuting a null-hypothesis by some empirical evidence. It does not allow you to
prove that the null-hypothesis is true, only that the null-hypothesis being true
is a possibility.

5.9 Inference for linear models in R

So far, we have focused on standard errors and confidence intervals for the slope
parameter in simple regression, that is, a linear model where there is only one
independent variable. However, the same logic can be applied to the intercept
parameter, and to other slope variables in case you have multiple independent
variables in your model (multiple regression).
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Table 5.2: Regression table as obtained from R, with knowledge predicted by
time and distance.

term estimate std.error statistic p.value
(Intercept) 299.35 7.60 39.40 0.00
time 18.13 2.60 6.96 0.00
distance -0.76 0.67 -1.15 0.25

For instance, suppose we are interested in the knowledge university students
have of mathematics. We start measuring their knowledge at time 0, when the
students start doing a bachelor programme in mathematics. At time 1 (after 1
year) and at time 2 (after two years), we also perform measures. Our dependent
variable is mathematical knowledge, a measure with possible values between 200
and 700. The independent variables are time (the time of measurement) and
distance: the distance in kilometres between university and their home. There
are two research questions. The first question is about the level of knowledge
when students enter the bachelor programme, and the second question is how
much knowledge is acquired in one year of study. The linear model is as follows:

knowledge = 𝑏0 + 𝑏1time + 𝑏2distance + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2)

The first question could be answered by estimating the intercept 𝑏0: that is the
level of knowledge we expect for a student at time 0 and with a home 0 kilometres
from the university. The second question could be answered by estimating the
slope coefficient for time: the expected increase in knowledge per year. In
Chapter 4 we saw how to estimate the regression parameters in R. We saw that
we then get a regression table. For our mathematical knowledge example, we
could obtain the regression table, displayed in Table 5.2. We discussed the first
column with the regression parameters in Chapter 4. We see that the intercept
is estimated at 299.35, and the slopes for time and distance are 18.13 and -0.76,
respectively. So we can fill in the equation:

knowledge = 299.35 + 18.13time − 0.76distance + 𝑒

Let’s look at the other columns in the regression table. In the second column we
see the standard errors for each parameter. The third column gives statistics;
these are the 𝑡-statistics for the null-hypotheses that the respective parameters
in the population are 0. For instance, the first statistic has the value 39.40. It
belongs to the intercept. If the null-hypothesis is that the population intercept
is 0 (𝛽0 = 0), then the 𝑡-statistic is computed as
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𝑡 = 𝑏0 − 𝛽0
𝜎 ̂𝛽

= 299.35 − 0
7.60 = 299.35

7.60 = 39.40

You see that the 𝑡-statistic in the regression table is simply the regression
parameter divided by its standard error. This is also true for the slope
parameters. For instance, the 𝑡-statistic of 6.96 for time is simply the
regression coefficient 18.13 divided by the standard error 2.60:

𝑡 = 𝑏1 − 𝛽0
𝜎 ̂𝛽

= 18.13 − 0
7.60 = 18.13

2.60 = 6.96

The last column gives the two-sided 𝑝-values for the respective null-hypotheses.
For instance, the 𝑝-value of 0.00 for the intercept says that the probability of
finding an intercept of 299.35 or larger (plus or minus), under the assumption
that the population intercept is 0, is very small (less than 0.01).

If you want to have confidence intervals for the intercept and the slope for
time, you can use the information in the table to construct them yourself. For
instance, according to the table, the standard error for the intercept equals
7.60. Suppose the sample size equals 90 students, then you know that you have
𝑛 − 𝐾 − 1 = 90 − 2 − 1 = 87 degrees of freedom. The critical value for a 𝑡-
statistic with 84 degrees of freedom for a 95% confidence interval can be looked
up in Appendix B. It must be somewhere between 1.98 and 2.00, so let’s use
1.99. The 95% interval for the intercept then runs between 299.35 − 1.99 × 7.60
and 299.35 − 1.99 × 7.60, so the expected level of knowledge at the start of
the bachelor programme for students living close to or on campus is somewhere
between from 284.23 to 314.47.

To show you how this can all be done using R, we have a look at the R dataset
called ”freeny” on quarterly revenues. We would like to predict the variable
market.potential by the predictors price.index and income.level. Apart
from the tidyverse package, we also need the broom package for the tidy()
function. When we run the following code, we obtain a regression table.

library(broom)
data("freeny")
out <- freeny %>%

lm(market.potential ~ price.index + income.level, data = .)
out %>%
tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 13.3 0.291 45.6 1.86e-33
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## 2 price.index -0.309 0.0263 -11.8 6.92e-14
## 3 income.level 0.196 0.0291 6.74 7.20e- 8

We can have R compute the respective confidence intervals by indicating that
we want intervals of a certain confidence level, say 99%:

out <- freeny %>%
lm(market.potential ~ price.index + income.level, data = .)

out %>%
tidy(conf.int = TRUE, conf.level = 0.99)

## # A tibble: 3 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 13.3 0.291 45.6 1.86e-33 12.5 14.1
## 2 price.index -0.309 0.0263 -11.8 6.92e-14 -0.381 -0.238
## 3 income.level 0.196 0.0291 6.74 7.20e- 8 0.117 0.276

freeny$market.potential %>% length()

## [1] 39

In the last two columns we see for example that the 99% confidence interval for
the price.index slope runs from -0.381 to -0.238.

We can report:

”In a multiple regression of market potential on price index and
income level (𝑁 = 39), we found a slope for price index of -0.309
(SE = 0.026, 99% CI: -0.381, -0.238).”

5.10 Type I and Type II errors in decision
making

Since data analysis is about probabilities, there is always a chance that you
make the wrong decision: you can wrongfully reject the null-hypothesis, or
you can wrongfully fail to reject the null-hypothesis. Pearson and Neyman
distinguished between two kinds of error: one could reject the null-hypothesis
while it is actually true (error of the first kind, or type I error) and one could
accept the null-hypothesis while it is not true (error of the second kind, or type
II error). We already discussed these types of error in Chapter 2. The table
below gives an overview.
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Table 5.3: Four different scenarios for hypothesis tests.

Test conclusion
do not reject 𝐻0 reject 𝐻0

𝐻0 true OK Type I Error
𝐻𝐴 true Type II Error OK

To illustrate the difference between type I and type II errors, let’s recall the
famous fable by Aesop about the boy who cried wolf. The tale concerns a
shepherd boy who repeatedly tricks other people into thinking a wolf is attacking
his flock of sheep. The first time he cries ”There is a wolf!”, the men working in
an adjoining field come to help him. But when they repeatedly find there is no
wolf to be seen, they realise they are being fooled by the boy. One day, when
a wolf does appear and the boy again calls for help, the men believe that it is
another false alarm and the sheep are eaten by the wolf.

In this fable, we can think of the null-hypothesis as the hypothesis that there is
no wolf. The alternative hypothesis is that there is a wolf. Now, when the boy
cries wolf the first time, there is in fact no wolf. The men from the adjoining
field make a type I error: they think there is a wolf while there isn’t. Later,
when they are fed up with the annoying shepherd boy, they don’t react when
the boy cries ”There is a wolf!”. Now they make a type II error: they think there
is no wolf, while there actually is a wolf. The table below gives an overview.

Table 5.4: Four different scenarios for wolves and men working in
the field.

Men in the field
Think there is no wolf Think there is a wolf

There is no wolf OK waste of time and energy
There is a wolf devoured sheep OK

Let’s now discuss these errors in the context of linear models. Suppose you want
to determine the slope for the effect of age on height in children. Let the slope
now stand for the wolf: either there is no slope (no wolf, 𝐻0) or there is a slope
(wolf, 𝐻𝐴). The null-hypothesis is that the slope is 0 in the population of all
children (a slope of 0 means there is no slope) and the alternative hypothesis
that the slope is not 0, so there is a slope. You might study a sample of children
and you might find a certain slope. You might decide that if the 𝑝-value is below
a critical value you conclude that the null-hypothesis is not true. Suppose you
think a probability of 10% is small enough to reject the null-hypothesis as true.
In other words, if 𝑝 ≤ 0.10 then we no longer think 0 is a reasonable value for
the population slope. In this case, we have fixed our 𝛼 or type I error rate to be
𝛼 = 0.10. This means that if we study a random sample of children, we look at
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the slope and find a 𝑝-value of 0.11, then we do not reject the null-hypothesis.
If we find a 𝑝-value of 0.10 or less, then we reject the null-hypothesis.

Note that the probability of a type I error is the same as our 𝛼 for the significance
level. Suppose we set our 𝛼 = 0.05. Then for any 𝑝-value equal or smaller than
0.05, we reject the null-hypothesis. Suppose the null-hypothesis is true, how
often do we then find a 𝑝-value smaller than 0.05? We find a 𝑝-value smaller
than 0.05 if we find a 𝑡-value that is above a certain threshold. For instance,
for the 𝑡-distribution with 198 degrees of freedom, the critical value is ±1.97,
because only in 5% of the cases we find a 𝑡-value of ±1.97 or more if the null-
hypothesis is true! Thus, if the null-hypothesis is true, we see a 𝑡-value of at
least ±1.97 in 5% of the cases. Therefore, we see a significant 𝑝-value in 5% of
the cases if the null-hypothesis is true. This is exactly the definition of a type
I error: the probability that we reject the null-hypothesis (finding a significant
𝑝-value), given that the null-hypothesis is true. So we call our 𝛼-value the type
I error rate.

Suppose 100 researchers are studying a particular slope. Unbeknownst to them,
the population slope is exactly 0. They each draw a random sample from the
population and test whether their sample slope is significantly different from
0. Suppose they all use different sample sizes, but they all use the same 𝛼 of
0.05. Then we can expect that about 5 researchers will reject the null-hypothesis
(finding a 𝑝-value less than or smaller than 0.05) and about 95 will not reject
the null-hypothesis (finding a 𝑝-value of more than 0.05).

Fixing the type I error rate should always be done before data collection. How
willing are you to take a risk of a type I error? You are free to make a choice
about 𝛼, as long as you do it before looking at the data, and report what value
you used.

If 𝛼 represents the probability of making a type I error, then we can use 𝛽 to
represent the opposite: the probability of not rejecting the null-hypothesis while
it is not true (type II error, thinking there is no wolf while there is). However,
setting the 𝛽-value prior to data collection is a bit trickier than choosing your 𝛼.
It is not possible to compute the probability that we find a non-significant effect
(𝑝 > 𝛼), given that the alternative hypothesis is true, because the alternative
hypothesis is only saying that the slope is not equal to 0. In order to compute
𝛽, we need to think first of a reasonable size of the slope that we expect. For
example, suppose we believe that a slope of 1 is quite reasonable, given what
we know about growth in children. Let that be our alternative hypothesis:

𝐻0 ∶ 𝛽1 = 0
𝐻𝐴 ∶ 𝛽1 = 1

Next, we determine the distribution of sample slopes under the assumption that
the population slope is 1. We know that this distribution has a mean of 1 and a
standard deviation equal to the standard error. We also know it has the shape
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of a 𝑡-distribution. Let sample size be equal to 102 and the standard error 2.
If we standardise the slopes by dividing by the standard error, we get the two
𝑡-distributions in Figure 5.16: one distribution of 𝑡-values if the population slope
is 0 (centred around 𝑡 = 0), and one distribution of 𝑡-values if the population
slope is 1 (centred around 𝑡 = 1/2 = 0.5).

null hypothesis alternative hypothesis
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Figure 5.16: Different 𝑡-distributions of the sample slope if the population slope
equals 0 (left curve in blue), and if the population slope equals 1 (right curve
in red). Blue area depicts the probability that we find a 𝑝-value value smaller
than 0.10 if the population slope is 0 (𝛼).

Let’s fix 𝛼 to 10%. The shaded areas represent the area where 𝑝 ≤ 𝛼: for all
values of 𝑡 smaller than −1.6859545 and larger than 1.6859545, we reject the
null-hypothesis. The probability that this happens, if the null-hypothesis is true,
is equal to 𝛼, which is 0.10 in this example. The probability that this happens
if the alternative hypothesis is true (i.e., population slope is 1), is depicted in
Figure @(fig:inf_21).

The shaded area in Figure 5.17 turns out to be 0.1415543. This represents
the probability that we find a significant effect, if the population slope is 1.
This is actually 1 minus the probability of finding a non-significant effect, if
the population slope is 1, which is defined as 𝛽. Therefore, the shaded area in
Figure 5.17 represents 1 − 𝛽: the probability of finding a significant 𝑝-value, if
the population slope is 1. In this example, 1 − 𝛽 is equal to 0.1415543, so 𝛽 is
equal to 1 − 0.1415543 = 0.8584457.
In sum, in this example with an 𝛼 of 0.10 and assuming a population slope of
1, we find that the probability of a type II error is 0.86: if there is a slope of 1,
then we have an 86% chance of wrongly concluding that the slope is 0.

Type I and II error rates 𝛼 and 𝛽 are closely related. If we feel that a significance
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Figure 5.17: Different 𝑡-distributions of the sample slope if the population slope
equals 0 (left curve in blue), and if the population slope equals 1 (right curve in
red). Shaded area depicts the probability that we find a 𝑝-value value smaller
than 0.10 if the population slope is 1 (1 − 𝛽).

level of 𝛼 = 0.10 is too high, we could choose a level of 0.01. This ensures that
we are less likely to reject the null-hypothesis when it is true. The critical value
for our 𝑡-statistic is then equal to ±2.6258905, see Figure 5.18. In Figure 5.19
we see that if we change 𝛼, we also get a different value for 1 − 𝛽, in this case
0.0196567.
The table below gives an overview of how 𝛼 and 𝛽 are related to type I and
type II error rates. If a 𝑝-value for a statistical test is equal to or smaller than
a pre-chosen significance level 𝛼, the probability of a type I error equals 𝛼. The
probability of a type II error rate is equal to 𝛽.

Table 5.5: The probabilities of a statistical outcome under the null-
hypothesis and the alternative hypothesis.

Statistical outcome
𝑝 > 𝛼 𝑝 ≤ 𝛼

𝐻0 1 − 𝛼 𝛼
𝐻𝐴 𝛽 1 − 𝛽

Thus, if we use smaller values for 𝛼, we get smaller values for 1 − 𝛽, so we get
larger values for 𝛽. This means that if we lower the probability of rejecting the
null-hypothesis given that it is true (type I error) by choosing a lower value for 𝛼,
we inadvertently increase the probability of failing to reject the null-hypothesis
given that it is not true (type II error).
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Figure 5.18: Different 𝑡-distributions of the sample slope if the population slope
equals 0 (left curve), and if the population slope equals 1 (right curve). Blue
area depicts the probability that we find a 𝑝-value value smaller than 0.01 if the
population slope is 0.

null hypothesis alternative hypothesis

0.0

0.1

0.2

0.3

0.4

−2.625891 2.625891
t

de
ns

ity

Figure 5.19: Different 𝑡-distributions of the sample slope if the population slope
equals 0 (left curve in blue), and if the population slope equals 1 (right curve
in red). Red area depicts the probability that we find a 𝑝-value value smaller
than 0.01 if the population slope is 1: 1 − 𝛽.
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Think again about the problem of the sheep and the wolf. Instead of the boy,
the men could choose to put a very nervous person on watch, someone very
scared of wolves. With the faintest hint of a wolf’s presence, the man will call
out ”Wolf!”. However, this will lead to many false alarms (type I errors), but the
men will be very sure that when there actually is a wolf, they will be warned.
Alternatively, they could choose to put a man on watch that is very laid back,
very relaxed, but perhaps prone to nod off. This will lower the risk of false
alarms immensely (no more type I errors) but it will dramatically increase the
risk of a type II error!

One should therefore always strike a balance between the two types of errors.
One should consider how bad it is to think that the slope is not 0 while it is,
and how bad it is to think that the slope is 0, while it is not. If you feel that
the first mistake is worse than the second one, then make sure 𝛼 is really small,
and if you feel that the second mistake is worse, then make 𝛼 not too small.
Another option, and a better one, to avoid type II errors, is to increase sample
size, as we will see in the next section.

5.11 Statistical power

Null-hypothesis testing only involves the null-hypothesis: we look at the sample
slope, compute the 𝑡-statistic and then see how often such a 𝑡-value and larger
values occur given that the population slope is 0. Then we look at the 𝑝-
value and if that 𝑝-value is smaller than or equal to 𝛼, we reject the null-
hypothesis. Therefore, null-hypothesis testing does not involve testing the
alternative hypothesis. We can decide what value we choose for our 𝛼, but
not our 𝛽. The 𝛽 is dependent on what the actual population slope is, and we
simply don’t know that.

As stated in the previous section, we can compute 𝛽 only if we have a more
specific idea of an alternative value for the population slope. We saw that we
needed to think of a reasonable value for the population slope that we might
be interested in. Suppose we have the intuition that a slope of 1 could well
be the case. Then, we would like to find a 𝑝-value of less than 𝛼 if indeed the
slope were 1. We hope that the probability that this happens is very high: the
conditional probability that we find a 𝑡-value large enough to reject the null-
hypothesis, given that the population slope is 1. This probability is actually
the complement of 𝛽, 1 − 𝛽: the probability that we reject the null-hypothesis,
given that the alternative hypothesis is true. This 1 − 𝛽 is often called the
statistical power of a null-hypothesis test. When we think again about the boy
who cried wolf: the power is the probability that the men think there is a wolf
if there is indeed a wolf. The power of a test should always be high: if there is
a population slope that is not 0, then of course you would like to detect it by
finding a significant 𝑡-value!
In order to get a large value for 1 − 𝛽, we should have large 𝑡-values in our
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data-analysis. There are two ways in which we can increase the value of the
𝑡-statistic. Since with null-hypothesis testing 𝑡 = 𝑏−0

𝜎𝑏̂
= 𝑏

𝜎𝑏̂
, we can get large

values for 𝑡 if 1) we have a small standard error, 𝜎𝑏̂, or 2) if we have a large
value for 𝑏.
Let’s first look at the first option: a small standard error. We get a small
standard error if we have a large sample size, see Section 5.2.1. If we go back to
the example of the previous section where we had a sample size of 102 children
and our alternative hypothesis was that the population slope was 1, we found
that the 𝑡-distribution for the alternative hypothesis was centred around 0.5,
because the standard error was 2. Suppose that we would increase sample size
to 1200 children, then our standard error might be 0.2. Then our 𝑡-distribution
for the alternative hypothesis is centred at 5. This is shown in Figure 5.20.
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Figure 5.20: Different 𝑡-distributions of the sample slope if the population slope
equals 0 (left curve in blue), and if the population slope equals 1 (right curve
in red). Now for a larger sample size. Shaded area depicts the probability that
we find a 𝑝-value value smaller than 0.01 if the population slope is 1.

We see from the shaded area that if the population slope is really 1, there is a
very high chance that the 𝑡-value for the sample slope will be larger than 2.58,
the cut-off point for an 𝛼 of 0.01 and 1198 degrees of freedom. The probability
of rejecting the null-hypothesis while it is not true, is therefore very large. This
is our 1 − 𝛽 and we call this the power of the null-hypothesis test. We see that
with increasing sample size, the power to find a significant 𝑡-value increases too.
Now let us look at the second option, a large value of 𝑏. Sample slope 𝑏1
depends of course on the population slope 𝛽1. The power becomes larger when
the population slope is further away from zero. If the population slope were
10, and we only had a sample of 102 children (resulting in a standard error of
2), the 𝑡-distribution for the alternative hypothesis that the population slope
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is centred around 𝑏
𝜎𝑏̂

= 10/2 = 5, resulting in the same plot as in Figure 5.20,
with a large value for 1 − 𝛽. Unfortunately, the population slope is beyond our
control: the population slope is a given fact that we cannot change. The only
thing we can change most of the times is sample size.

In sum: the statistical power of a test is the probability that the null-hypothesis
is rejected, given that it is not true. This probability is equal to 1 − 𝛽. The
statistical power of a test increases with sample size, and depends on the actual
population slope. The further away the population slope is from 0 (positive
or negative), the larger the statistical power. Earlier we also saw that 1 − 𝛽
increases with increasing 𝛼: the larger 𝛼, the higher the power.

5.12 Power analysis

Because of these relationships between statistical power, 𝛼, sample size 𝑛, and
the actual population slope 𝛽1, we can compute the statistical power for any
combination thereof.

If you really care about the quality of your research, you carry out a power
analysis prior to collecting data. With such an analysis you can find out how
large your sample size should be. You can find many tools online that can help
you with that.

Suppose you want to minimise the probability of a type I error, so you choose
an 𝛼 = 0.01. Next, you think of what kind of population slope you would like
to find, if it indeed has that value. You could perhaps base this expectation
on earlier research. Suppose that you feel that if the population slope is 0.15,
you would really like to find a significant 𝑡-value so that you can reject the
null-hypothesis. Next, you have to specify how badly you want to reject the
null-hypothesis if indeed the population slope is 0.15. If the population slope
is really 0.15, then you would like to have a high probability to find a 𝑡-value
large enough to reject the null-hypothesis. This is of course the power of the
test, 1 − 𝛽. Let’s say you want to have a power of 0.90. Now you have enough
information to calculate how large your sample size should be.

Let’s look at G*power4, an application that can be downloaded from the web. If
we start the app, we can ask for the sample size required for a slope of 0.15, an 𝛼
of 0.01, and a power (1−𝛽) of 0.90. Let the standard deviation of our dependent
variable (𝑌 ) be 3 and the standard deviation of our independent variable (𝑋)
be 2. These numbers you can guess, preferably based on some other data that
were collected earlier. Then we get the input as displayed in Figure 5.21. Note
that you should use two-sided 𝑝-values, so tails = two. From the output we
see that the required sample size is 1477 children.

4http://www.gpower.hhu.de/
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Figure 5.21: The G*power app interface.
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5.13 Criticism on null-hypothesis testing and 𝑝-
values

The practice of null-hypothesis significance testing (NHST) is widespread.
However, from the beginning it has received much criticism. One of the first to
criticise the approach was the inventor of the 𝑝-value, Sir Ronald Fisher himself.
Fisher explicitly contrasted the use of the 𝑝-value for statistical inference in
science with the Pearson-Neyman approach, which he termed ”Acceptance
Procedures”. Whereas in the Pearson-Neyman approach the only relevance of
the 𝑝-value is whether it is smaller or larger than the fixed significance level
𝛼, Fisher emphasised that the exact 𝑝-value should be reported to indicate the
strength of evidence against the null-hypothesis. He emphasised that no single
𝑝-value can refute a hypothesis, since chance always allows for type I and type
II errors. Conclusions can and will be revised with further experimentation;
science requires more than one study to reach solid conclusions. Decision
procedures with clear-cut decisions based on one study alone hamper science
and lead to tunnel-vision.

Apart from these science-theoretical considerations of the NHST, there are also
practical reasons why pure NHST should be avoided. In at least a number
of research fields, the 𝑝-value has become more than just the criterion for
finding an effect or not: it has become the criterion of whether the research is
publishable or not. Editors and reviewers of scientific journals have increasingly
interpreted a study with a significant effect to be more interesting than a study
with a non-significant effect. For that reason, in scientific journals you will find
mostly studies reported with a significant effect. This has led to the file-drawer
problem: the literature reports significant effects for a particular phenomenon,
but there can be many unpublished studies with non-significant effects for the
same phenomenon. These unpublished studies remain unseen in file-drawers
(or these days on hard-drives). So based on the literature there might seem to
exist a particular phenomenon, but if you would put all the results together,
including the unpublished studies, the effect might disappear completely.

Remember that if the null-hypothesis is true and everyone uses an 𝛼 of 0.05, then
out of 100 studies of the same phenomenon, only 5 studies will be significant and
are likely to be published. The remaining 95 studies with insignificant effects
are more likely to remain invisible.

As a result of this bias in publication, scientists who want to publish their
results are tempted to fiddle around a bit more with their data in order to get
a significant result. Or, if they obtain a 𝑝-value of 0.07, they decide to increase
their sample size, and perhaps stop as soon as the 𝑝-value is 0.05 or less. This
horrible malpractice is called 𝑝-hacking and is extremely harmful to science. As
we saw earlier, if you want to find an effect and not miss it, you should carry
out a power analysis before you collect the data and make sure that your sample
size is large enough to obtain the power you want to have. Increasing sample
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size after you have found a non-significant effect increases your type I error rate
dramatically: if you stop collecting data until you find a significant 𝑝-value, the
type I error rate is equal to 1!

There have been wide discussions the last few years about the use and
interpretation of 𝑝-values. In a formal statement, the American Statistical
Association published six principles that should be well understood by anyone,
including you, who uses them.

The six principles are:

1. 𝑝-values can indicate how incompatible the data are with a specified
statistical model (usually the null-hypothesis).

2. 𝑝-values do not measure the probability that the studied hypothesis is
true, or the probability that the data were produced by random chance
alone. Instead, they measure how likely it is to find a sample slope of at
least the size that you found, given that the population slope is 0.

3. Scientific conclusions and business or policy decisions should not be based
only on whether a 𝑝-value passes a specific threshold. For instance, also
look at the size of the effect: is the slope large enough to make policy
changes worth the effort? Have other studies found effects of similar sizes?

4. Proper inference requires full reporting and transparency. Always report
your sample slope, the standard error, the 𝑡-statistic, the degrees of
freedom, and the 𝑝-value. Only report about null-hypotheses that your
study was designed to test.

5. A 𝑝-value or statistical significance does not measure the size of an effect
or the importance of a result. (See principle 1)

6. By itself, a 𝑝-value does not provide a good measure of evidence regarding
a model or hypothesis. At least as important is the design of the study.

These six principles are further explained in the statement online5. The bottom
line is, 𝑝-values have worth but only when used and interpreted in a proper way.
Some disagree. The philosopher of science William Rozeboom once called NHST
”surely the most bone-headedly misguided procedure ever institutionalized in
the rote training of science students.” The scientific journal Basic and Applied
Social Psychology even banned NHST altogether: 𝑡-values and 𝑝-values are not
allowed if you want to publish your research in that journal.

Most researchers now realise that reporting confidence intervals is often a lot
more meaningful than reporting whether a 𝑝-value is significant or not. A 𝑝-
value only says something about evidence against the hypothesis that the slope
is 0. In contrast, a confidence interval gives a whole range of reasonable values

5https://amstat.tandfonline.com/doi/abs/10.1080/00031305.2016.1154108
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for the population slope. If 0 lies within the confidence interval, then 0 is a
reasonable value; if it is not, then 0 is not a reasonable value so that we can
reject the null-hypothesis.

Using confidence intervals also counters one fundamental problem of null-
hypotheses: nobody believes in them! Remember that the null-hypothesis
states that a particular effect (a slope) is exactly 0: not 0.0000001, not
-0.000201, but exactly 0.000000000000000000000.

Sometimes a null-hypothesis doesn’t make sense at all. Suppose we are
interested to know what the relationship is between age and height in children.
Nobody believes that the population slope coefficient for the regression of
height on age is 0. Why then test this hypothesis? More interesting would be
to know how large the population slope is. A confidence interval would then be
much more informative than a simple rejection of the null-hypothesis.

In some cases, a null-hypothesis can be slightly more meaningful: suppose you
are interested in the effect of cognitive behavioural therapy on depression. You
hope that the number of therapy sessions has a negative effect on the severity
of the depression, but it is entirely possible that the effect is very close to non-
existing. Of course you can only look at a sample of patients and determine
the sample slope. But think now about the population slope: think about all
patients in the world with depression that theoretically could partake in the
research. Some of them have 0 sessions, some have 1 session, and so on. Now
imagine that there are 1 million of such people. How likely is it that in the
population, the slope for the regression is exactly 0? Not 0.00000001, not -
0.0000000002, but exactly 0.0000000000. Of course, this is extremely unlikely.
The really interesting question in such research is whether there is a meaningful
effect of therapy. For instance, an effect of at least half a point decrease on the
Hamilton depression scale for 5 sessions. That would translate to a slope of
−0.5

5 = −0.1. Also in this case, a confidence interval for the effect of therapy on
depression would be more helpful than a simple 𝑝-value. A confidence interval
of -2.30 to -0.01 says that a small population effect of -0.01 might be there,
but that an effect of -0.0001 or 0.0000 is rather unlikely. It also states that
a meaningful effect of at least -0.1 is likely. You can then conclude that the
therapy is helpful. The 𝑝-value less than 𝛼 only tells you that a value of exactly
0.0000 is not realistic, but who cares.

So, instead of asking research questions like ”Is there a linear relationship
between 𝑋 and 𝑌 ?” you might ask: ”How large is the linear effect of 𝑋 on
𝑌 ?” Instead of a question like ”Is there an effect of the intervention?” it might
be more interesting to ask: ”How large is the effect of the intervention?”

Summarising, remember the following principles when doing your own research
or evaluating the research done by others:

• Inference about a population slope or intercept can be made on the basis
of sample data, but only in probabilistic terms. This means that a simple
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statement like ”the value of the population slope is definitely not zero”
cannot be made. Only statements like ”A population slope of 0 is not
very likely given the sample data” can be made.

• Science is cumulative. No study is definitive. Effects should be replicated
by independent researchers.

• Always report your regression slope or intercept, with the standard error
and the sample size. Based on these, the 𝑡-statistics can be computed with
the degrees of freedom. Then if several other researchers have done the
same type of research, the results can be combined in a so-called meta-
analysis, so that a stronger statement about the population can be made,
based on a larger total sample size. The standard error and sample size
moreover allow for the construction of confidence intervals. But better is
to report confidence intervals yourself.

5.14 Relationship between 𝑝-values and confidence
intervals

In previous sections we stated that if the value 0 lies within a confidence interval,
it is a reasonable value for the population slope. If 0 is not within the interval,
0 is not a reasonable value for the population slope, so we have to reject the
null-hypothesis. Here we will elaborate a little on this theme.
Both the confidence interval and the 𝑝-value are based on the same 𝑡-
distribution. Suppose we set our 𝛼 to 0.05, and our sample size is 102. This
means that if we find a 𝑝-value 𝑝 ≤ 0.05 we reject the null-hypothesis that
the slope is 0. The 𝑝-value depends on how many standard deviations our
sample slope deviates from 0. We calculate this by computing a standardised
slope. For example, for a sample slope of 1 and a standard error of 0.5, our
standardised slope is 𝑡 = (1 − 0)/0.5 = 2. In other words, our sample slope of 1
is 2 standard errors away from 0. From 𝑡-tables, we know that with 100 degrees
of freedom, the 2.5th and 97.5th percentiles are -1.98 and 1.98, respectively
(see Appendix B). Therefore, the 𝑝-value depends on the size of the 𝑡-statistic.
If it is equal to -1.98 or 1.98, the 𝑝-value is exactly 0.05. If the 𝑡-statistic is
smaller than -1.98 or larger than 1.98, the 𝑝-value is smaller than 0.05.
The values -1.98 and 1.98 are also used for the construction of the 95% confidence
interval. The lower bound lies at 1.98 times the standard error below the sample
slope, and the upper bound lies at 1.98 times above the sample slope. Therefore,
if 0 lies more than 1.98 standard errors away from the mean, it lies outside the
confidence interval. But if 0 lies more than 1.98 standard errors away from the
mean, this implies that the sample slope lies more than -1.98 standard errors
away from 0, which corresponds to a 𝑡-statistic of more than ±1.98. Thus, if 0
is not within the 95% confidence interval, we know that the 𝑝-value is smaller
than 0.05.
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Using the same reasoning as above, we also know that if 0 is not within the 99%
confidence interval, we know that the 𝑝-value is smaller than 0.01, and if 0 is
not within the 99.9% confidence interval, we know that the 𝑝-value is smaller
than 0.001, etcetera.

A 95% confidence interval can therefore also be seen as the range of possible
values for the null-hypothesis that cannot be rejected with an 𝛼 of 5%. By the
same token, a 99% confidence interval can be seen as the range of possible values
for the null-hypothesis that cannot be rejected with an 𝛼 of 1%, etcetera.

5.15 The intercept only model

So far in this chapter, we have only discussed inference regarding the linear
model with both an intercept and one or more slope parameters.

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑒

Remember that in Chapter 2 we discussed inference regarding only a mean.
Here we show that inference regarding the mean can also be done within the
linear model framework. In Chapter 2 we wanted to get a confidence interval
for the mean luteinising hormone (LH) for a woman. We had 48 measures
(𝑛 = 48) and the sample mean was 2.4. We computed the standard error as
√ 𝑠2

𝑛 = 0.080 (Section 2.13), so that we could construct a confidence interval
using a 𝑡-distribution of 48 − 1 = 47 degrees of freedom. In Chapter 2 we saw
that we can compute a 95% confidence interval for a population mean as

t.test(lh, conf.level = 0.95)$conf.int

## [1] 2.239834 2.560166
## attr(,"conf.level")
## [1] 0.95

Here we show that the same inference can be done with a very simple version
of the linear model: an intercept-only model. An intercept-only model has only
an intercept and no slopes.

𝑌 = 𝑏0 + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2)

We briefly discussed such a model when we discussed degrees of freedom. This
model says that the predicted/expected 𝑌 -value for any observation, is equal to
𝑏0, with residuals 𝑒 that are normally distributed. On average they are 0, and
that implies that their sum is equal to 0.
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We know that when we have a bunch of 𝑌 -values, and we compute the mean,
the deviations between the 𝑌 -values and the mean also sum to 0. As a very
simple example, if we observe the 𝑌 -values 4, 5 and 6, the mean is 5. When we
take the deviations between this mean of 5 and the 𝑌 -values, we get -1, 0 and
1. And these sum to 0. This is true for any set of 𝑌 -values. Thus, we could use
the mean of 𝑌 as our estimate for 𝛽0, since then the deviations with the mean
(i.e., the residuals) sum to 0.
Earlier we said that the unbiased estimator of the population mean is the sample
mean. Therefore, our 𝑏0 parameter represents the unbiased estimator of the
population mean of 𝑌 . Let’s see if this works by fitting this model in R. In R,
an intercept is indicated by a 1:

library(broom)
data(lh)
out <- lh %>%
lm(lh ~ 1, data = .)

out %>%
tidy(conf.int = TRUE)

## # A tibble: 1 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 2.4 0.0796 30.1 2.14e-32 2.24 2.56

In the output we only see an intercept. It is equal to 2.4, which is also the
mean of LH as we saw earlier. The standard error is also exactly the same as
we computed by hand (0.0796), as is the 95% confidence interval. We get the
same results, because in both cases, we use exactly the same standard error and
the same 𝑡-distribution with 𝑛 − 𝐾 − 1 = 48 − 0 − 1 = 47 degrees of freedom
(𝐾 equals 0, the number of independent variables).
In summary, inference about the mean of a set of values can be done using an
intercept-only linear model.

5.16 Take-away points

• You can use sample data to perform inference on population data.
• The linear model coefficients that are based on sample data have

uncertainty due to the random sampling.
• Uncertainty of model parameters is quantified using standard errors.
• Standard errors become smaller with increasing sample size, and

coefficients become more precise.
• Model parameters have 𝑡 distributions, which can be used to construct

confidence intervals.
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• In a model with 𝐾 independent variables, the residual degrees of freedom
is 𝑛 − 𝐾 − 1.

• With null-hypothesis testing, usually the hypothesis is tested that a
particular slope in the linear model is equal to 0 in the population.

• Statistical power refers to the probability of finding a significant result,
given that the population coefficient is a certain non-zero value.

• Statistical power depends on the population value (if it is large, then you
have a higher probability of finding a significant result than when it is
close to 0).

• Statistical power increases with increasing sample size.
• Power analysis can give you insight about how many datapoints you need

in order to have reasonable statistical power.
• Null-hypothesis is beginning to get outdated. Always consider if an

alternate approach like reporting confidence intervals is more appropriate
to answer your research question.

• A null-hypothesis can be done by checking whether a certain confidence
interval includes 0. If 0 is not in the interval, the null-hypothesis that the
population value is 0 can be rejected.

• With an intercept-only model, you can test the null-hypothesis that the
population mean of the dependent variable equals 0, and compute a
confidence interval.

Key concepts

• Statistical power
• Power analysis
• Intercept-only model
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Chapter 6

Categorical predictor
variables

6.1 Dummy coding

As we have seen in Chapter 1, there are largely two different types of variables:
numeric variables and categorical variables. Numeric variables say something
about how much of an attribute is in an object: for instance height (measured
in inches) or heat (measured in degrees Celsius). Categorical variables say
something about the quality of an attribute: for instance colour (red, green,
yellow) or type of seating (aisle seat, window seat). We have also seen a
third type of variable: ordinal variables. Ordinal variables are somewhat in
the middle between numeric variables and categorical variables: they are about
quantitative differences between objects (e.g., size) but the values are sharp
disjoint categories (small, medium, large), and the values are not expressed
using units of measurements.

In the chapters on simple and multiple regression we saw that both the
dependent and the independent variables were all numeric. The linear
model used in regression analysis always involves a numeric dependent variable.
However, in such analyses it is possible to use categorical independent variables.
In this chapter we explain how to do that and how to interpret the results.

The basic trick that we need is dummy coding. Dummy coding involves
making one or more new variables, that reflects the categorisation seen with
a categorical variable. First we focus on categorical variables with only two
categories (dichotomous variables). Later in this chapter, we will explain
what to do with categorical variables with more than two categories (nominal
variables).

Imagine we study bus companies and there are two different types of seating
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Table 6.1: Bus trips to Paris.

person seat price
001 aisle 57
002 aisle 59
003 window 68
004 window 60
005 aisle 61

Table 6.2: Bus trips to Paris.

person seat window price
001 aisle 0 57
002 aisle 0 59
003 window 1 68
004 window 1 60
005 aisle 0 61

in buses: aisle seats and window seats. Suppose we ask 5 people, who have
travelled from Amsterdam to Paris by bus during the last 12 months, whether
they had an aisle seat or a window seat during their last trip, and how much
they paid for the trip. Suppose we have the variables person, seat and price.
Table 6.1 shows the anonymised data. There we see the dichotomous variable
seat with values ‘aisle’ and ‘window’.

With dummy coding, we make a new variable that only has values 0 and 1,
that conveys the same information as the seat variable. The resulting variable
is called a dummy variable. Let’s call this dummy variable window and give it
the value 1 for all persons that travelled in a window seat. We give the value 0
for all persons that travelled in an aisle seat. We can also call the new variable
window a boolean variable with TRUE and FALSE, since in computer science,
TRUE is coded by a 1 and FALSE by a 0. Another name that is sometimes
used is an indicator variable. Whatever you want to call it, the data matrix
including the new variable is displayed in Table 6.2.

What we have done now is coding the old categorical variable seat into a variable
window with values 0 and 1 that looks numeric. Let’s see what happens if we
use a linear model for the variables price (dependent variable) and window
(independent variable). The linear model is:

price = 𝑏0 + 𝑏1window + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2

𝑒)
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Let’s use the bus trip data and determine the least squares regression line. We
find the following linear equation:

p̂rice = 59 + 5 × window

If the variable window has the value 1, then the expected or predicted price
of the bus ticket is, according to this equation, 59 + 5 × 1 = 64. What does
this mean? Well, all persons who had a window seat also had a value of 1 for
the window variable. Therefore the expected price of a window seat equals
64. By the same token, the expected price of an aisle seat (window = 0‘) is
59 + 5 × 0 = 59, since all those with an aisle seat scored 0 on the window
variable.

You see that by coding a categorical variable into a numeric dummy variable,
we can describe the ‘linear’ relationship between the type of seat and the price
of the ticket. Figure 6.1 shows the relationship between the numeric variable
window and the numeric variable price.
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Figure 6.1: Relationship between dummy variable window and price.

Note that the blue regression line goes straight through the mean of the prices
for window seats (window = 1) and the mean of the prices for aisle seats
(window = 0). In other words, the linear model with the dummy variable
actually models the group means of people with window seats and people with
aisle seats.

Figure 6.2 shows the same regression line but now for the original variable seat.
Although the analysis was based on the dummy variable window, it is more
readable for others to show the original categorical variable seat.
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Figure 6.2: Relationship between type of seat and price.

Table 6.3: Bus trip to Paris data, together with residuals and squared residuals
from the least squares regression line.

person seat window price e e_squared
001 aisle 0 57 -2 4
002 aisle 0 59 0 0
003 window 1 68 4 16
004 window 1 60 -4 16
005 aisle 0 61 2 4

6.2 Using regression to describe group means

In the previous section we saw that if we replace a categorical variable with
a numeric dummy variable with values 0 and 1, we can use a linear model
to describe the relationship between a categorical independent variable and a
numeric dependent variable. We also saw that if we take the least squares
regression line, this line goes straight through the averages, the group means.
The line goes straight through the group means because then the sum of the
squared residuals is at its smallest value (the least squares principle). Have
a look at the bus trip data again in Figure 6.1 and see if you can derive the
residuals and the squared residuals. These are displayed in Table 6.3.

If we take the sum of the squared residuals we obtain 40. Now if we use a slightly
different slope, so that we no longer go straight through the average prices for
aisle and window seats (see Figure 6.3) and we compute the predicted values,
the residuals and the squared residuals (see Table 6.4), we obtain a higher sum:
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Table 6.4: Bus trips to Paris, together with residuals and squared residuals from
a suboptimal regression line.

person seat window price wrongpredict e e_squared
001 aisle 0 57 59.1 -2.1 4.41
002 aisle 0 59 59.1 -0.1 0.01
003 window 1 68 63.9 4.1 16.81
004 window 1 60 63.9 -3.9 15.21
005 aisle 0 61 59.1 1.9 3.61

40.05.

57

58

59

60

61

62

63

64

65

66

67

68

aisle window
seat

pr
ic

e

Figure 6.3: Relation between type of seat and price, with the regression line
being not quite the least squares line.

Only the least squares regression line goes through the observed average prices
of aisle seats and window seats. Thus, we can use the least squares regression
equation to describe observed group means for categorical variables.

Conversely, when you know the group means, it is very easy to draw the
regression line: the intercept is then the mean for the category coded as 0,
and the slope is equal to the mean of the category coded as 1 minus the mean
of the category coded as 0 (i.e., the intercept). Check Figure 6.1 to verify this
yourself. But we can also show this for a new data set.

We look at results from an experiment to compare yields (as measured by
dried weight of plants) obtained under a control and two different treatment
conditions. Let’s plot the data first, where we only compare the two
experimental conditions (see Figure 6.4).
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Figure 6.4: Data on yield under two experimental conditions: treatment 1 and
treatment 2.

With treatment 1, the average yield turns out to be 4.661, and with treatment 2,
the average yield is 5.526. Suppose we make a new dummy variable treatment2
that is 0 for treatment 1, and 1 for treatment 2. Then we have the linear
equation:

̂weight = 𝑏0 + 𝑏1 × treatment2

If we fill in the dummy variable and the expected weights (the means!), then we
have the linear equations:

4.661 = 𝑏0 + 𝑏1 × 0 = 𝑏0
5.526 = 𝑏0 + 𝑏1 × 1 = 𝑏0 + 𝑏1

So from this, we know that intercept 𝑏0 = 4.661, and if we fill that in for the
second equation above, we get the slope:

𝑏1 = 5.526 − 𝑏0 = 5.526 − 4.661 = 0.865.

Thus, we get the linear equation

̂weight = 4.661 + 0.865 × treatment (6.1)

Since this regression line goes straight through the average yield for each
treatment, we know that this is the least squares regression equation. We could
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Table 6.5: Yield by treatment.

term estimate std.error statistic p.value conf.low conf.high
(Intercept) 4.66 0.20 22.94 0.00 4.23 5.09
grouptrt2 0.86 0.29 3.01 0.01 0.26 1.47

have obtained the exact same result with a regression analysis using statistical
software. But this was not necessary: because we knew the group means, we
could find the intercept and the slope ourselves by doing the math.

The interesting thing about a dummy variable is that the slope of the regression
line is exactly equal to the differences between the two averages. If we look at
Equation (6.1), we see that the slope coefficient is 0.865 and this is exactly equal
to the difference in mean weight for treatment 1 and treatment 2. Thus, the
slope coefficient for a dummy variable indicates how much the average of the
treatment that is coded as 1 differs from the treatment that is coded as 0. Here
the slope is positive so that we know that the treatment coded as 1 (trt2), leads
to a higher average yield than the treatment coded as 0 (trt1). This makes it
possible to draw inferences about differences in group means.

6.3 Making inferences about differences in
group means

In the previous section we saw that the slope in a dummy regression is equal to
the difference in group means. Suppose researchers are interested in the effects
of different treatments on yield. They’d like to know what the difference is in
yield between treatments 1 and 2, using a limited sample of 20 data points.
Based on this sample, they’d like to generalise to the population of all yields
based on treatments 1 and 2. They adopt a type I error rate of 𝛼 = 0.05.
The researchers analyse the data and they find the regression table as displayed
in Table 6.5. The 95% confidence interval for the slope is from 0.26 to 1.47.
This means that reasonable values for the population difference between the two
treatments on yield lie within this interval. All these values are positive, so we
reasonably believe that treatment 2 leads to a higher yield than treatment 1.
We know that it is treatment 2 that leads to a higher yield, because the slope
in the regression equation refers to a variable grouptrt2 (see Table 6.5).

Thus, a dummy variable has been created, grouptrt2, where trt2 has been
coded as 1 (and trt1 consequently coded as 0). In the next section, we will see
how to do this yourself.

If the researchers had been interested in testing a null-hypothesis about the
differences in mean yield between treatment 1 and 2, they could also use the
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95% confidence interval for the slope. As it does not contain 0, we can reject
the null-hypothesis that there is no difference in group means at an 𝛼 of 5%.
The exact 𝑝-value can be read from Table 6.5 and is equal to 0.01.

Thus, based on this regression analysis the researchers can write in a report:

”There is a significant difference between the yield after treatment
1 and the yield after treatment 2, 𝑡(18) = 3.01, 𝑝 = 0.01. Treatment
2 leads to a yield of about 0.87 (SE = 0.29) more than treatment 1
(95% CI: 0.26, 1.47).”

6.4 Regression analysis using a dummy variable
in R

When your independent variable is a categorical variable, the code that you use
in R is the same as with a numeric independent variable. For instance, if you
want to predict yield from the treatment group, you could run the following R
code:

data("Plantgrowth")
PlantGrowth %>%
filter(group != "ctrl") %>%
lm(weight ~ group, data = .) %>%
tidy()

In this code, we take the PlantGrowth data frame that is available in R, we omit
the data points from the control group (because we are only interested in the
two treatment groups), and we model weight as a function of group. What
then happens depends on the data type of group. Let’s take a quick look at
the variables:

PlantGrowth %>%
dplyr::select(weight, group) %>%
str()

## 'data.frame': 30 obs. of 2 variables:
## $ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
## $ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...

We see that the dependent variable weight is of type numeric (num), and that
the independent variable group is of type factor. If the independent variable
is of type factor, R will automatically make a dummy variable for the factor
variable. This will not happen if the independent variable is of type numeric.
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So here group is a factor variable. Below we see the regression table that results
from the linear model analysis.

data("PlantGrowth")
out <- PlantGrowth %>%
filter(group != "ctrl") %>%
lm(weight ~ group, data = .)

out %>%
tidy()

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 4.66 0.203 22.9 8.93e-15
## 2 grouptrt2 0.865 0.287 3.01 7.52e- 3

We no longer see the group variable, but we see a new variable called
grouptrt2. Apparently, this new variable was created by R to deal with
the group variable being a factor variable. It is a dummy variable, coding
treatment group 2 as 1 and treatment group 1 as 0. The slope value of
0.865 now refers to the effect of this dummy variable for treatment 2, that is,
treatment 1 is the reference category and the value 0.865 is the added effect of
treatment 2 on the yield. We should therefore interpret these results as that
in the sample data, the mean of the treatment 2 data points was 0.865 higher
than the mean of the treatment 1 data points.

Here, R automatically picked the treatment 1 group as the reference group. In
case you want to have treatment 2 as the reference group, you have to make
sure that the treatment 2 group is coded as the first level of the group factor:

PlantGrowth <- PlantGrowth %>%
mutate(group = factor(group, levels = c("trt2", "trt1", "ctrl")))

We can check the order of the categories using the following code:

PlantGrowth %>%
pull(group) %>%
levels()

## [1] "trt2" "trt1" "ctrl"

You see that “trt2” comes first, so this will by default be the reference category
from now on.

Next, you can run a linear model with this slightly altered data set:
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out <- PlantGrowth %>%
filter(group != "ctrl") %>%
lm(weight ~ group, data = .)

out %>%
tidy()

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 5.53 0.203 27.2 4.52e-16
## 2 grouptrt1 -0.865 0.287 -3.01 7.52e- 3

The results now show the effect of treatment 1, with treatment 2 being the
reference category. Of course the effect of -0.865 is now the opposite of the effect
that we saw earlier (+0.865), when the reference category was treatment 1. The
intercept has also changed, as the intercept is now the expected weight for the
other treatment group. In other words, the reference group has now changed:
the intercept is equal to the expected weight of the treatment 2 group.

In general, store variables that are essentially categorical as factor variables in
R. For instance, you could have a variable group that has two values 1 and
2 and that is stored as numeric. It would make more sense to first turn this
variable into a factor variable, before using this variable as a predictor in a
linear model. You could turn the variable into a factor only for the analysis and
leaving the data frame unchanged, like this:

model <- dataset %>%
lm(y ~ factor(group), data = .)

or change the data frame before the analysis

dataset <- dataset %>%
mutate(group = factor(group))

model <- dataset %>%
lm(y ~ group, data = .)

R will always choose the category with the lowest internal integer value as the
reference category. The internal values are chosen alphabetically by default.
If that however makes the output hard to interpret, think of the best way to
change the order of the levels (categories). For experimental designs, it makes
sense to code control conditions as the first level, and experimental conditions as
second level (you’re often interested in the effect of the experimental condition
compared to the control condition, so the control condition is the reference
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Table 6.6: Regression table for the regression of price on the dummy variable
window and the numeric variable legroom.

term estimate std.error statistic p.value
(Intercept) 41.50 9.71 4.27 0.05
window 5.00 2.50 2.00 0.18
leg_room 0.25 0.14 1.83 0.21

group). For social surveys, if you want to compare how a social minority group
scores relative to a social majority group, it makes sense to code the majority
group as the reference group (the first level) and the social minority as the
second group. In educational studies, it makes sense to code an old teaching
method as the reference group and a new method as the second group. In
all of these cases, the slope can then be interpreted as the difference of the
experimental procedure/new method/minority compared to the reference group,
and the intercept can be interpreted as the mean of the reference group.

6.5 Two independent variables: one dummy and
one numeric variable

In Chapter 4 we saw that we can have more than one predictor variable in a
linear model. If we have two or more numeric variables, one usually talks about
multiple regression models. When we have a categorical variable that we treat
as a numeric dummy variable, then we can therefore also have linear models
with both a categorical variable and a numeric variable.
Let’s return to the bus trip to Paris data. Suppose that one can choose the
amount of leg room. There are seats with 60, 70 or 80 centimetres of leg room.
You might expect that seats with more leg room are more expensive. To find
out whether this is the case, you analyse the sample data from the 5 travellers.
Leg room varies between 60 and 80 centimetres. Since you already know that
the price of seats also depends on the type of seat (aisle or window), you analyse
the data with the following linear model:

price = 𝑏0 + 𝑏1window + 𝑏2legroom + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2)

That is, your independent variables are the dummy variable window (1 coding
for window seat, 0 coding for aisle seat) and the numeric variable legroom.
When we look at the output, we see the regression table in Table 6.6. When we
fill in the coefficients, we obtain the following linear equation:
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p̂rice = 41.5 + 5 × window + 0.25 × legroom (6.2)

From Chapter 4 we know how to interpret the coefficients. The slope coefficient
for window should be interpreted as ”the increase in price if we change seat
from aisle to window, given a certain amount of legroom”. That is, holding
legroom constant, for instance at 60 centimetres, the difference between an
aisle and a window seat equals 5 Euros. And of course, this difference is also
5 Euros when legroom equals 70 centimetres, and also when legroom equals 80
centimetres. Along the same vein, the slope coefficient for legroom should be
interpreted as ”the increase in price for every unit increase in legroom, given a
certain type of seat”. Thus, for an aisle seat, you pay 0.25 Euros more for every
extra centimetre. And this is also true for window seats: every extra centimetre
for your legs costs you 0.25 Euros.

The intercept of 41.5 means that the model predicts that you pay 41.5 if you
happen to have 0 centimetres of leg room and an aisle seat (the reference
category). Of course, a seat with 0 leg room does not exist, but it is simply
what the model predicts, based on the data that are observed. The data and
these predictions are visualised in Figure 6.5.

56

60

64

68

60 65 70 75 80
Leg room in centimetres

pr
ic

e

window

0

1

Figure 6.5: The bus trip to Paris data, with the predictions from a linear model
with legroom and window as independent variables.

In order to visualise the relationship between the three variables price, legroom
and window, we plotted legroom on the horizontal axis, and used different
colours for the variable window. There are a couple of things you should notice
in this figure.
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The first you should notice is that there are now two regression lines, one for
window seats and one for aisle seats. This is so because the model makes
different predictions for window and aisle seats. If we take Equation (6.2) and
make predictions for aisle seats, we fill in window = 0 and we get the following
linear equation:

p̂rice = 41.5 + 5 × 0 + 0.25 × legroom = 41.5 + 0.25 × legroom

Thus, the regression line for aisle seats has an intercept of 41.5 and a slope of
0.25. Now let’s fill in the equation for window seats, that is, window = 1. Then
we obtain

p̂rice = 41.5 + 5 × 1 + 0.25 × legroom = 46.5 + 0.25 × legroom

That is, the regression line for window seats has an intercept that is different:
it is equal to the original intercept plus the slope of the window variable,
41.5 + 5 = 46.5. On the other hand, the slope for legroom is unchanged. With
the same slope for legroom, the two regression lines are therefore parallel.

The second you should notice from Figure 6.5 is that these two regression lines
are not the least squares regression lines for window and aisle seats respectively.
For instance, the regression line for window seats (the top one) should be steeper
in order to minimise the difference between the data points and the regression
line (the residuals). On the other hand, the regression line for aisle seats (the
bottom one) should be less steep in order to have smaller residuals. Why is this
so? Shouldn’t the regression lines minimise the residuals?

Yes they should! But there is a problem, because the model also implies, as we
saw above, that the lines are parallel. Whatever we choose for values for the
multiple regression equation, the regression lines for aisle and window seats will
always be parallel. And under that constraint, the current parameter values
give the lowest possible value for the sum of the squared residuals, that is, the
sum of the squared residuals for both regression lines taken together. The aisle
seat regression line should be less steep, and the window seat regression line
should be steeper to have a better fit with the data, but taken together, the
estimated slope of 0.25 gives the lowest overall sum of squared residuals, given
that the lines must be parallel.

It is possible though to have linear models where the lines are not parallel. This
will be discussed in Chapter 9.

6.6 Dummy coding for more than two groups

In the previous sections we saw how to code a categorical variable with 2
categories (a dichotomous variable) into 1 dummy variable. In this section,
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Table 6.7: Height across three different countries.

ID Country height
001 A 120
002 A 160
003 B 121
004 B 125
005 C 140

Table 6.8: Height across three different countries with dummy variables.

ID Country height countryA countryB
001 A 120 1 0
002 A 160 1 0
003 B 121 0 1
004 B 125 0 1
005 C 140 0 0

we learn how to code a categorical variable with 3 categories into 2 dummy
variables, and to code a categorical variable with 4 categories into 3 dummy
variables, etcetera. That is, how to code nominal variables into sets of dummy
variables.

Take for instance a variable Country, where in your data set, there are three
different values for this variable, for instance, Norway, Sweden and Finland,
or Zimbabwe, Congo and South-Africa. Let’s call these countries A, B and C.
Table 6.7 shows a data example where we see height measurements on people
from three different countries.

We can code this Country variable with three categories into two dummy
variables in the following way. First, we create a variable countryA. This is
a dummy variable, or indicator variable, that indicates whether a person comes
from country A or not. Those persons that do are coded 1, and those that do
not are coded 0. Next, we create a dummy variable countryB that indicates
whether or not a person comes from country B. Again, persons that do are coded
1, and those that do not are coded 0. The resulting variables are displayed in
Table 6.8.

Note that we now have for every value of Country (A, B, or C) a unique
combination of the variables countryA and countryB. All persons from country
A have a 1 for countryA and a 0 for countryB; all those from country B have a
0 for countryA and a 1 for countryB, and all those from country C have a 0 for
countryA and a 0 for countryB. Therefore a third dummy variable countryC
is not necessary (i.e., is redundant): the two dummy variables give us all the
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country information we need.

Remember that with two categories, you only need one dummy variable, where
one category gets 1s and another category gets 0s. In this way both categories
are uniquely identified. Here with three categories we also have unique codes
for every category. Similarly, if you have 4 categories, you can code this with 3
dummy variables. In general, when you have a variable with 𝐾 categories, you
can code them with 𝐾 − 1 dummy variables.

6.7 Analysing categorical predictor variables in
R

R contains a data set (PlantGrowth) on yield on a sample of thirty observations
(𝑛 = 30), under three different conditions. We already saw part of the data in
Figure 6.4. The complete data consists of weight in three different groups:
treatment 1 (trt1), treatment 2 (trt2) and a control group (ctrl). Now we
want to model weight as a function of the categorical variable group using a
linear model. We discuss how to do that in R. We create factors in such a way
that we control in what order the categories are coded. The first category will
always be the reference group.

R creates dummy variables automatically when we use factor variables. The
first category (in terms of internally numbered category) by default ends up as
the reference category. The only thing that is required is that the independent
variable in question is stored as a factor variable. First, let’s check whether the
group variable is indeed a factor variable.

In a previous section we changed the data set, so let’s start with the original
data set again.

data("PlantGrowth")

If we look at the structure of it, we can see the types of variables.

PlantGrowth %>%
str()

## 'data.frame': 30 obs. of 2 variables:
## $ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
## $ group : Factor w/ 3 levels "ctrl","trt1",..: 1 1 1 1 1 1 1 1 1 1 ...

Yes, the group variable is a factor (Factor). If we use a factor in a linear
model, R will automatically code this variable into a set of dummy variables.
Let’s check the order in which the levels/categories are coded:
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PlantGrowth %>%
pull(group) %>%
levels()

## [1] "ctrl" "trt1" "trt2"

We see the control condition comes first, so that will be the reference category
when we run a linear model.

out <- PlantGrowth %>%
lm(weight ~ group, data = .)

out %>%
tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 5.03 0.197 25.5 1.94e-20
## 2 grouptrt1 -0.371 0.279 -1.33 1.94e- 1
## 3 grouptrt2 0.494 0.279 1.77 8.77e- 2

We see the effect of treatment 1 and the effect of treatment 2 against the
reference category ctrl.

Thus, the new internal variable grouptrt1 codes 1s for all observations where
group = trt1 and 0s otherwise, and the new internal variable grouptrt2 codes
1s for all observations where group = trt2 and 0s otherwise.

You now have two numeric variables that you use in an ordinary multiple
regression analysis. We see the effects (the ‘slopes’) of the two dummy variables.
Based on these slopes and the intercept, we can construct the linear equation
for the relationship between treatment and weight (yield):

̂weight = 5.03 − 0.37 × grouptrt1 + 0.49 × grouptrt2

Based on this we can make predictions for the mean weight in the control group,
the treatment 1 group and the treatment 2 group.

Control group specimens score 0 on variable grouptrt1 and 0 on variable
grouptrt2. Therefore, their predicted weight equals:

5.03 − 0.37 × 0 + 0.49 × 0 = 5.03

Thus, the expected weight in the control group is equal to the intercept, as we
used the control group as the reference group.
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Specimens in the treatment 1 group score 1 on the grouptrt1 variable but 0
on the grouptrt2 variable. Therefore, their predicted weight equals:

5.03 − 0.37 × 1 + 0.49 × 0 = 5.03 − 0.37 = 4.66

Specimens in the treatment 2 group score 0 on the grouptrt1 variable but 1
on the grouptrt2 variable. Therefore, their predicted weight equals:

5.03 − 0.37 × 0 + 0.49 × 1 = 5.03 + 0.49 = 5.52

6.8 Interpreting the regression table

The intercept is the expected mean for the reference group, that is, the group
for which there is no dummy variable. Each slope is the difference between the
group to which the slope belongs to and the reference group. For instance, in
the yield example with manual coding of the dummy variables, the slope for the
grouptrt1 dummy variable is the estimated population difference between the
mean for treatment 1 minus the mean for the control condition. Similarly, the
slope for the grouptrt2 dummy variable is actually the estimated population
difference between the mean for treatment 2 minus the mean for the control
condition. The confidence intervals that belong to these parameter effects are
also to be seen in this light: they are intervals for probable values for the
population difference between the respective group means and the mean of the
reference group. The 𝑡-values and 𝑝-values are related to null-hypothesis tests
regarding these differences to be 0 in the population.
As an example, suppose that we want to estimate the difference in mean weight
between plants from the treatment 1 group relative to the control group. From
the output, we see that our best guess for this difference (the least square
estimate) equals -0.37, where the yield is less with treatment 1 than under
control conditions. The standard error for this difference equals 0.28. So a
rough indication for the 95% confidence interval would be from −0.37 −2×0.28
to −0.37 + 2 × 0.28, that is, from −0.93 to 0.19. Therefore, we infer that in the
population, our best guess for the difference is somewhere between −0.93 and
0.19.
If we would want to, we could perform three null-hypothesis tests based on this
output:

1) whether the population intercept equals 0, that is, whether the population
mean of the control group equals 0;

2) whether the slope of the treatment 1 dummy variable equals 0, that is,
whether the difference between the population means of treatment 1 group
and the control group is 0;

241



3) whether the slope of the treatment 2 group dummy variable equals 0, that
is, whether the difference between the population means of the treatment
2 group and the control group is 0.

Obviously, the first hypothesis is not very interesting: we’re not interested to
know whether the average weight in the control group equals 0. But the other
two null-hypotheses could be interesting in some scenarios. What is missing from
the table is a test for the null-hypothesis that the means of the two treatments
conditions are equal. This could be solved by changing the order of the levels
in a different way, where either treatment 1 or 2 is the reference group.

But what is also missing is a test for the null-hypothesis that all three population
means are equal. In order to do that, we first need to explain analysis of
variance.

6.9 Analysis of variance

Since we know that applying a linear model to a categorical independent variable
is the same as modelling group means, we can test the null-hypothesis that all
group means are equal in the population. Let 𝜇𝑡1 be the mean yield in the
population of the treatment 1 group, 𝜇𝑡2 be the mean yield in the population
of the treatment 2 group, and 𝜇𝑐 be the mean yield in the population of the
control group. Then we can specify the null-hypothesis using symbols in the
following way:

𝐻0 ∶ 𝜇𝑡1 = 𝜇𝑡2 = 𝜇𝑐

If all group means are equal in the population, then all population slopes would
be 0. We want to test this null-hypothesis with a linear model in R. We then
have only one independent variable, group, and if we let R do the dummy
coding for us, R can give us an analysis of variance. We do that in the following
way, where we make use of the Anova() function from the car package:

library(car)
PlantGrowth %>%
lm(weight ~ group, data = ., contrasts = list(group = contr.sum)) %>%
Anova(type = 3) %>%
tidy()

## # A tibble: 3 x 5
## term sumsq df statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 772. 1 1987. 8.02e-27
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## 2 group 3.77 2 4.85 1.59e- 2
## 3 Residuals 10.5 27 NA NA

We don’t see a regression table, but output based on a so-called Analysis Of
VAriance, or ANOVA for short. This table is usually called an ANOVA table.
The function Anova() is used after fitting a linear model with lm(). ANOVA
is in fact an alternative way of presenting the results of a linear model.

Note that we estimate the linear model in a slightly different way. Instead of
running lm(weight ~ group, data = .) we add the extra code contrasts =
list(group = contr.sum). This has to do with how you want the categorical
variables to be coded in a linear model analysis (in this case the variable group).
R uses dummy coding by default (using 0 and 1). Instead of dummy coding,
we here use coding using -1 and 1 (called sum-to-zero coding, explained in Ch.
10). For the simple ANOVA here it does not make a difference, but it will
make a difference once you want to include more independent variables (see Ch.
9). We include it here to be consistent throughout the book. Also, the code
type = 3 is not strictly necessary here, but it will be once you move to multiple
independent variables.

In the output, you see a column statistic, with the value 4.85 for the group
variable. It looks similar to the column with the 𝑡-statistic in a regression table,
but it isn’t. The statistic is an 𝐹 -statistic.

𝐹 -values are test statistics and are used in the same way as 𝑡-statistics. Under
the null-hypothesis they have a known distribution (an 𝐹 -distribution) with an
average of 1. If the 𝐹 -value is significantly larger than 1, you can reject the
null-hypothesis. Whether or not the null-hypothesis can be rejected, depends
not only on the 𝑝-value, reported in the last column (p.value), but also on
the degrees of freedom. The degrees of freedom determine the shape of the
𝐹 -distribution, in the same way as the degrees of freedom for the 𝑡-distribution.

The only difference between 𝐹 -tests and 𝑡-tests is that there are two different
kinds of degrees of freedom. There are the residual degrees of freedom, which
corresponds to the degrees of freedom for a 𝑡-test: the larger your sample size,
the larger the degrees of freedom. For the 𝐹 -test there is also the degrees of
freedom for the effect you are interested in. Here we compare 3 groups, and we
see that we have 2 degrees of freedom for this effect of group (you see that in
the df column in the ANOVA output. In general, when comparing 𝐾 groups,
the degrees of freedom is 𝐾 − 1 for the group effect.

In the output we see that the 𝐹 -value for the group effect is larger than 1, and
that the associated 𝑝-value p.value is smaller than 0.05. We then report that
the group means are significantly different, 𝐹 (2, 27) = 4.85, 𝑝 = 0.016. Note
that the effect degrees of freedom comes first, and then the residual degrees of
freedom.
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6.10 Computing and testing the 𝐹 -statistic

The 𝐹 -statistic is constructed on the basis of Sums of Squares (SS, sumsq in
the R table). Sums of squares we already encountered in Chapter 1, where
they form the basis of variances and standard deviations. We also saw sums
of squares in Chapter 4 where the sum of squared residuals was minimised to
get the least squares estimator of regression coefficients. Actually, the sum of
squares that we see in the ANOVA table here in the row named Residuals is
exactly the same sum of the squared residuals. Here we see that the sum of the
squared residuals equals 10.5.

In the ANOVA table, we also see degrees of freedom (df). The degrees of
freedom in the row named Residuals are the residual degrees of freedom that
we already use when doing linear regression (Chapter 5) and report the 𝑡-test.
Here we see the residual degrees of freedom equals 27. This is so because we
have 30 data points, and for a linear model the number of degrees of freedom is
𝑛 − 𝐾 − 1 = 30 − 2 − 1 = 27, with 𝐾 being the number of independent variables
(two dummy variables).

In many ANOVA tables we also see Mean Squares. They form the basis for
the 𝐹 -statistic. The Mean Squares are not shown in the ANOVA table here,
but they can easily be computed based on the Sums of Squares and the degrees
of freedom. These Mean Squares the sums of squares (sumsq) divided by the
respective degrees of freedom (df), 𝑀𝑆 = 𝑆𝑆

𝑑𝑓 . For instance, in the row for
Residuals, the Sum of Squares equals 10.5, the degrees of freedom equals 27,
and the Mean square error therefore equals 10.5

27 = 0.389. For the effect of group,
the Mean Square is 3.77

2 = 1.885.
The 𝐹 -value is in turn computed based on these Mean squares values.

𝐹 = 𝑀𝑆𝑒𝑓𝑓𝑒𝑐𝑡
𝑀𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Let’s look at the 𝐹 -value for the group variable. The 𝐹 -value equals 4.85. This
is the ratio of the mean square of the group effect, which we computed as 1.885,
and the mean square of the residuals (error), which we computed as 0.389. Thus,
the 𝐹 -value for country is computed as 1.885

0.389 = 4.85. Under the null-hypothesis
that all three population means are equal, this ratio is around 1. Why this is so,
we will explain later. Here we see that the 𝐹 -value based on these sample data is
larger than 1. But is it large enough to reject the null-hypothesis? As we said, it
depends on the degrees of freedom. The 𝐹 -value is based on two mean squares,
and these in turn are based on two separate numbers of degrees of freedom.
The one for the effect of group was 2 (3 groups so 2 degrees of freedom), and
the one for the residual mean square was 27 (27 residual degrees of freedom).
We therefore can look up in a table whether an 𝐹 -value of 4.85 is significant
at 2 and 27 degrees of freedom for a specific 𝛼. Such a table is displayed in
Table 6.9. It shows critical values if your 𝛼 is 0.05. In the columns we look
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Table 6.9: Critical values for the 𝐹 -value if 𝛼 = 0.05, for different model degrees
of freedom (columns) and error degrees of freedom (rows).

Model degrees of freedom
1 2 3 4 5 10 25 50

5 6.61 5.79 5.41 5.19 5.05 4.74 4.52 4.44
6 5.99 5.14 4.76 4.53 4.39 4.06 3.83 3.75
10 4.96 4.10 3.71 3.48 3.33 2.98 2.73 2.64
27 4.21 3.35 2.96 2.73 2.57 2.20 1.92 1.81
50 4.03 3.18 2.79 2.56 2.40 2.03 1.73 1.60
100 3.94 3.09 2.70 2.46 2.31 1.93 1.62 1.48

up our model degrees of freedom. Model degrees of freedom is computed based
on the number of independent variables. Here we have a categorical variable
group. But because this categorical variable is represented in the analysis as
two dummy variables, the number of variables is actually 2. The model degrees
of freedom is therefore 2.
In the rows of Table 6.9 we look up our residual degrees of freedom: 27. For 2
and 27 degrees of freedom we find a critical 𝐹 -value of 3.35. It means that if we
have an 𝛼 of 0.05, an 𝐹 -value of 3.35 or larger is large enough to reject the null-
hypothesis. Here we found an 𝐹 -value of 4.85, so we reject the null-hypothesis
that the three population means are equal. Therefore, the mean weight is not
the same in the three experimental conditions.
Of course, instead of using the table, you can also simply report the 𝑝-value
plotted in your R output, and call it significant when it is smaller than your
pre-set 𝛼.

6.11 Difference between ANOVA and regular
linear model output

Note that our null-hypothesis that all group means are equal in the population
cannot be answered based on a regression table. If the population means are all
equal, then the slope parameters should consequently be 0 in the population.
Let’s have a look again at the regression table, plotting also the 95% confidence
intervals:

out <- PlantGrowth %>%
lm(weight ~ group, data = .)

out %>%
tidy(conf.int = TRUE)
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## # A tibble: 3 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 5.03 0.197 25.5 1.94e-20 4.63 5.44
## 2 grouptrt1 -0.371 0.279 -1.33 1.94e- 1 -0.943 0.201
## 3 grouptrt2 0.494 0.279 1.77 8.77e- 2 -0.0780 1.07

Looking at the 95% confidence intervals for grouptrt1 and grouptrt2, we see
that 0 is a reasonable value for the difference between the control group (the
reference category) and treatment 1, and that 0 is also a reasonable value for
the difference between the control group and treatment 2. But what does that
tell us about the difference between the two treatment groups? How can we
rigorously test the null-hypothesis, with one clear test-statistic, that all three
group means are the same? In the regression table we have two 𝑡-statistics
and two 𝑝-values, one for the difference between control and treatment 1 (𝑡 =
−1.33, 𝑝 = 0.194) and one of the difference between treatment 2 and the control
group (𝑡 = 1.77, 𝑝 = 0.088), but we actually need one 𝑝-value for the null-
hypothesis of three equal means.
The ANOVA table looks different: instead of two separate effects for two dummy
variables, we only see one row for the original categorical variable group. And
in the column df (degrees of freedom): instead of 1 degree of freedom for
a specific dichotomous dummy variable, we see 2 degrees of freedom for the
nominal group variable. So this suggests that the effects of the two dummy
variables are now combined into one effect, with one particular 𝐹 -statistic, and
one 𝑝-value that is also different from those of the two separate dummy variables.
This is actually the 𝑝-value associated with the test of the null-hypothesis that
all 3 means are equal:

𝐻0 ∶ 𝜇𝑡1 = 𝜇𝑡2 = 𝜇𝑐

This hypothesis test is very different from the 𝑡-tests in the regression table. The
𝑡-test for the grouptrt1 effect specifically tests whether the average weight in
treatment 1 group is different from the average weight in the control group (the
reference group). The 𝑡-test for the grouptrt2 effect specifically tests whether
the average weight in the treatment 2 group is different from the average weight
in the control group (the reference group). Since these two hypotheses do not
refer to our original research question regarding overall differences across all
three groups, we do not report these 𝑡-tests, but we report the overall 𝐹 -test
from the ANOVA table.

The general rule is that if you have a specific research question that
addresses a particular null-hypothesis, you only report the statistical
results regarding that null-hypothesis. All other 𝑝-values that your
software happens to show in its output should be ignored.
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6.12 The logic of the 𝐹 -statistic (advanced)

As stated earlier, the ANOVA is an alternative way of representing the linear
model. Suppose we have a dependent variable 𝑌 , and three groups: A, B and
C. In the usual linear model, we have an intercept 𝑏0, and we use two dummy
variables. Suppose we use C as our reference group, then we need two dummy
variables for groups A and B. We could model the data then using the following
equation, with normally distributed errors:

𝑌 = 𝑏0 + 𝑏1dummy𝐴 + 𝑏2dummy𝐵 + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2)

This is the linear model as we know it. The linear equation has three unknown
parameters that need to be estimated: one intercept and two dummy effects.
The dummy effects are the differences between the means of groups A and B
relative to reference group C.

Alternatively, we could represent the same data as follows:

𝑌 = 𝑏1dummy𝐴 + 𝑏2dummy𝐵 + 𝑏3dummy𝐶 + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2)

That is, instead of estimating one intercept and two dummy effects, we simply
estimate the three population means directly! We leave out the intercept, and
we estimate three population means.

Although both models are equivalent, the one with the three means is more
helpful when understanding the logic of ANOVA and the 𝐹 -statistic, since they
are about the estimated group means in the population.

Next, we focus on the variance of the dependent variable, 𝑌 in this case, that is
split up into two parts: one part that is explained by the independent variable
(groups in this case) and one part that is not explained (cf. Chapter 4). The
unexplained part is easiest of course: that is simply the part shown by the
residuals, hence 𝜎2.

The logic of the 𝐹 -statistic is entirely based on this 𝜎2. As stated earlier,
under the null-hypothesis the 𝐹 -statistic should have a value of around 1. This
is because 𝐹 is a ratio and under the null-hypothesis, the numerator and the
denominator of this ratio should be more or less equal. This is so because
both the numerator and the denominator are estimators of 𝜎2. Under the null-
hypothesis, these estimators should result in more or less the same numbers,
and then the ratio is more or less 1. If the null-hypothesis is not true, then the
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numerator becomes larger than the denominator and hence the 𝐹 -value becomes
larger than 1.

In the previous section we saw that the numerator of the 𝐹 -statistic was
computed by taking the sum of squares of the group variable and dividing it
by the degrees of freedom. What is actually being done is the following: If the
null-hypothesis is really true, then the three population means are equal, and
you simply have three independent samples from the same population. Each
sample mean shows simply a slight deviation from the population mean (the
sample means differ from the population mean because of random sampling).

This variation in the sample means should remind us of something. If we go
back to Chapter 2, we saw there that if we have a population with mean 𝜇 and
variance 𝜎2, and if we draw many many random samples of size 𝑛 and compute
sample means for each sample, the distribution of these many sample means is
a sampling distribution (Fig. 2.2). We also saw in Chapter 2 that on average
the sampling distribution will show a mean that is the same as the population
mean: the sample mean is an unbiased estimator of the population mean. And,
important for ANOVA, the standard deviation of the sampling distribution,
known as the standard error, will be equal to 𝜎 ̄𝑌 = √ 𝑠2

𝑛 (Chapter 2). If we
take the square, we see that the variance of the sample means is equal to

𝜎2
̄𝑌 = 𝑠2

𝑛 (6.3)

where 𝑠2 is the unbiased estimator of the variance of 𝑌 .

In the ANOVA model above, we have three group means. Now, suppose we
have an alternative model, under the null-hypothesis, that there is really only
one population mean 𝜇, and that the observed different group means in groups
A, B and C are only the result of chance (random sampling). Then the variance
of the group means is nothing but the square of the standard error, and the
number of observations per group is the sample size 𝑛. If that is the case, then
we can flip the equation of the standard error around and say:

𝜎2 = 𝑠2 = 𝜎2
̄𝑌 × 𝑛 = 𝑆𝑆

2 × 𝑛 (6.4)

or in words: our estimate of the residual variance 𝜎2 in the population is the
estimated variance of the group means in the population times the number
of observations per group. Here, note that 𝑆𝑆 refers to the sum of squared
differences between the sample means and the population mean. To compute
the variance, we divide by the number of groups minus 1 (i.e., 2).

So the numerator of 𝐹 is one estimator of the variance of the residuals. For
that estimator we only used information about the group means: we looked at
variation between groups (we computed the sum of squared differences for the
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group means). Now let’s look at the denominator. For that estimator we use
information from the raw data and how they deviate from the sample group
means, that is we look at within-group variation. Similar to regression analysis,
for each observed value, we compute the difference between the observed value
and the group mean. We then compute the sum of squared residuals, SSR. If we
want the variance, we need to divide this by sample size, 𝑛. However, if we want
to estimate the variance in the population, we need to divide by a corrected 𝑛.
In Chapter 2 we saw that if we wanted to estimate a variance in the population
on the basis of one sample with one sample mean, we used 𝑠2 = 𝑆𝑆

𝑛−1 . The
𝑛 − 1 was in fact due to the loss of 1 degree of freedom because by computing
the sample variance, we used the sample mean, which was only an estimate of
the population mean. Here, because we have three groups, we need to estimate
three population means, and the degrees of freedom is therefore 𝑛 − 3. The
estimated variance in the population that is 𝑛𝑜𝑡 explained by the independent
variable is therefore 𝑆𝑆𝑅/(𝑛 − 3).
Thus, if we want to estimate 𝜎2 related to the model, we can either do that
by looking at the model residuals, computing the sum of squared residuals and
dividing it by the degrees of freedom (in this case 𝑆𝑆𝑅/(𝑛 − 3)), but we can
also do it by looking at the variation of the group means and multiplying it by
the group size. Now, the method of looking at the residuals will generally yield
a good estimate of 𝜎2, whether the null-hypothesis is true or not. However,
only if the null-hypothesis is true, the method of looking at the variation of
group means will yield a good estimate of 𝜎2. Only if the null-hypothesis is
true, both estimates will be more or less the same. But if the null-hypothesis is
not true, if the means are really different in the population, then the method of
looking at the variation of group means will yield an estimate of 𝜎2 that is larger
than an estimate based on residuals. Then, if you compute a ratio, the ratio
will become larger than 1. Therefore, an 𝐹 -statistic larger than 1 is evidence
that the population means might not be equal. How much larger than 1 an
𝐹 -value should be to regard it as evidence against 𝐻0 depends on your level of
significance 𝛼 and the degrees of freedom.

6.13 Small ANOVA example

To illustrate the idea of ANOVA and the computation of the 𝐹 -statistic, let’s
assume we have a very small data set, involving height data from three countries
A, B and C. From each country, we only have 3 data points. The data are plotted
in Figure 6.6. In grey, we see the raw data values for variable 𝑌 . In group A, we
see the values 4, 2 and 1; in group B, we see the values 4, 2 and 2, and in group
C, we see the values 2, 1 and 1. When we sum all these values and divide by 9,
we get the overall mean (the grand mean), which is equal to ̄𝑌 = 2.11, denoted
in black in Figure 6.6. In red, we see the sample group means. For group A,
that is equal to (4 + 2 + 1)/3 = 2.33, for group B this is (4 + 2 + 2)/3 = 2.67,
and for group C this equals (2 + 1 + 1)/3 = 1.33.

249



Ŷ
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Figure 6.6: Illustration of ANOVA using a very small data set. In grey the raw
data, in black the overall sample mean (grand mean), and in red the sample
group means.

Thus, our ANOVA model for these data is the following:

𝑌 = 𝑏1dummy𝐴 + 𝑏2dummy𝐵 + 𝑏3dummy𝐶 + 𝑒 (6.5)
𝑒 ∼ 𝑁(0, 𝜎2)

Our OLS estimates for the parameters are the sample means, so that we have
the linear equation

𝑌 = 2.33dummy𝐴 + 2.67dummy𝐵 + 1.33dummy𝐶

Based on this linear equation we can determine the predicted values for each
data point. Table 6.10 shows the 𝑌 -values, the group variable, the dummy
variables from the ANOVA model equation (Equation (6.6)) and the predicted
values. We see that the predicted value for each observed value is equal to the
sample group mean.

Using these predicted values, we can compute the residuals, also displayed in
Table 6.10, and these help us to compute the first estimate of 𝜎2, the one based
on residuals, namely the SSR divided by the degrees of freedom. If we square
the residuals in Table 6.10 and sum them, we obtain 𝑆𝑆𝑅 = 8.00. To obtain
the Mean Squared Error (MSE or meansq for Residuals), we divide the SSR by
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Table 6.10: Small data example for illustrating ANOVA and the 𝐹 -statistic.

Y group dummy_A dummy_B dummy_C predicted residual
1 A 1 0 0 2.33 -1.33
2 A 1 0 0 2.33 -0.33
4 A 1 0 0 2.33 1.67
2 B 0 1 0 2.67 -0.67
2 B 0 1 0 2.67 -0.67
4 B 0 1 0 2.67 1.33
2 C 0 0 1 1.33 0.67
1 C 0 0 1 1.33 -0.33
1 C 0 0 1 1.33 -0.33

Table 6.11: ANOVA table for small data example.

term sumsq df statistic p.value
(Intercept) 40.11 1 30.08 0.002
group 2.89 2 1.08 0.397
Residuals 8.00 6 NA NA

the degrees of freedom. Because the linear model with 2 dummy variables (3
groups) has 𝑛 − 𝐾 = 9 − 3 = 6 residual degrees of freedom (see Chapter 5), we
also have only 6 residual degrees of freedom. Thus we get 𝑀𝑆𝐸 = 8/6 = 1.33.
We can see the values for SSR (sumsq) and the degrees of freedom (df) in the
bottom row in the ANOVA table, displayed in Table 6.11.

For our second estimate of 𝜎2, the one based on the group means, we look at
the squared deviations of the group means from the overall mean (the grand
mean). We saw that the grand mean equals 2.11. The sample mean for group
A was 2.33, so the squared deviation equals 0.05. The sample mean for group
B was 2.67, so the squared deviation equals 0.31. Lastly, the sample mean for
group C was 1.33, so the squared deviation equals 0.31. Adding these squared
deviations gives a sum of squares of 0.96. To obtain an unbiased estimate for the
population variance of these means, we have to divide this sum of squares by the
number of groups minus 1 (model degrees of freedom), thus we get 0.962963/2
= 0.48. This we must multiply by the sample size per group (3) to obtain an
estimate of 𝜎2 (see Equation (6.3)), thus we obtain 1.44.

Obtaining the estimate of 𝜎2 based on the group means can also be illustrated
using Table 6.12. There again we see the raw data values for variable 𝑌 , the
predicted values (the group means), but now also the grand mean, the deviations
of the sample means from the grand mean, and their squared values. If we simply
sum the squared deviations, we no longer have to multiply by sample size. Thus
we have as the sum of squares 2.89. Then we only have to divide by the number
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Table 6.12: Small data example for illustrating ANOVA and the 𝐹 -statistic.

Y group predicted grand_mean deviation sq_deviation
1 A 2.33 2.11 0.22 0.05
2 A 2.33 2.11 0.22 0.05
4 A 2.33 2.11 0.22 0.05
2 B 2.67 2.11 0.56 0.31
2 B 2.67 2.11 0.56 0.31
4 B 2.67 2.11 0.56 0.31
2 C 1.33 2.11 -0.78 0.60
1 C 1.33 2.11 -0.78 0.60
1 C 1.33 2.11 -0.78 0.60

of groups minus 1, so we have 2.89/2 = 1.44. This sum of squares and the
degrees of freedom of 2 can also be seen in the ANOVA table in Table 6.11.

Hence we have two estimates of 𝜎2, the one called the Mean Squared Error
(MSE) that is based on the residuals (sometimes also called the MS within or
MSW), and the other one called the Mean Squared Between groups (MSB), that
is based on the sum of squares of group mean differences. For the 𝐹 -statistic, we
use the MS Between (MSB) as the numerator and the MSE as the denominator,

𝐹 = 𝑀𝑆𝐵group

𝑀𝑆𝐸 = 1.44
1.33 = 1.08

We see that the 𝐹 -statistic is larger than 1. That means that the estimate for
𝜎2, 𝑀𝑆𝐵𝑔𝑟𝑜𝑢𝑝, based on the sample means is larger than the estimate based
on the residuals, 𝑀𝑆𝐸. This could indicate that the null-hypothesis, that the
three population means are equal, is not true. However, is the 𝐹 -value really
large enough to justify such a conclusion?

To answer that question, we need to know what values the 𝐹 -statistic would
take for various randomly drawn data sets if the null-hypothesis were true (the
sampling distribution of 𝐹 ). If for each data set we have three groups, each
consisting of three observed values, then we have 2 degrees of freedom for the
group effect, and 6 residual degrees of freedom. Table 6.9 shows critical values
if we want to use an 𝛼 of 0.05. If we look up the column with a 2 (for the
number of model degrees of freedom) and the row with a 6 (for the residual
degrees of freedom), we find a critical 𝐹 -value of 5.14. This means that if the
null-hypothesis is true and we repeatedly take random samples, we find an 𝐹 -
value equal to or larger than 5.14 only 5% of the time. If we want to reject the
null-hypothesis, therefore, at an alpha of 5%, the 𝐹 -value has to be equal or
larger than 5.14. Here we found an 𝐹 -value of only 1.08, which is much smaller,
so we cannot reject the null-hypothesis that the means are equal.
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For illustration, Figure 6.7 shows the distribution of the 𝐹 -statistic with 2 and 6
degrees of freedom under the null-hypothesis. The figure shows it happens quite
a lot under the null-hypothesis that the 𝐹 -statistic is equal to 1.08 or larger. R
output tells us exactly how often that happens by reporting the 𝑝-value.
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Figure 6.7: Density plot of the 𝐹 -distribution with 2 and 6 degrees of freedom.
In blue the observed 𝐹 -statistic in the small data example, in red the critical
value for an 𝛼 of 0.05. The blackened area under the curve is 5%.

6.14 Reporting ANOVA

In all cases where you have a categorical predictor variable with more than
two categories, and where the null-hypothesis is about the equality of all group
means, you have to use the factor variable in R associated with the original
nominal variable. That is, don’t make dummy variables yourself, but let R do it
for you. You then always report the corresponding 𝐹 -statistic from the ANOVA
table.

For this particular example, you report the results of the analysis of variance in
the following way:

”The null-hypothesis that all 3 population means are equal was
tested with an analysis of variance. The results showed that the
null-hypothesis cannot be rejected, 𝐹(2, 6) = 1.08, 𝑝 = .40.”

Always check the degrees of freedom for your 𝐹 -statistic carefully. The first
number refers to the degrees of freedom for the Mean Square Between: this is
the number of groups minus 1 (𝐾 − 1). This is equal to the number of dummy
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variables that are used in the linear model. This is also called the model degrees
of freedom. The second number refers to the residual degrees of freedom: this
is 𝑛 − 𝐾 − 1 as we saw Chapter 5, where 𝐾 is the number of dummy variables.
In this ANOVA model you have 9 data points and you have 2 dummy variables
for the three groups. So your residual degrees of freedom is 9 − 2 − 1 = 6.
This residual degrees of freedom is equal to that of the 𝑡-statistic for multiple
regression.

6.15 Relationship between 𝐹 - and 𝑡-distributions
(advanced)

The 𝑡-distribution and the 𝐹 -distribution have much in common. Here we
will illustrate this. Suppose that we test the null-hypothesis that a certain
population slope is 0. We perform a regression analysis and obtain a 𝑡-statistic
of -2.40. Suppose our sample size was 42, so that our residual degrees of freedom
equals 42 − 2 = 40. Figure 6.8 shows the theoretical 𝑡-distribution with 40
degrees of freedom. It also shows our value of -2.40. The shaded area represents
the values for 𝑡 that would be significant at an 𝛼 = 0.05.
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Figure 6.8: The vertical line represents a 𝑡-value of -2.40. The shaded area
represents the extreme 5% of the possible 𝑡-values.

Now look closely at Figure 6.8. The density says something about the
probability of drawing certain values. Imagine that you randomly pick numbers
from this 𝑡-distribution. The density plot tells you that values around zero are
more probable than values around 2 or -2, and that values around 2 or -2 are
more probable than values around 3 or -3. Imagine that you pick a million
values for 𝑡, randomly from this 𝑡-distribution. Then imagine that you take the
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square of each value (thus, suppose as the first 3 randomly drawn 𝑡-values you
get -3.12, 0.14, and -1.6, you then square these numbers to get the numbers
9.73, 0.02, and 2.79). If you then make a density plot of these one million
squared numbers, you get the density plot in Figure 6.9. It turns out that this
density is an 𝐹 -distribution with 1 model degrees of freedom and 40 residual
degrees of freedom.
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Figure 6.9: The 𝐹 -distribution with 1 model degrees of freedom and 40 error
degrees of freedom. The shaded area is the upper 5% of the distribution. The
vertical line represents the square of -2.40: 5.76

If we also square the observed test statistic 𝑡-value of -2.40, we obtain an 𝐹 -
value of 5.76. From online tables, we know that, with 1 model degrees of freedom
and 40 residual degrees of freedom, the proportion of 𝐹 -values larger than 5.76
equals 0.02. The proportion of 𝑡-values, with 40 (residual) degrees of freedom,
larger than 2.40 or smaller than -2.40 is also 0.02. Thus, the two-sided 𝑝-value
associated with a certain 𝑡-value, is equal to the (one-sided) 𝑝-value associated
with an 𝐹 -value that is the square of the 𝑡-value.

𝐹(1, 𝑥) = 𝑡2(𝑥)

This means that if you see a 𝑡-statistic of say -2.40 reported with a residual
degrees of freedom of 40, 𝑡(40) = −2.40, you can equally report this as an
𝐹(1, 40) = (−2.40)2 = 5.76. Similarly, if you see a reported 𝐹 -value of
𝐹(1, 67) = 49, you could without problems turn this into a 𝑡(67) = 7. Note
however that this is only the case if the model degrees of freedom of the 𝐹 -
statistic is equal to 1. This means you cannot do this if you are comparing more
than two groups means.
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6.16 Take-away points

• A categorical independent variable can be added to a model by creating
a quantitative variable that represents the categorical one.

• A categorical variable with only two classes (groups/categories) can be
recoded into a dummy variable.

• In regression with a dummy variable, the slope is equal to the difference
in group means.

• A categorical variable with more than two classes (groups/categories) can
be recoded into a set of dummy variables.

• With dummy coding there is always a reference group (the one that is
coded as 0).

• When testing a null-hypothesis about the equality of more than two group
means, an analysis of variance (ANOVA) should be carried out, reporting
the 𝐹 -statistic.

• When the null-hypothesis is true, then you expect to see an 𝐹 -value of
around 1.

• An 𝐹 -value much greater than 1 indicates evidence for rejecting the null-
hypothesis. How much evidence depends on the degrees of freedom (model
and residual degrees of freedom).

• The 𝐹 -distribution is closely related to the 𝑡-distribution.

Key concepts

• Dummy coding
• Analysis of variance (ANOVA)
• 𝐹 -statistic
• Within and between-groups sums of squares
• Model degrees of freedom
• Residual degrees of freedom
• Mean squares

256



Chapter 7

Assumptions of linear
models

7.1 Introduction

Linear models are models. A model describes the relationship between two or
more variables. A good model gives a valid summary of what the relationship
between the variables looks like. Let’s look at a very simple example of two
variables: height and weight. In a sample of 100 children from a distant country,
we find 100 combinations of height in centimetres and weight in kilograms that
are depicted in the scatter plot in Figure 7.1.
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Figure 7.1: Data set on height and weight in 100 children.
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We’d like to find a linear model for these data, so we determine the least squares
regression line. We also determine the standard deviation of the residuals so
that we have the following statistical model:

weight = −104.83 + 1.04 × height + 𝑒
𝑒 ∼ 𝑁(0, 𝜎 = 4.04)

This model, defined above, is depicted in Figure 7.2. The blue line is the
regression line, and the dots are the result of simulating (inventing) independent
normal residuals with standard deviation 4.04. The figure shows how the data
would like according to the model.
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Figure 7.2: Data set on height and weight in 100 children and the least squares
regression line.

The actual data, displayed in Figure 7.1 might have arisen from this model in
Figure 7.2. The data is only different from the simulated data because of the
randomness of the residuals.

A model should be a good model for two reasons. First, a good model is a
summary of the data. Instead of describing all 100 data points on the children,
we could summarise these data with the linear equation of the regression line and
the standard deviation (or variance) of the residuals. The second reason is that
you would like to infer something about the relationship between height and
weight in all children from that distant country. It turns out that the standard
error, and hence the confidence intervals and hypothesis testing, are only valid
if the model describes the data well. This means that if the model is not a good
description of your sample data, then you draw the wrong conclusions about
the population.
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For a linear model to be a good model, there are four conditions that need to
be fulfilled.

1. linearity The relationship between the variables can be described by a
linear equation (also called additivity)

2. independence The residuals are independent of each other

3. equal variance The residuals have equal variance (also called
homoskedasticity)

4. normality The distribution of the residuals is normal

If these conditions (often called assumptions) are not met, the inference with the
computed standard error is invalid. That is, if the assumptions are not met, the
standard error should not be trusted, or should be computed using alternative
methods.

Below we will discuss these four assumptions briefly. For each assumption, we
will show that the assumption can be checked by looking at the residuals. We
will see that if the residuals do not look right, one or more of the assumptions
are violated. But what does it mean that the residuals ‘look right’?

Well, the linear model says that the residuals have a normal distribution. So for
the height and weight data, let’s apply regression, compute the residuals for all
100 children, and plot their distribution with a histogram, see Figure 7.3. The
histogram shows a bell-shaped distribution with one peak that is more or less
symmetric. The symmetry is not perfect, but you can well imagine that if we
had measured more children, the distribution could more and more resemble a
normal distribution.

Another thing the model implies is that the residuals are random: they are
random draws from a normal distribution. This means, if we would plot the
residuals, we should see no systematic pattern in the residuals. The scatter
plot in Figure 7.4 plots the residuals in the order in which they appear in the
data set. The figure seems to suggest a random scatter of dots, without any
kind of system or logic. We could also plot the residuals as a function of the
predicted height (the dependent variable). This is the most usual way to check
for any systematic pattern. Figure 7.5 shows there is no systematic relationship
between the predicted height of a child and the residual.

When it looks like this, it shows that the residuals are randomly scattered
around the regression line (the predicted heights). Taken together, Figures 7.3,
7.4 and 7.5 suggest that the assumptions of the linear model are met.

Let’s have a look at the same kinds of residual plots when each of the
assumptions of the linear model are violated.
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Figure 7.3: Histogram of the residuals after regressing weight on height.
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Figure 7.4: Residual plot after regressing weight on height.
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Figure 7.5: Residuals as a function of height.

7.2 Independence

The assumption of independence is about the way in which observations are
similar and dissimilar from each other. Take for instance the following regression
equation for children’s height predicted by their age:

height = 100 + 5 × age + 𝑒 (7.1)

This regression equation predicts that a child of age 5 has a height of 125 and a
child of age 10 has a height of 150. In fact, all children of age 5 have the same
predicted height of 125 and all children of age 10 have the same predicted height
of 150. Of course, in reality, children of the same age will have very different
heights: they differ. According to the above regression equation, children are
similar in height because they have the same age, but they differ because of
the random term 𝑒 that has a normal distribution: predictor age makes them
similar, residual 𝑒 makes them dissimilar. Now, if this is all there is, then this is
a good model. But let’s suppose that we’re studying height in an international
group of 50 Ethiopian children and 50 Vietnamese children. Their heights are
plotted in Figure 7.6.

From this graph, we see that heights are similar because of age: older children are
taller than younger children. But we see that children are also similar because
of their national background: Ethiopian children are systematically taller than
Vietnamese children, irrespective of age. So here we see that a simple regression
of height on age is not a good model. We see that, when we estimate the simple
regression on age and look at the residuals in Figure 7.7.
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Figure 7.6: Data on age and height in children from two countries.
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Figure 7.7: Residual plot after regressing height on age.
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As our model predicts random residuals, we expect a random scatter of residuals.
However, what we see here is a systematic order in the residuals: they tend to
be positive for the first 50 children and negative for the last 50 children. These
turn out to be the Ethiopian and the Vietnamese children, respectively. This
systematic order in the residuals is a violation of independence: the residuals
should be random, and they are not. The residuals are dependent on country:
positive for Ethiopians, negative for Vietnamese children. We see that clearly
when we plot the residuals as a function of country, in Figure 7.8.
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Figure 7.8: Residual plot after regressing height on age.

Thus, there is more than just age that makes children similar. That means
that the model is not a good model: if there is more than just age that makes
children more alike, then that should be incorporated into our model. If we use
multiple regression, including both age and country, and we do the analysis,
then we get the following regression equation:

̂height = 102.641 + 5.017 × age − 1.712 × countryViet (7.2)

When we now plot the residuals we see that there is no longer a clear country
difference, see Figure 7.9.
Another typical example of non-random scatter of residuals is shown in Figure
7.10.
They come from an analysis of reaction times, done on 10 students where we
also measured their IQ. Each student was measured on 10 trials. We predicted
reaction time on the basis of student’s IQ using a simple regression analysis.
The residuals are clearly not random, and if we look more closely, we see some
clustering if we give different colours for the data from the different students,
see Figure 7.11.
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Figure 7.9: Residual plot after regressing height on age and country.
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Figure 7.10: Residual plot after regressing reaction time on IQ.
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Figure 7.11: Residual plot after regressing reaction time on IQ, with separate
colours for each student.

−5

0

5

1 2 3 4 5 6 7 8 9 10
student

re
si

du
al

Figure 7.12: Box plot after regressing reaction time on IQ.
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We see the same information if we draw a boxplot, see Figure 7.12. We see
that residuals that are close together come from the same student. So, reaction
time are not only similar because of IQ, but also because they come from the
same student: clearly something other than IQ also explains why reaction times
are different across individuals. The residuals in this analysis based on IQ are
not independent: they are dependent on the student. This may be because
of a number of factors: dexterity, left-handedness, practice, age, motivation,
tiredness, or any combination of such factors. You may or may not have
information about these factors. If you do, you can add them to your model and
see if they explain variance and check if the residuals become more randomly
distributed. But if you don’t have any extra information, or if do you but
the residuals remain clustered, you might either consider adding the categorical
variable student to the model or use linear mixed models, discussed in Chapter
12.

The assumption of independence is the most important assumption in linear
models. Only a small amount of dependence among the observations causes
your actual standard error to be much larger than reported by your software.
For example, you may think that a confidence interval is [0.1, 0.2], so you reject
the null-hypothesis, but in reality the standard error is much larger, resulting
in a much wider confidence interval, say [-0.1, 0.4] so that in reality you are
not allowed to reject the null-hypothesis. The reason that this happens can
be explained when we look again at Figure 7.11. Objectively, there are 100
observations, and this is fed into the software: 𝑛 = 100. This sample size is
then used to compute the standard error (see Chapter 5). However, because the
reaction times from the same student are so much alike, effectively the number of
observations is much smaller. The reaction times from one student are in fact so
much alike, you could almost say that there are only 10 different reaction times,
one for each student, with only slight deviations within each student. Therefore,
the real number of observations is somewhere between 10 and 100, and thus the
reported standard error is underestimated when there is dependence in your
residuals (standard errors are inversely related to sample size, see Chapter 5).

7.3 Linearity

The assumption of linearity is often also referred to as the assumption of
additivity. Contrary to intuition, the assumption is not that the relationship
between variables should be linear. The assumption is that there is linearity or
additivity in the parameters. That is, the effects of the variables in the model
should add up.

Suppose we gather data on height and fear of snakes in 100 children from a
different distant country. Figure 7.13 plots these two variables, together with
the least squares regression line.

Figure 7.14 shows a pattern in the residuals: the positive residuals seem to be
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Figure 7.13: Least squares regression line for fear of snakes on height in 100
children.
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Figure 7.14: Residual plot after regressing fear of snakes on height.
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Figure 7.15: Residual plot after regressing fear of snakes on height.

smaller than the negative residuals. We also clearly see a problem when we
plot residuals against the predicted fear (see Fig. 7.15). The same problem is
reflected in the histogram in Figure 7.16, that does not look symmetric at all.
What might be the problem?

Take another look at the data in Figure 7.13. We see that for small heights, the
data points are all below the regression line, and the same pattern we see for
large heights. For average heights, we see on the contrary all data points above
the regression line. Somehow the data points do not suggest a completely linear
relationship, but a curved one.

This problem of model misfit could be solved by not only using height as
the predictor variable, but also the square of height, that is, height2. For
each observed height we compute the square. This new variable, let’s call it
height2, we add to our regression model. The least squares regression equation
then becomes:

f̂ear = −2000 + 100 × height − 0.56 × height2 (7.3)

If we then plot the data and the regression line, we get Figure 7.17. There
we see that the regression line goes straight through the points. Note that the
regression line when plotted against height is non-linear, but equation (7.3)
itself is linear, that is, there are only two effects added up, one from variable
height and one from variable height2. We also see from the histogram (Figure
7.18) and the residuals plot (Figure 7.19) that the residuals are randomly drawn
from a normal distribution and are not related to predicted fear. Thus, our
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Figure 7.16: Histogram of the residuals after regressing fear of snakes on height.

additive model (our linear model) with effects of height and height squared
results in a nice-fitting model with random normally scattered residuals.

In sum, the relationship between two variables need not be linear in order for a
linear model to be appropriate. A transformation of an independent variable,
such as taking a square, can result in normally randomly scattered residuals.
The linearity assumption is that the effects of a number of variables (transformed
or untransformed) add up and lead to a model with normally and independently,
randomly scattered residuals.

7.4 Equal variances

Suppose we measure reaction times in both young and older adults. Older
persons tend to have longer reaction times than young adults. Figure 7.20
shows a data set on 100 persons. Figure 7.21 shows the residuals as a function
of age, and shows something remarkable: it seems that the residuals are much
more varied for older people than for young people. There is more variance
at older ages than at younger ages. This is a violation of the equal variance
assumption. Remember that a linear model goes with a normal distribution for
the residuals with a certain variance. In a linear model, there is only mention
of one variance of the residuals 𝜎2, not several!

The equal variance assumption is an important one: if the data show that the
variance is different for different subgroups of individuals in the data set, then
the standard errors of the regression coefficients cannot be trusted.

We often see an equal variance violation in reaction times. An often used
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Figure 7.17: Observed and predicted fear based on a linear model with height
and height squared
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Figure 7.18: Histogram of the residuals of the fear of snakes data with height
squared introduced into the linear model.
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Figure 7.19: Residuals plot of the fear of snakes data with height squared
introduced into the linear model.
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Figure 7.20: Least squares regression line for reaction time on age in 100 adults.

271



−2.5

0.0

2.5

5.0

7.5

20 40 60 80
Age in years

re
si

du
al

s

Figure 7.21: Residual plot after regressing reaction time on age.

strategy of getting rid of such a problem is to work not with the reaction time,
but the logarithm of the reaction time. Figure 7.22 shows the data with the
computed logarithms of reaction time, and Figure 7.23 shows the residuals plot.
You can see that the log-transformation of the reaction times resulted in a much
better model.

Note that the assumption is not about the variance in the sample data, but
about the residuals in the population data. It might well be that there are
slight differences in the sample data of the older people than in the sample data
of the younger people. These could well be due to chance. The important thing
to know is that the assumption of equal variance is that in the population of
older adults, the variation in residuals is the same as the variation in residuals
in the population of younger adults.

The equal variance assumption is often referred to as the homogeneity of
variance assumption or homoscedasticity. It is the assumption that variance is
homogeneous (of equal size) across all levels and subgroups of the independent
variables in the population. The computation of the standard error is highly
dependent on the size of the variance of the residuals. If the size of this variance
differs across levels and subgroups of the data, the standard error also varies
and the confidence intervals cannot be easily determined. This in turn has
an effect on the computation of 𝑝-values, and therefore inference. Having no
homogeneity of variance therefore leads to wrong inference, with inflated or
deflated type I and type II error rates.

The inflation or deflation of type I and type II error rates are limited in the case
that group sizes are more or less equal. For example, suppose you have an age
variable with about an equal number of older persons and younger persons, but
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Figure 7.22: Least squares regression line for log reaction time on age in 100
adults.
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Figure 7.23: Residual plot after regressing log reaction time on age.
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unequal variances of the residuals. In that case you should not worry too much
about the precision of your 𝑝-values and your confidence intervals: they are more
or less correct. However, if you have more than 1.5 times more elderly in your
sample than youngsters (or vice versa), with unequal variances of the residuals,
then you should worry. Briefly: if the greater error variance is associated with
the greater group size, then the reported 𝑝-value is too small, and if the greater
error variance is associated with the smaller group size, then the reported 𝑝-
value is too large. If the 𝑝-value is around your pre-chosen 𝛼-level and you’re
unsure whether to reject or not to reject your null-hypothesis, look for more
robust methods of computing standard errors.

7.5 Residuals normally distributed

As we’ve already seen, the assumption of the linear model is that the residuals
are normally distributed. Let’s look at the reaction time data again and see what
the histogram of the residuals and the density look like if we use reaction time
as our dependent variable. Figure 7.24 shows that in that case the distribution
is not symmetric: it is clearly skewed.

0.0

0.2

0.4

−2.5 0.0 2.5 5.0 7.5
residuals

de
ns

ity

Figure 7.24: Histogram of the residuals after a regression of reaction time on
age.

After a logarithmic transformation of the reaction times, we get the histogram
and the density in Figure 7.25, which look more symmetric.

Remember that if your sample size is of limited size, a distribution will never
look completely normal, even if it is sampled from a normal distribution. It
should however be likely to be sampled from a population of data that seems
normal. That means that the histogram should not be too skewed, or too
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Figure 7.25: Histogram of the residuals after a regression of log reaction time
on age.

peaked, or have two peaks far apart. Only if you have a lot of observations, say
1000, you can reasonably say something about the shape of the distribution.
If you have categorical independent variables in your linear model, it is best
to look at the various subgroups separately and look at the histogram of the
residuals: the residuals 𝑒 are defined as residuals given the rest of the linear
model. For instance, if there is a model for height, and country is the only
predictor in the model, all individuals from the same country are given the same
expected height based on the model. They only differ from each other because of
the normally distributed random residuals. Therefore look at the residuals for all
individuals from one particular country to see whether the residuals are indeed
normally distributed. Then do this for all countries separately. Think about
it: the residuals might look non-normal from country A, and non-normal from
country B, but put together, they might look very normal! This is illustrated
in Figure 7.26. Therefore, when checking for the assumption of normality, do
this for every subgroup separately.
Judging normality from histograms is always a bit tricky. An often used
alternative is a quantile-quantile plot, or qq-plot for short. It is based on the
quantiles of a distribution. Remember quantiles from Chapter 1: If a value 𝑥 is
the 70th quantile of a distribution, it means that 70% of the values is smaller
than 𝑥. When a student’s performance is in the 90th percentile, it means that
90% of the other students show worse performance.
As we saw in Chapter 1, the quantiles of the normal distribution are known.
In the qq-plot, we plot the observed quantiles of a given distribution (𝑦-axis)
against the expected quantiles of the normal distribution (𝑥-axis). If the
distribution is normal, then the data points should be on a straight line.
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Figure 7.26: Two distributions might each be very non-normal, but the
density of the combined data might look normal nevertheless (the dashed line).
Normality should therefore always be checked for each subgroup separately.

Figure 7.27 shows the qq-plot based on the linear regression of response times
(rt) on age. When the linear model is applied to the original response time data,
the residuals are clearly not normally distributed, whereas when the linear model
is applied to the response time after a logarithmic transformation, the data show
a more or less normal distribution.

It should be noted that the assumption of normally distributed residuals is
the least important assumption. Even when the distribution is skewed, your
standard errors are more or less correct. Only in severe cases, like with the
residuals in Figure 7.24, the standard errors start to be incorrect.

7.6 General approach to testing assumptions

It is generally advised to always check the residuals. All four assumptions
mentioned above can be checked by looking at the residuals. We advise to do
this with three types of plots.

The first is the histogram of the residuals: this shows whether the residuals are
more or less normally distributed. The histogram should show a more or less
symmetric distribution. A histogram can be rather coarse if your sample size
is limited. Add a density to get the general idea of the distribution. A qq-
plot is also very powerful. If the histogram/density plot/qq-plot does not look
symmetric/normal at all, try to find a transformation of the dependent variable
that makes the residuals more normal. An example of this is to log-transform
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Figure 7.27: The qq-plot for the residuals based on the original response time
data shows clear nonnormality (left panel), whereas the qq-plot for the residuals
based on the log transformed data are close to the line, indicating normality

reaction times.

The second type of plot that you should look at is a plot where the residuals
are on the 𝑦-axis and the predicted values for the dependent variable (𝑌 ) is on
the 𝑥-axis. Such a plot can reveal systematic deviation from normality, but also
non-equal variance.

The third type of plot that you should study is one where the residuals are on
the vertical axis and one of the predictor variables is on the horizontal axis. In
this plot, you can spot violations of the equal variance assumption. You can
also use such a plot for candidate predictor variables that are not in your model
yet. If you notice a pattern, this is indicative of dependence, which means that
this variable should probably be included in your model.

7.7 Checking assumptions in R

In this section we show the general code for making residual plots in R. We will
look at how to make the three types of plots of the residuals to check the four
assumptions.

When you run a linear model with the lm() function, you can use the package
modelr to easily obtain the residuals and predicted values that you need for
your plots. Let’s use the mpg data to illustrate the general approach. This data
set contains data on 234 cars. First we model the number of city miles per
gallon (cty) as a function of the number of cylinders (cyl).
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out <- mpg %>%
lm(cty ~ cyl, data = .)

Next, we use the function add_residuals() from the modelr package to add
residuals to the data set and plot a histogram.

library(modelr)
mpg %>%
add_residuals(out) %>%
ggplot(aes(x = resid)) +
geom_histogram()
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As stated earlier, it’s even better to do this for the different subgroups
separately:

mpg %>%
add_residuals(out) %>%
ggplot(aes(x = resid)) +
geom_histogram() +
facet_wrap(. ~ cyl)
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For the second type of plot, we use two functions from the modelr package to
add predicted values and residuals to the data set, and use these to make a
residual plot:

mpg %>%
add_residuals(out) %>%
add_predictions(out) %>%
ggplot(aes(x = pred, y = resid)) +
geom_point()
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When there are few values for the predictions, or when you have a categorical
predictor, it’s better to make a boxplot:
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mpg %>%
add_residuals(out) %>%
add_predictions(out) %>%
ggplot(aes(x = factor(pred), y = resid)) +
geom_boxplot()
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For the third type of plot, we put the predictor on the 𝑥-axis and the residual
on the 𝑦-axis.

mpg %>%
add_residuals(out) %>%
ggplot(aes(x = cyl, y = resid)) +
geom_point()
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Again, with categorical variables or variables with very few categories, it is
sometimes clearer to use a boxplot:

mpg %>%
add_residuals(out) %>%
ggplot(aes(x = factor(cyl), y = resid)) +
geom_boxplot()
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To check for independence you can also put variables on the 𝑥-axis that are not
in the model yet, for example the type of the car (class):

mpg %>%
add_residuals(out) %>%
ggplot(aes(x = class, y = resid)) +
geom_boxplot()
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7.8 Take-away points

• The general assumptions of linear models are linearity (additivity),
independence, normality and homogeneity of variance.

• Linearity refers to the characteristic that the model equation is the
summation of parameters, e.g. 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ….

• Normality refers to the characteristic that the residuals are drawn from a
normal distribution, i.e. 𝑒 ∼ 𝑁(0, 𝜎2).

• Independence refers to the characteristic that the residuals are completely
randomly drawn from the normal distribution. There is no systematic
pattern in the residuals.

• Homogeneity of variance refers to the characteristic that there is only
one normal distribution that the residuals are drawn from, that is, with
one specific variance. Variance of residuals should be the same for every
meaningful subset of the data.

• Assumptions are best checked visually.

• Problems can often be resolved by some transformation of the data, for
example taking the logarithm of a variable, or computing squares.

• Inference is generally robust against violations of these assumptions,
except for the independence assumption.
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Key concepts

• Linearity
• Homogeneity of variance
• Heteroscedasticity
• Homoscedasticity
• Independence
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Chapter 8

When assumptions are not
met: non-parametric
alternatives

8.1 Introduction

Linear models do not apply to every data set. As discussed in Chapter 7,
sometimes the assumptions of linear models are not met. One of the assumptions
is linearity or additivity. Additivity requires that one unit change in variable
𝑋 leads to the same amount of change in 𝑌 , no matter what value 𝑋 has.
For bivariate relationships this leads to a linear shape. But sometimes you can
only expect that 𝑌 will change in the same direction, but you don’t believe
that this amount is the same for all values of 𝑋. This is the case for example
with an ordinal dependent variable. Suppose we wish to model the relationship
between the age of a mother and an aggression score in her 7-year-old child.
Suppose aggression is measured on a three-point ordinal scale: ‘not aggressive’,
‘sometimes aggressive’, ‘often aggressive’. Since we do not know the quantitative
differences between these three levels, there are many graphs we could draw for
a given data set.

Suppose we have the data set given in Table 8.1. If we want to make a scatter
plot, we could arbitrarily choose the values 1, 2, and 3 for the three categories,
respectively. We would then get the plot in Figure 8.1. But since the aggression
data are ordinal, we could also choose the arbitrary numeric values 0, 2, and 3,
which would yield the plot in Figure 8.2.

As you can see from the least squares regression lines in Figures 8.1 and 8.2,
when we change the way in which we code the ordinal variable into a numeric
one, we also see the best fitting regression line changing. This does not mean
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Table 8.1: Aggression in children and age of the mother.

AgeMother Aggression
32 Sometimes aggressive
31 Often aggressive
32 Often aggressive
30 Not aggressive
31 Sometimes aggressive
30 Sometimes aggressive
31 Not aggressive
31 Often aggressive
31 Not aggressive
30 Sometimes aggressive
32 Often aggressive
32 Often aggressive
31 Sometimes aggressive
30 Sometimes aggressive
31 Not aggressive
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Figure 8.1: Regression of the child’s aggression score (1,2,3) on the mother’s
age.
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Figure 8.2: Regression of the child’s aggression score (0,2,3) on the mother’s
age.

though, that ordinal data cannot be modelled linearly. Look at the example data
in Table 8.2 where aggression is measured with a 7-point scale. Plotting these
data in Figure 8.3 using the values 1 through 7, we see a nice linear relationship.
So even when the values 1 thru 7 are arbitrarily chosen, a linear model can be
a good model for a given data set with one or more ordinal variables. Whether
the interpretation makes sense is however up to the researcher.

So with ordinal data, always check that your data indeed conform to a linear
model, but realise at the same time that you’re assuming a quantitative and
additive relationship between the variables that may or may not make sense. If
you believe that a quantitative analysis is meaningless then you may consider a
non-parametric analysis that we discuss in this chapter.

Another instance where we favour a non-parametric analysis over a linear model
one, is when the assumption of normally distributed residuals is not tenable. For
instance, look again at Figure 8.1 where we regressed aggression in the child on
the age of its mother. Figure 8.4 shows a histogram of the residuals. Because
of the limited number of possible values in the dependent variable (1, 2 and
3), the number of possible values for the residuals is also very restricted, which
leads to a very discrete distribution. The histogram looks therefore far removed
from a continuous symmetric, bell-shaped distribution, which is a violation of
the normality assumption.

Every time we see a distribution of residuals that is either very skewed, or has
very few different values, we should consider a non-parametric analysis. Note
that the shape of the distribution of the residuals is directly related to what scale
values we choose for the ordinal categories. By changing the values we change
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Table 8.2: Aggression in children on a 7-point Likert scale and age of the mother.

AgeMother Aggression
35 6
32 4
35 6
36 5
33 3
30 1
32 4
32 2
34 4
30 2
32 3
31 2
32 3
31 3
38 7
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Figure 8.3: Regression of the child’s aggression 1 thru 7 Likert score on the
mother’s age.
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Figure 8.4: Histogram of the residuals after the regression of a child’s aggression
score on the mother’s age.

Table 8.3: Results of the 2023 London marathon

contestant time rank
Sifan Hassan 2.18.33 1
Alema Megertu 2.18.37 2
Peres Jepchirchir 2.18.38 3
Shelia Chepkirui 2.18.51 4

the regression line, and that directly affects the relative sizes of the residuals.

8.2 Analysing ranked data

Many of the non-parametric methods discussed in this book are actually
methods strongly related to linear models. Often the only difference is that
instead of analysing the original data values, we analyse ranks. For instance,
let’s look at the times in which four runners finished in the 2023 London
marathon, see Table 8.3.

Note that by ranking we lose some of the original information. Based on
solely the ranks, we don’t see anymore that Hassan finished 4 seconds earlier
than Megertu, that Megertu and Jepchirchir crossed the finish line almost
together, and that Chepkirui lagged somewhat behind, finishing 13 seconds
after Jepchirchir.

289



Table 8.4: Student rankings on geography and history.

student rank.geography rank.history
1 5 4
2 4 5
3 6 7
4 7 8
5 8 6
6 9 9
7 10 10
8 2 3
9 1 1
10 3 2

As said, many non-parametric methods discussed in this book are simply
linear models applied to ranks, rather than the original data. One example is
Spearman’s rho, an alternative to Pearson’s correlation.

First, we will discuss non-parametric alternatives for two numeric variables. We
will start with Spearman’s 𝜌 (rho, pronouned “roe”), also called Spearman’s
rank-order correlation coefficient 𝑟𝑠. Next we will discuss an alternative to 𝑟𝑠,
Kendall’s 𝜏 (tau, pronounced “taw”). After that, we will discuss the combination
of numeric and categorical variables, when comparing groups.

8.3 Spearman’s 𝜌 (rho)

Suppose we have 10 students and we ask their teachers to rate them on their
performance. One teacher rates them on geography and the other teacher rates
them on history. We only ask them to give rankings: indicate the brightest
student with a 1 and the dullest student with a 10. Then we might see the
data set in Table 8.4. We see that student 9 is the brightest student in both
geography and history, and student 7 is the dullest student in both subjects.

Now we acknowledge the ordinal nature of the data by only having rankings: a
person with rank 1 is brighter than a person with rank 2, but we do not how
large the difference in brightness really is. Now we want to establish to what
extent there is a relationship between rankings on geography and the rankings
on history: the higher the ranking on geography, the higher the ranking on
history?

By eye-balling the data, we see that the brightest student in geography is also
the brightest student in history (rank 1). We also see that the dullest student
in history is also the dullest student in geography (rank 10). Furthermore, we
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Table 8.5: Student rankings on geography and history.

student rank.geography rank.history difference
1 5 4 -1
2 4 5 1
3 6 7 1
4 7 8 1
5 8 6 -2
6 9 9 0
7 10 10 0
8 2 3 1
9 1 1 0
10 3 2 -1

Table 8.6: Student rankings on geography and history.

rank.geography rank.history difference squared.difference
5 4 -1 1
4 5 1 1
6 7 1 1
7 8 1 1
8 6 -2 4
9 9 0 0

10 10 0 0
2 3 1 1
1 1 0 0
3 2 -1 1

see relatively small differences between the rankings on the two subjects: high
rankings on geography seem to go together with high rankings on history. Let’s
look at these differences between rankings more closely by computing them, see
Table 8.5.

Theoretically, any difference in ranking could be as large as 9 (when one student
is ranked first on one subject, and ranked last on the other subject), but
here we see a maximum difference of -2. When all differences are small, this
says something about how the two rankings overlap: they are related. We
could compute an average difference: the average difference is the sum of these
differences, divided by 10, so we get 0. This is because we have both plus and
minus values. It would be better to take the square of the differences, so that
we would get positive values, see Table 8.6.
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Now we can compute the average squared difference, which is equal to 10/10 =
1. Generally, the smaller this value, the closer the rankings of the two teachers
are together, and the more correlation there is between the two subjects.

A clever mathematician like Spearman showed that is even better to use a
somewhat different measure for a correlation between ranks. He showed that it
is wiser to compute the following statistic, where 𝑑 is the difference in rank and
𝑑2 is the squared difference (and 𝑛 is sample size):

𝑟𝑠 = 1 − 6 ∑ 𝑑2

𝑛3 − 𝑛 (8.1)

because then you get a value between -1 and 1, just like a Pearson correlation,
where a value close to 1 describes a high positive correlation (high rank on one
variable goes together with a high rank on the other variable) and a value close
to -1 describes a negative correlation (a high rank on one variable goes together
with a low rank on the other variable). So in our case the sum of the squared
differences is equal to 10, and 𝑛 is the number of students, so we get:

𝑟𝑠 = 1 − 6 × 10
103 − 10

= 1 − 60
990

= 0.94

This is called the Spearman rank-order correlation coefficient 𝑟𝑠, or Spearman’s
rho (the Greek letter 𝜌). It can be used for any two variables of which at least
one is ordinal. The trick is to convert the scale values into ranks, and then
apply the formula above. For instance, if we have the variable grade with the
following values (C, B, D, A, F), we convert them into rankings by saying the A
is the highest value (1), B is the second highest value (2), C is the third highest
value (3), D is the fourth highest value (4) and F is the fifth highest value (5).
So transformed into ranks we get (3, 2, 4, 1, 5). Similarly, we could turn numeric
variables into ranks. Table 8.7 shows how the variables grade, shoesize and
height are transformed into their respective ranked versions. Note that the
ranking is alphanumerically by default: the first alphanumeric value gets rank
1. You could also do the ranking in the opposite direction, if that makes more
sense.

Actually it can be shown that (8.1) is the same as the formula for Pearson’s
correlation coefficient on the ranks, see Chapter 4. The only difference between
Pearson’s correlation and Spearman’s correlation, is that the former is computed
using the original values, and the latter is actually the Pearson’s correlation
using the ranks as values.
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Table 8.7: Ordinal and numeric variables and their ranked transformations.

student grade rank.grade shoesize rank.shoesize height rank.height
1 A 1 6 1 2 1
2 D 4 8 3 2 2
3 C 3 9 4 2 4
4 B 2 7 2 2 3

8.4 Spearman’s rho in R

When we let R compute 𝑟𝑠 for us, it automatically ranks the data for us. Let’s
look at the mpg data on 234 cars from the ggplot2 package again. Suppose we
want to treat the variables cyl (the number of cylinders) and year (year of the
model) as ordinal variables, and we want to look whether the ranking on the
cyl variable is related to the ranking on the year variable. We use the same
function cor() that we use for Pearson’s correlation, but indicate explicitly that
we want Spearman’s rho:

cor(mpg$cyl, mpg$year, method = "spearman")

## [1] 0.1192822

Spearman’s rho is here equal 0.12.

”We computed a Spearman correlation that quantifies the extent to
which the ranking of the cars in terms of cylinders is related to the
ranking of the cars in terms of year. Results showed a weak positive
association, 𝜌(𝑛 = 234) = .12.”

Spearman equals Pearson applied to ranks

To show to you that Spearman’s rho is the same as a Pearson correlation based
on ranks, we can use the Pearson correlation applied to the ranks:

# compute the ranks
cyl_ranked <- mpg$cyl %>% rank()
year_ranked <- mpg$year %>% rank()
# compute Pearson's correlation
cor(cyl_ranked, year_ranked) # standard Pearson correlation

## [1] 0.1192822
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Table 8.8: Student rankings on geography and history, now ordered according
to the ranking for geography.

student rank.geography rank.history
9 1 1
8 2 3
10 3 2
2 4 5
1 5 4
3 6 7
4 7 8
5 8 6
6 9 9
7 10 10

8.5 Kendall’s rank-order correlation coefficient
𝜏

If you want to study the relationship between two variables, of which at least
one is ordinal, you can either use Spearman’s 𝑟𝑠 or Kendall’s 𝜏 (tau, pronounced
‘taw’ as in ‘law’). However, if you have three variables, and you want to know
whether there is a relationship between variables A and B, over and above the
effect of variable C, you can use an extension of Kendall’s 𝜏 . Note that this is
very similar to the idea of multiple regression: a coefficient for variable 𝑋1 in
multiple regression with two predictors is the effect of 𝑋1 on 𝑌 over and above
the effect of 𝑋2 on 𝑌 . The logic of Kendall’s 𝜏 is also based on rank orderings,
but it involves a different computation. Let’s look at the student data again
with the teachers’ rankings of ten students on two subjects in Table 8.8.

From this table we see that the history teacher disagrees with the geography
teacher that student 8 is brighter than student 10. She also disagrees with her
colleague that student 1 is brighter than student 2. If we do this for all possible
pairs of students, we can count the number of times that they agree and we can
count the number of times they disagree. The total number of possible pairs is
equal to (10

2 ) = 𝑛(𝑛−1)/2 = 90/2 = 45 (see Chapter 3). This is a rather tedious
job to do, but it can be made simpler if we reshuffle the data a bit. We put
the students in a new order, such that the brightest student in geography comes
first, and the dullest last. This also changes the order in the variable history. We
then get the data in Table 8.8. We see that the geography teacher believes that
student 9 outperforms all 9 other students. On this, the history teacher agrees,
as she also ranks student 9 first. This gives us 9 agreements. Moving down
the list, we see that the geography teacher believes student 8 outperforms 8
other students. However, we see that the history teacher believes student 8 only
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Table 8.9: Student rankings on geography and history, now ordered according
to the ranking for geography, with number of agreements.

student rank.geography rank.history number
9 1 1 9
8 2 3 7
10 3 2 7
2 4 5 5
1 5 4 5
3 6 7 3
4 7 8 2
5 8 6 2
6 9 9 1
7 10 10 0

outperforms 7 other students. This results in 7 agreements and 1 disagreement.
So now in total we have 9 + 7 = 16 agreements and 1 disagreements. If we
go down the whole list in the same way, we will find that there are in total 41
agreements and 4 disagreements.

The computation is rather tedious. There is a trick to do it faster. Now focus
on Table 8.8 but start in the column of the history teacher. Start at the top
row and count the number of rows beneath it with a rank higher than the rank
in the first row. The rank in the first row is 1, and all other ranks beneath it
are higher, so the number of ranks is 9. We plug that value in the last column
in Table 8.9. Next we move to row 2. The rank is 3. We count the number of
rows below row 2 with a rank higher than 3. Rank 2 is lower, so we are left
with 7 rows and we again plug 7 in the last column of Table 8.9. Then we move
on to row 3, with rank 2. There are 7 rows left, and all of them have a higher
rank. So the number is 7. Then we move on to row 4. It has rank 5. Of the
6 rows below it, only 5 have a higher rank. Next, row 5 shows rank 4. Of the
5 rows below it, all 5 show a higher rank. Row 6 shows rank 7. Of the 4 rows
below it, only 3 show a higher rank. Row 7 shows rank 8. Of the three rows
below it, only 2 show a higher rank. Row 8 shows rank 6. Both rows below it
show a higher rank. And row 9 shows rank 9, and the row below it shows a
higher rank so that is 1. Finally, when we add up the values in the last column
in Table 8.9, we find 41. This is the number of agreements. The number of
disagreements can be found by reasoning that the total number of pairs equals
the number of pairs that can be formed using a total number of 10 objects: (10

2 )
= 10(10 − 1)/2 = 45. In this case we have 45 possible pairs. Of these there are
41 agreements, so there must be 45 − 41 = 4 disagreements. We can then fill in
the formula to compute Kendall’s 𝜏 :

295



𝜏 = 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠 − 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑠
𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑎𝑖𝑟𝑠 = 37

45 = 0.82

This 𝜏 -statistic varies between -1 and 1 and can therefore be seen as a
non-parametric analogue of a Pearson correlation. Here, the teachers more
often agree than disagree, and therefore the correlation is positive. A negative
correlation means that the teachers more often disagree than agree on the
relative brightness of their students.

As said, the advantage of Kendall’s 𝜏 over Spearman’s 𝑟𝑠 is that Kendall’s 𝜏
can be extended to cover the case that you wish to establish the strength of the
relationships of two variables 𝐴 and 𝐵, over and above the relationship with 𝐶.
The next section shows how to do that in R.

8.6 Kendall’s 𝜏 in R

Let’s again use the mpg data on 234 cars. We can compute Kendall’s 𝜏 for
the variables cyl and year using the same cor() function we use for Pearson’s
correlation and Spearman’s correlation. By default, Pearson is computed, but
you can also indicate you want something else, in this case Kendall.

cor(mpg$cyl, mpg$year, method = "kendall")

## [1] 0.1119214

As said, Kendall’s 𝜏 can also be used if you want to control for a third variable
(or even more variables). This can be done with the ppcor package. Because
this package has its own function select(), you need to be explicit about
which function from which package you want to use. Here you want to use
the select() function from the dplyr package (part of the tidyverse suite of
packages).

library(ppcor)
mpg %>%
dplyr::select(cyl, year, cty) %>%
pcor(method = "kendall")

## $estimate
## cyl year cty
## cyl 1.0000000 0.1642373 -0.7599993
## year 0.1642373 1.0000000 0.1210952
## cty -0.7599993 0.1210952 1.0000000
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##
## $p.value
## cyl year cty
## cyl 0.000000e+00 0.0001896548 7.706570e-67
## year 1.896548e-04 0.0000000000 5.923697e-03
## cty 7.706570e-67 0.0059236967 0.000000e+00
##
## $statistic
## cyl year cty
## cyl 0.000000 3.732412 -17.271535
## year 3.732412 0.000000 2.751975
## cty -17.271535 2.751975 0.000000
##
## $n
## [1] 234
##
## $gp
## [1] 1
##
## $method
## [1] "kendall"

In the output, we see that the Kendall correlation between cyl and year,
controlled for cty, equals 0.1642, with an associated 𝑝-value of 0.000189.

We can report this in the following way:

”The null-hypothesis was tested that there is no correlation between
cyl and year, when one controls for cty. This was tested with a
Kendall correlation coefficient. We found that the hypothesis of a
Kendall correlation of 0 in the population of cars (controlling for
cty) could be rejected, 𝜏(𝑛 = 234) = .16, 𝑝 < .001.”

8.7 Kruskal-Wallis test for group comparisons

Now that we have discussed relationships between ordinal and numeric variables,
let’s have a look at the case where we also have categorical variables.

Suppose we have three groups of students that go on a field trip together:
mathematicians, psychologists and engineers. Each can pick a rain coat, with
five possible sizes: ‘extra small’, ‘small’, ‘medium’, ‘large’ or ‘extra large’. We
want to know if preferred size is different in the three populations, so that
teachers can be better prepared in the future. Now we have information about
size, but this knowledge is not numeric: we do not know the difference in size
between ‘medium’ and ‘large’, only that ‘large’ is larger than ‘medium.’ We have
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Table 8.10: Field trip data.

student group size rank
1 math extra small 1.0
2 math extra large 6.0
3 psych medium 4.0
4 psych small 2.5
5 engineer large 5.0
6 math small 2.5

ordinal data, so computing a mean is impossible here. Even if we would assign
values like 1= ‘extra small’, 2=‘small’, 3= ‘medium’, etcetera, the mean would
be rather meaningless as these values are arbitrary. So instead of focussing on
means, we can focus on medians: the middle values. For instance, the median
value for our sample of mathematicians could be ‘medium’, for our sample of
psychologists ‘small’, and for our sample of engineers ‘large.’ Our question might
then be whether the median values in the three populations are really different.

This can be assessed using the Kruskal-Wallis test. Similar to Spearman’s 𝑟𝑠
and Kendall’s 𝜏 , the data are transformed into ranks. This is done for all data
at once, so for all students together.

For example, if we had the data in Table 8.10, we could transform the variable
size into ranks, from smallest to largest. Student 1 has size ‘extra small’ so he
or she gets the rank 1. Next, both student 4 and student 6 have size ‘small’, so
they should get ranks 2 and 3. However, because there is no reason to prefer
one student over the other, we give them both the mean of ranks 2 and 3, so
they both get the rank 2.5. Next in line is student 3 with size ‘medium’ and
(s)he gets rank 4. Next in line is student 5 with size ‘large’ (rank 5) and last in
line is student 2 with size ‘extra large’ (rank 6).

Next, we could compute the average rank per group. The group with the
smallest sizes would have the lowest average rank, etcetera. Under the null-
hypothesis, if the distribution of size were the same in all three groups, the
average ranks would be about the same.

𝐻0: All groups have the same average (median) rank.

If the average rank is very different across groups, this is an indication that
size is not distributed equally among the three groups. In order to have a
proper statistical test for this null-hypothesis, a rather complex formula is used
to compute the so-called 𝐾𝑊 -statistic, see Castellan & Siegel (1988), that you
don’t need to know. The distribution of this 𝐾𝑊 -statistic under the null-
hypothesis can be approximated by a chi-square distribution. In this way we
know what extreme values are, and consequently can compute 𝑝-values. This
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computation can be done in R. Alternatively, instead of using the chi-square
approximation of the 𝐾𝑊 statistic, we can also apply an ANOVA on the ranks,
and use an 𝐹 -test as an approximation. Both methods converge to the same
conclusion for moderate to large sample sizes.

8.8 Kruskal-Wallis test in R

Let’s look at the mpg data again. It contains data on cars from 7 different
types. Suppose we want to know whether the different types show differences
in the distribution of city miles per gallon. Figure 8.5 shows a box plot. The
variances are quite different for each type of car (no homogeneity of variance)
and there are quite a few extreme values, making it unlikely that residuals will
have a normal distribution in the population. We therefore consider doing a
non-parametric test. Based on Figure 8.5, it seems that indeed the medians of
cty are very different for different car types. But these differences could be due
to sampling: maybe by accident, the pick-up trucks in this sample happened to
have a relatively low mileage, and that the differences in the population of all
cars are non-existing. To test this hypothesis, we can make it more specific and
we can use a Kruskal-Wallis test to test the null-hypothesis that the average
(median) rank of cty is the same in all groups.
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Figure 8.5: Distributions of city mileage (cty) as a function of car type (class).

We run the following R code:

mpg %>%
kruskal.test(cty ~ class, data = .)
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##
## Kruskal-Wallis rank sum test
##
## data: cty by class
## Kruskal-Wallis chi-squared = 149.53, df = 6, p-value < 2.2e-16

mpg$cty %>% length()

## [1] 234

mpg$class %>% length()

## [1] 234

The output allows us to report the following:

”The null-hypothesis that city miles per gallon is distributed equally
for all types of cars was tested using a Kruskal-Wallis test with an 𝛼
of 0.05. Results showed that the null-hypothesis could be rejected,
𝑋2(6, 𝑁 = 234) = 149.53, 𝑝 < .001.”

Kruskal-Wallis equals ANOVA applied to ranks

As the Kruskal-Wallis is actually an ANOVA on ranks, we can also first rank
the dependent variable, and then apply the regular analysis of variance:

library(car)
mpg %>%
mutate(cty_ranked = cty %>% rank()) %>% # compute ranks
lm(cty_ranked ~ class, data = .,

contrasts = list(class = contr.sum)) %>%
Anova(type = 3)

## Anova Table (Type III tests)
##
## Response: cty_ranked
## Sum Sq Df F value Pr(>F)
## (Intercept) 1584608 1 946.952 < 2.2e-16 ***
## class 680479 6 67.775 < 2.2e-16 ***
## Residuals 379857 227
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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You then report instead:

”The null-hypothesis that city miles per gallon is distributed equally
for all types of cars was tested using a Kruskal-Wallis test (ANOVA
on ranks) with an 𝛼 of 0.05. Results showed that the null-hypothesis
could be rejected, 𝐹(6, 227) = 67.78, 𝑝 < .001.”

8.9 Take-away points

• When a distribution of residuals looks very far removed from a
normal distribution, or looks vary heteroskedastic, consider using a
non-parametric method of analysis.

• When analysing variables that are ordinal or when linear model
assumptions cannot be met otherwise, consider non-parametric methods.

• Many of the non-parametric methods are based on ranks, rather than the
original values.

• Spearman’s correlation is actually a Pearson correlation based on ranked
data.

• A Kruskal-Wallis test is actually an analysis of variance based on a ranked
dependent variable.

Key concepts

• Ranks
• Spearman’s rank-order correlation coefficient 𝜌 or 𝑟𝑠
• Kendall’s 𝜏
• Kruskal-Wallis test
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Chapter 9

Moderation: testing
interaction effects

9.1 Interaction with one numeric and one
dichotomous variable

Suppose there is a linear relationship between age (in years) and vocabulary
(the number of words one knows): the older you get, the more words you know.
Suppose we have the following linear regression equation for this relationship:

v̂ocab = 205 + 500 × age

According to this equation, the expected number of words for a newborn baby
(age = 0) equals 205. This may sound silly, but suppose this model is a very
good prediction model for vocabulary size in children between 2 and 5 years of
age. Then this equation tells us that the expected increase in vocabulary size is
500 words per year.
This model is meant for everybody in the Netherlands. But suppose that one
researcher expects that the increase in words is much faster in children from high
socio-economic status (SES) families than in children from low SES families. He
believes that vocabulary will be larger in higher SES children than in low SES
children. In other words, he expects an effect of SES, over and above the effect
of age:

v̂ocab = 𝑏0 + 𝑏1 × age + 𝑏2 × SES

This main effect of SES is yet unknown and denoted by 𝑏2. Note that this
linear equation is an example of multiple regression.
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Let’s use some numerical example. Suppose age is coded in years, and SES is
dummy coded, with a 1 for high SES and a 0 for low SES. Let 𝑏2, the effect of
SES over and above age, be 10. Then we can write out the linear equation for
low SES and high SES separately.

𝑙𝑜𝑤𝑆𝐸𝑆 ∶ v̂ocab = 200 + 500 × age + 10 × 0
= 200 + 500 × age

ℎ𝑖𝑔ℎ𝑆𝐸𝑆 ∶ v̂ocab = 200 + 500 × age + 10 × 1
= (200 + 10) + 500 × age
= 210 + 500 × age

Figure 9.1 depicts the two regression lines for the high and low SES children
separately. We see that the effect of SES involves a change in the intercept:
the intercept equals 200 for low SES children and the intercept for high SES
children equals 210. The difference in intercept is indicated by the coefficient
for SES. Note that the two regression lines are parallel: for every age, the
difference between the two lines is equal to 10. For every age therefore, the
predicted number of words is 10 words more for high SES children than for low
SES children.

SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0SES=0
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Figure 9.1: Two regression lines: one for low SES children and one for high SES
children.

So far, this is an example of multiple regression that we already saw in Chapter
4. But suppose that such a model does not describe the data that we actually
have, or does not make the right predictions based on on our theories. Suppose
our researcher also expects that the yearly increase in vocabulary is a bit lower
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than 500 words in low SES families, and a little bit higher than 500 words in
high SES families. In other words, he believes that SES might moderate (affect
or change) the slope coefficient for age. Let’s call the slope coefficient in this
case 𝑏1. In the above equation this slope parameter is equal to 500, but let’s
now let itself have a linear relationship with SES:

𝑏1 = 𝑎 + 𝑏3 × SES

In words: the slope coefficient for the regression of vocab on age, is itself
linearly related to SES: we predict the slope on the basis of SES. We model
that by including a slope 𝑏3, but also an intercept 𝑎. Now we have two linear
equations for the relationship between vocab, age and SES:

v̂ocab = 𝑏0 + 𝑏1 × age + 𝑏2 × SES
𝑏1 = 𝑎 + 𝑏3 × SES

We can rewrite this by plugging the second equation into the first one
(substitution):

v̂ocab = 𝑏0 + (𝑎 + 𝑏3 × SES) × age + 𝑏2 × SES

Multiplying this out gets us:

v̂ocab = 𝑏0 + 𝑎 × age + 𝑏3 × SES × age + 𝑏2 × SES

If we rearrange the terms a bit, we get:

v̂ocab = 𝑏0 + 𝑎 × age + 𝑏2 × SES + 𝑏3 × SES × age

Now this very much looks like a regression equation with one intercept and three
slope coefficients: one for age (𝑎), one for SES (𝑏2) and one for SES × age
(𝑏3).

We might want to change the label 𝑎 into 𝑏1 to get a more familiar looking form:

v̂ocab = 𝑏0 + 𝑏1 × age + 𝑏2 × SES + 𝑏3 × SES × age

So the first slope coefficient is the increase in vocabulary for every year that
age increases (𝑏1), the second slope coefficient is the increase in vocabulary for
an increase of 1 on the SES variable (𝑏2), and the third slope coefficient is the
increase in vocabulary for every increase of 1 on the product of SES and age
(𝑏3).
What does this mean exactly?
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Suppose we find the following parameter values for the regression equation:

v̂ocab = 200 + 450 × age + 125 × SES + 100 × SES × age

If we code low SES children as SES = 0, and high SES children as SES = 1,
we can write the above equation into two regression equations, one for low SES
children (SES = 0) and one for high SES children (SES = 1):

𝑙𝑜𝑤𝑆𝐸𝑆 ∶ v̂ocab = 200 + 450 × age

ℎ𝑖𝑔ℎ𝑆𝐸𝑆 ∶ v̂ocab = 200 + 450 × age + 125 + 100 × age
= (200 + 125) + (450 + 100) × age
= 325 + 550 × age

Then for low SES children, the intercept is 200 and the regression slope for age
is 450, so they learn 450 words per year. For high SES children, we see the
same intercept of 200, with an extra 125 (this is the main effect of SES). So
effectively their intercept is now 325. For the regression slope, we now have
450 × age+ 100 × age which is of course equal to 550 × age. So we see that the
high SES group has both a different intercept, and a different slope: the increase
in vocabulary is 550 per year: somewhat steeper than in low SES children. So
yes, the researcher was right: vocabulary increase per year is faster in high SES
children than in low SES children.

These two different regression lines are depicted in Figure 9.2. It can be clearly
seen that the lines have two different intercepts and two different slopes. That
they have two different slopes can be seen from the fact that the lines are not
parallel. One has a slope of 450 words per year and the other has a slope of 550
words per year. This difference in slope of 100 is exactly the size of the slope
coefficient pertaining to the product SES × age, 𝑏3. Thus, the interpretation
of the regression coefficient for a product of two variables is that it represents
the difference in slope.

The observation that the slope coefficient is different for different groups is called
an interaction effect, or interaction for short. Other words for this phenomenon
are modification and moderation. In this case, SES is called the modifier variable
or the moderator: it modifies/moderates the relationship between age and
vocabulary. Note however that you could also interpret age as the modifier
variable (moderator): the effect of SES is larger for older children than for
younger children. In the plot you see that the difference between vocabulary for
high and low SES children of age 6 is larger than it is for children of age 2.
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Figure 9.2: Two regression lines for the relationship between age and vocab, one
for low SES children (SES = 0) and one for high SES children (SES = 1).

9.2 Interaction effect with a dummy variable in
R

Let’s look at some example output for an R data set where we have a categorical
variable that is not dummy-coded yet. The data set is on chicks and their weight
during the first days of their lives. Weight is measured in grams. The chicks
were given one of four different diets. Here we use only the data from chicks on
two different diets 1 and 2. We select only the Diet 1 and 2 data. We store the
Diet 1 and 2 data under the name chick_data. When we have a quick look at
the data with glimpse(), we see that Diet is a factor (<fct>).

chick_data <- ChickWeight %>%
filter(Diet == 1 | Diet == 2)

chick_data %>%
glimpse()

## Rows: 340
## Columns: 4
## $ weight <dbl> 42, 51, 59, 64, 76, 93, 106, 125, 149, 171, 199, 205, 40, 49, 5~
## $ Time <dbl> 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 21, 0, 2, 4, 6, 8, 10, 1~
## $ Chick <ord> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ~
## $ Diet <fct> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
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Figure 9.3: The relationship between Time and weight in all chicks with either
Diet 1 or Diet 2.

The general regression of weight on Time is shown in Figure 9.3. This
regression line for the entire sample of chicks has a slope of around 8 grams
per day. Now we want to know whether this slope is the same for chicks in
the Diet 1 and Diet 2 groups, in other words, do chicks grow as fast with Diet
1 as with Diet 2? We might expect that Diet moderates the effect of Time
on weight. We use the following code to study this Diet × Time interaction
effect, by having R automatically create a dummy variable for the factor Diet.
In the model we specify that we want a main effect of Time, a main effect of
Diet, and an interaction effect of Time by Diet:

out <- chick_data %>%
lm(weight ~ Time + Diet + Time:Diet, data = .)

out %>%
tidy(conf.int = TRUE)

## # A tibble: 4 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 30.9 4.50 6.88 2.95e-11 22.1 39.8
## 2 Time 6.84 0.361 19.0 4.89e-55 6.13 7.55
## 3 Diet2 -2.30 7.69 -0.299 7.65e- 1 -17.4 12.8
## 4 Time:Diet2 1.77 0.605 2.92 3.73e- 3 0.577 2.96

In the regression table, we see the effect of the numeric Time variable, which
has a slope of 6.84. For every increase of 1 in Time, there is a corresponding
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expected increase of 6.84 grams in weight. Next, we see that R created a dummy
variable Diet1. That means this dummy codes 1 for Diet 2 and 0 for Diet 1.
From the output we see that if a chick gets Diet 2, its weight is -2.3 grams
heavier (that means, Diet 2 results in a lower weight).

Next, R created a dummy variable Time × Diet2, by multiplying the variables
Time and Diet1. Results show that this interaction effect is 1.77.

These results can be plugged into the following regression equation:

̂weight = 30.93 + 6.84 × Time − 2.3 × Diet2 + 1.77 × Time × Diet2

If we fill in 1s for the Diet1 dummy variable, we get the equation for chicks
with Diet 2:

̂weight = 30.93 + 6.84 × Time − 2.3 × 1 + 1.77 × Time × 1
= 28.63 + 8.61 × Time

If we fill in 0s for the Diet1 dummy variable, we get the equation for chicks
with Diet 1:

̂weight = 30.93 + 6.84 × Time

When comparing these two regression lines for chicks with Diet 1 and Diet 2,
we see that the slope for Time is 1.77 steeper for Diet 2 chicks than for Diet
1 chicks. In this particular random sample of chicks, the chicks on Diet 1 grow
6.84 grams per day (on average), but chicks on Diet 2 grow 6.84 + 1.77 = 8.61
grams per day (on average).

We visualised these results in Figure 9.4. There we see two regression lines:
one for the red data points (chicks on Diet 1) and one for the blue data points
(chicks on Diet 2). These two regression lines are the same as those regression
lines we found when filling in either 1s and 0s in the general linear model. Note
that the lines are not parallel, like in Chapter 6. Each regression line is the least
squares regression line for the subsample of chicks on a particular diet.

We see that the difference in slope is 1.77 grams per day. This is what we
observe in this particular sample of chicks. However, what does that tell us
about the difference in slope for chicks in general, that is, the population of all
chicks? For that, we need to look at the confidence interval. In the regression
table above, we also see the 95% confidence intervals for all model parameters.
The 95% confidence interval for the Time × Diet2 interaction effect is (0.58,
2.96). That means that plausible values for this interaction effect are those
values between 0.58 and 2.96.

It is also possible to do null-hypothesis testing for interaction effects. One could
test whether this difference of 1.77 is possible if the value in the entire population
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Figure 9.4: The relationship between Time and weight in chicks, separately for
Diet 1 and Diet 2.

of chicks equals 0? In other words, is the value of 1.77 significantly different
from 0?

The null-hypothesis is

𝐻0 ∶ 𝛽Time×Diet2 = 0

The regression table shows that the null-hypothesis for the interaction effect
has a 𝑡-value of 𝑡 = 2.92, with a 𝑝-value of 3.73 × 10−3 = 0.00373. For research
reports one always also reports the degrees of freedom for a statistical test. The
(residual) degrees of freedom can be found in R by typing

out$df.residual

## [1] 336

We can report that

”we reject the null-hypothesis and conclude that there is evidence
that the Time × Diet2 interaction effect is not 0, 𝑡(336) = 2.92, 𝑝 =
.004.”

Summarising, in this section, we established that Diet moderates the effect of
Time on weight: we found a significant diet by time interaction effect. The
difference in growth rate is 1.77 grams per day, with a 95% confidence interval
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from 0.58 to 2.96. In more natural English: diet has an effect on the growth
rate in chicks.

In this section we discussed the situation that regression slopes might be different
in two groups: the regression slope might be steeper in one group than in the
other group. So suppose that we had a numerical predictor 𝑋 for a numerical
dependent variable 𝑌 , we said that a particular dummy variable 𝑍 moderated
the effect of 𝑋 on 𝑌 . This moderation was quantified by an interaction effect.
So suppose we have the following linear equation:

𝑌 = 𝑏0 + 𝑏1 × 𝑋 + 𝑏2 × 𝑍 + 𝑏3 × 𝑋 × 𝑍 + 𝑒

Then, we call 𝑏0 the intercept, 𝑏1 the main effect of 𝑋, 𝑏2 the main effect of 𝑍,
and 𝑏3 the interaction effect of 𝑋 and 𝑍 (alternatively, the 𝑋 by 𝑍 interaction
effect).

9.3 Interaction effects with a categorical
variable in R

In the previous section, we looked at the difference in slopes between two groups.
But what we can do for two groups, we can do for multiple groups. The data
set on chicks contains data on chicks with 4 different diets. When we perform
the same analysis using all data in ChickWeight, we obtain the regression table

out <- ChickWeight %>%
lm(weight ~ Time + Diet + Time:Diet, data = .)

out %>%
tidy(conf.int = TRUE)

## # A tibble: 8 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 30.9 4.25 7.28 1.09e-12 22.6 39.3
## 2 Time 6.84 0.341 20.1 3.31e-68 6.17 7.51
## 3 Diet2 -2.30 7.27 -0.316 7.52e- 1 -16.6 12.0
## 4 Diet3 -12.7 7.27 -1.74 8.15e- 2 -27.0 1.59
## 5 Diet4 -0.139 7.29 -0.0191 9.85e- 1 -14.5 14.2
## 6 Time:Diet2 1.77 0.572 3.09 2.09e- 3 0.645 2.89
## 7 Time:Diet3 4.58 0.572 8.01 6.33e-15 3.46 5.70
## 8 Time:Diet4 2.87 0.578 4.97 8.92e- 7 1.74 4.01

The regression table for four diets is substantially larger than for two diets. It
contains one slope parameter for the numeric variable Time, three different
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slopes for the factor variable Diet and three different interaction effects for the
Time by Diet interaction.

The full linear model equation is

̂weight = 30.93 + 6.84 × Time − 2.3 × Diet2 − 12.68 × Diet3 − 0.14 × Diet4
+1.77 × Time × Diet2 + 4.58 × Time × Diet3 + 2.87 × Time × Diet4

You see that R created dummy variables for Diet 2, Diet 3 and Diet 4. We
can use this equation to construct a separate linear model for the Diet 1 data.
Chicks with Diet 1 have 0s for the dummy variables Diet1, Diet3 and Diet4.
If we fill in these 0s, we obtain

̂weight = 30.93 + 6.84 × Time

For the chicks on Diet 2, we have 1s for the dummy variable Diet1 and 0s for
the other dummy variables. Hence we have

̂weight = 30.93 + 6.84 × Time − 2.3 × 1 + 1.77 × Time × 1
= 30.93 + 6.84 × Time − 2.3 + 1.77 × Time
= (30.93 − 2.3) + (6.84 + 1.77) × Time
= 28.63 + 8.61 × Time

Here we see exactly the same equation for Diet 2 as in the previous section where
we only analysed two diet groups. The difference between the two slopes in the
Diet 1 and Diet 2 groups is again 1.77. The only difference for this interaction
effect is the standard error, and therefore the confidence interval is also slightly
different. We will come back to this issue in Chapter 10.

For the chicks on Diet 3, we have 1s for the dummy variable Diet3 and 0s for
the other dummy variables. The regression equation is then

̂weight = 30.93 + 6.84 × Time − 12.68 × 1 + 4.58 × Time × 1
= (30.93 − 12.68) + (6.84 + 4.58) × Time
= 18.25 + 11.42 × Time

We see that the intercept is again different than for the Diet 1 chicks. We also
see that the slope is different: it is now 4.58 steeper than for the Diet 1 chicks.
This difference in slopes is exactly equal to the Time by Diet3 interaction
effect. This is also what we saw in the Diet 2 group. Therefore, we can say
that an interaction effect for a specific diet group says something about how
much steeper the slope is in that group, compared to the reference group. The
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reference group is the group for which all the dummy variables are 0. Here, that
is the Diet 1 group.

Based on that knowledge, we can expect that the slope in the Diet 4 group
is equal to the slope in the reference group (6.84) plus the Time by Diet4
interaction effect, 2.87, so 9.71.

We can do the same for the intercept in the Diet 4 group. The intercept is equal
to the intercept in the reference group (30.93) plus the main effect of the Diet4
dummy variable, -0.14, which is 30.79.

The linear equation is then for the Diet 4 chicks:

̂weight = 30.79 + 9.71 × Time

The four regression lines are displayed in Figure 9.5. The steepest regression line
is the one for the Diet 3 chicks: they are the fastest growing chicks. The slowest
growing chicks are those on Diet 1. The confidence intervals in the regression
table tell us that the difference between the growth rate with Diet 4 compared
to Diet 1 is somewhere between 1.74 and 4.01 grams per day.
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Figure 9.5: Four different regression lines for the four different diet groups.

9.4 Linear model versus ANOVA

In this book we approach all of the data analysis problems starting from the
linear model, where we only use numerical variables. In the event we have
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categorical variables, we transform them to dummy variables or sets of dummy
variables that are in turn treated as separate numerical variables. We’ve also
seen Analysis of Variance, a concept closely linked to the linear model. ANOVA
is used a lot in practice, but it is important to realise that ANOVA and the
linear model can both be used in many different ways.

For example, R by default transforms categorical variables into (sets of) dummy
variables (dummy coding). An alternative way of recoding categorical variables
is using sum-to-zero coding. The reference group is then coded as -1, the
alternative group is coded as 1, and the other groups are coded as 0. We will
discuss such alternative ways of coding categorical variables more extensively
in Chapter 10. For now it suffices to realise that sum-to-zero coding leads to a
different regression table than with dummy coding.

If we go back to the example of the Chickweight data, we can run a linear model
with a main effect of the categorical variable Diet.

ChickWeight %>%
lm(weight ~ Diet, data = .) %>%
tidy()

## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 103. 4.67 22.0 4.71e-78
## 2 Diet2 20.0 7.87 2.54 1.14e- 2
## 3 Diet3 40.3 7.87 5.12 4.11e- 7
## 4 Diet4 32.6 7.91 4.12 4.29e- 5

The Diet2, Diet3 and Diet4 variables are dummy variables. We see that the
difference between Diet 2 and Diet 1 (reference) equals 20. If, instead of the
default dummy coding, we apply sum-to-zero coding,

ChickWeight %>%
lm(weight ~ Diet, data = .,

contrasts = list(Diet = contr.sum)) %>%
tidy()

## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 126. 2.99 42.2 7.24e-178
## 2 Diet1 -23.2 4.45 -5.21 2.59e- 7
## 3 Diet2 -3.25 5.38 -0.604 5.46e- 1
## 4 Diet3 17.1 5.38 3.18 1.58e- 3
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we get very different model parameters. This is because R doesn’t use dummy
coding, but codes three variables where for each variable, Diet 4 is coded as -1,
and the respective other diets are coded as 1. For example, the new variable
Diet1 equals 1 for Diet 1, 0 for Diets 2 and 3, and -1 for the reference group
Diet 4. For now, it is sufficient to know that most ANOVAs in social sciences
are done using this particular way of coding (also known as effects coding).

Apart from the type of coding categorical variables, the way that sums of squares
are calculated for an ANOVA can also differ. If you have only one independent
variable, the computation of the sums of squares is exactly like explained in
Chapter 6. But if you have two or more independent variables, the method of
calculation has an effect on the numbers in your ANOVA table, including the
statistical inference.

For example, if we apply sum-to-zero coding and apply the default way of
calculating sums of squares (called Type II sums of squares) we get the following
ANOVA table.

library(car)
ChickWeight %>%
lm(weight ~ Time + Diet + Time:Diet, data = .,

contrasts = list(Diet = contr.sum)) %>%
Anova()

## Anova Table (Type II tests)
##
## Response: weight
## Sum Sq Df F value Pr(>F)
## Time 2016357 1 1737.367 < 2.2e-16 ***
## Diet 129876 3 37.302 < 2.2e-16 ***
## Time:Diet 80804 3 23.208 3.474e-14 ***
## Residuals 661532 570
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If we apply Type III sums of squares, which is what is most commonly done in
the social sciences, we obtain

ChickWeight %>%
lm(weight ~ Time + Diet + Time:Diet, data = .,

contrasts = list(Diet = contr.sum)) %>%
Anova(type = 3)

## Anova Table (Type III tests)
##
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## Response: weight
## Sum Sq Df F value Pr(>F)
## (Intercept) 111618 1 96.1745 < 2.2e-16 ***
## Time 2056347 1 1771.8235 < 2.2e-16 ***
## Diet 3993 3 1.1469 0.3295
## Time:Diet 80804 3 23.2079 3.474e-14 ***
## Residuals 661532 570
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the sums of squares, the 𝐹 -values and the 𝑝-values are different for
the main effects of Time and Diet, but that the numbers for the Time by Diet
interaction effect are exactly the same.

Summarising, it is perfectly fine to run a linear model using dummy coding and
interpreting the regression coefficients as we have done throughout this book.
However, when reporting an ANOVA, it is best to follow convention, and apply
sum-to-zero coding and Type III sums of squares. It is beyond the goals of this
book to delve into the how and why.

As an aside, note that for inference it is not all that important. In a linear
model with an interaction effect, one is almost always only interested in the
interaction effect. As the interaction effect is not affected by the choice of type
II or type III sums of squares, and also not by the type of coding, the statistical
conclusion will be the same. Only the main effects will be affected. As already
stressed earlier, when reporting, stick to the statistical output that relates to
the research questions.

Let’s look at an example of applying an ANOVA in R, with a particular null-
hypothesis that can only be tested using ANOVA.

Suppose we want to test the null hypothesis that all four slopes are the same.
This implies that the Time by Diet interaction effects are all equal to 0. We
can test this null hypothesis

𝐻0 ∶ 𝛽Time×Diet2 = 𝛽Time×Diet2 = 𝛽Time×Diet4 = 0

by running an ANOVA. That is, we apply the Anova() function of the car
package to the results of an lm() analysis. Note however that we slightly alter
the lm() analysis, similar to what we did in Chapter 6, changing dummy coding
into sum-to-zero coding by adding contrasts = list(Diet = contr.sum).

library(car)
out <- ChickWeight %>%
lm(weight ~ Time + Diet + Time:Diet, data = .,

contrasts = list(Diet = contr.sum))
out_anova <- out %>%
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Anova(type = 3)
out_anova %>%
tidy()

## # A tibble: 5 x 5
## term sumsq df statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 111618. 1 96.2 4.38e- 21
## 2 Time 2056347. 1 1772. 4.85e-177
## 3 Diet 3993. 3 1.15 3.30e- 1
## 4 Time:Diet 80804. 3 23.2 3.47e- 14
## 5 Residuals 661532. 570 NA NA

In the output we see a Time by Diet interaction effect with 3 degrees of
freedom. That term refers to the null-hypothesis that all three interaction effects
are equal to 0. The 𝐹 -statistic associated with that null-hypothesis equals 23.2.
The residual degrees of freedom equals 570, so that we can report:

”The slopes for the four different diets were significantly different
from each other, 𝐹(3, 570) = 23.2, 𝑀𝑆𝐸 = 1161, 𝑝 < .001.”

The MSE is computed as the sum of squared residuals, 661532, divided by the
residual degrees of freedom, 570, equals 661532

570 = 1161 (Ch. 6).

9.5 Interaction between two dichotomous
variables in R

In the previous section we discussed the situation that regression slopes might
be different in two four groups. In Chapter 6 we learned that we could also
look at slopes for dummy variables. The slope is then equal to the difference in
group means, that is, the slope is the increase in the group mean of one group
compared to the reference group.
Now we discuss the situation where we have two dummy variables, and want to
do inference on their interaction. Does one dummy variable moderate the effect
of the other dummy variable?
Let’s have a look at a data set on penguins. It can be found in the
palmerpenguins package.

# install.packages("palmerpenguins")
library(palmerpenguins)
penguins %>%
str ()
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## tibble [344 x 8] (S3: tbl_df/tbl/data.frame)
## $ species : Factor w/ 3 levels "Adelie","Chinstrap",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ island : Factor w/ 3 levels "Biscoe","Dream",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ bill_length_mm : num [1:344] 39.1 39.5 40.3 NA 36.7 39.3 38.9 39.2 34.1 42 ...
## $ bill_depth_mm : num [1:344] 18.7 17.4 18 NA 19.3 20.6 17.8 19.6 18.1 20.2 ...
## $ flipper_length_mm: int [1:344] 181 186 195 NA 193 190 181 195 193 190 ...
## $ body_mass_g : int [1:344] 3750 3800 3250 NA 3450 3650 3625 4675 3475 4250 ...
## $ sex : Factor w/ 2 levels "female","male": 2 1 1 NA 1 2 1 2 NA NA ...
## $ year : int [1:344] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...

We see there is a species factor with three levels, and a sex factor with two
levels. Let’s select only the Adelie and Chinstrap species.

penguin_data <- penguins %>%
filter(species %in% c("Adelie", "Chinstrap"))

Suppose that we are interested in differences in flipper length across species.
We then could run a linear model, with flipper_length_mm as the dependent
variable, and species as independent variable.

out <- penguin_data %>%
lm(flipper_length_mm ~ species, data = .)

out %>%
tidy(conf.int = TRUE)

## # A tibble: 2 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 190. 0.548 347. 8.31e-300 189. 191.
## 2 speciesChinstrap 5.87 0.983 5.97 9.38e- 9 3.93 7.81

The output shows that in this sample, the Chinstrap penguins have on average
larger flippers than Adelie penguins. The confidence intervals tell us that this
difference in flipper length is somewhere between 3.93 and 7.81. But suppose
that this is not what we want to know. The real question might be whether
this difference is different for male and female penguins. Maybe there is a larger
difference in flipper length in females than in males?

This difference or change in the effect of one independent variable (species) as a
function of another independent variable (sex) should remind us of moderation:
maybe sex moderates the effect of species on flipper length.

In order to study such moderation, we have to analyse the sex by species
interaction effect. By now you should know how to do that in R:
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out <- penguin_data %>%
lm(flipper_length_mm ~ species + sex + species:sex, data = .)

out %>%
tidy(conf.int = TRUE)

## # A tibble: 4 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 188. 0.707 266. 2.15e-267 186. 189.
## 2 speciesChinstrap 3.94 1.25 3.14 1.92e- 3 1.47 6.41
## 3 sexmale 4.62 1.00 4.62 6.76e- 6 2.65 6.59
## 4 speciesChinstrap:se~ 3.56 1.77 2.01 4.60e- 2 0.0638 7.06

In the output we see an intercept of 188. Next, we see an effect of a dummy
variable, coding 1s for Chinstrap penguins (speciesChinstrap). We also see
an effect of a dummy variable coding 1s for male penguins (sexmale). Then,
we see an interaction effect of these two dummy effects. That means that this
dummy variable codes 1s for the specific combination of Chinstrap penguins
that are male (speciesChinstrap:sexmale).

̂flipperlength = 188 + 3.94 × speciesChinstrap+
4.62 × sexmale + 3.56 × speciesChinstrap × sexmale

From this we can make the following predictions. The predicted flipper length
for female Adelie penguins is

188 + 3.94 × 0 + 4.62 × 0 + 3.56 × 0 × 0 = 188

The predicted flipper length for male Adelie penguins is

188 + 3.94 × 0 + 4.62 × 1 + 3.56 × 0 × 1
= 188 + 4.62 = 192.62

The predicted flipper length for female Chinstrap penguins is

188 + 3.94 × 1 + 4.62 × 0 + 3.56 × 1 × 0
= 188 + 3.94 = 191.94

and the predicted flipper length for male Chinstrap penguins is

188 + 3.94 × 1 + 4.62 × 1 + 3.56 × 1 × 1
= 188 + 3.94 + 4.62 + 3.56
= 200.12
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These predicted flipper lengths for each male/species combination are actually
the group means. Group means and standard deviations can be computed by

penguin_data %>%
group_by(sex, species) %>%
summarise(mean = mean(flipper_length_mm, na.rm = T),

sd = sd(flipper_length_mm, na.rm = T))

## # A tibble: 5 x 4
## # Groups: sex [3]
## sex species mean sd
## <fct> <fct> <dbl> <dbl>
## 1 female Adelie 188. 5.60
## 2 female Chinstrap 192. 5.75
## 3 male Adelie 192. 6.60
## 4 male Chinstrap 200. 5.98
## 5 <NA> Adelie 186. 6.11

It is generally best to plot these means with a means and errors plot. For that
we first need to compute means by R. With left_join() we add these means
to the data set. These diamond-shaped means (shape = 18) are plotted with
intervals that are twice (mult = 2) the standard error of those means (geom =
"errorbar").

penguin_data %>%
left_join(penguin_data %>% # adding group means to the data set

group_by(species, sex) %>%
summarise(mean = mean(flipper_length_mm))

) %>%
ggplot(aes(x = sex, y = flipper_length_mm, colour = species)) +
geom_jitter(position = position_jitterdodge(), # the raw data

shape = 1,
alpha = 0.6) +

geom_point(aes(y = mean), # the groups means
position = position_jitterdodge(jitter.width = 0),
shape = 18,
size = 5) +

stat_summary(fun.data = mean_se, # computing errorbars
fun.args = list(mult = 2),
geom = "errorbar",
width = 0.2,
position = position_jitterdodge(jitter.width = 0),
size = 1) +

scale_colour_brewer(palette = "Set1") + # use nice colours
theme_light() # use nice theme
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This plot shows also the data on penguins with unknown sex (sex = NA). If we
leave these out, we get

penguin_data %>%
left_join(penguin_data %>% # adding group means to the data set

group_by(species, sex) %>%
summarise(mean = mean(flipper_length_mm))

) %>%
filter(!is.na(sex)) %>% # filter out cases with missing sex data
ggplot(aes(x = sex, y = flipper_length_mm, colour = species)) +
geom_jitter(position = position_jitterdodge(), # the raw data

shape = 1,
alpha = 0.6) +

geom_point(aes(y = mean), # the groups means
position = position_jitterdodge(jitter.width = 0),
shape = 18,
size = 5) +

stat_summary(fun.data = mean_se, # computing errorbars
fun.args = list(mult = 2),
geom = "errorbar",
width = 0.2,
position = position_jitterdodge(jitter.width = 0),
size = 1) +

scale_colour_brewer(palette = "Set1") + # use nice colours
theme_light() # use nice theme
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Comparing the Adelie and the Chinstrap data, we see that for both males and
females, the Adelie penguins have smaller flippers than the Chinstrap penguins.
Comparing males and females, we see that the males have generally larger
flippers than females. More interestingly in relation to this chapter, the means
in the males are farther apart than the means in the females. Thus, in males
the effect of species is larger than in females. This is the interaction effect, and
this difference in the difference in means is equal to 3.56 in this data set. With a
confidence level of 95% we can say that the moderating effect of sex on the effect
of species is probably somewhere between 0.06 and 7.06 mm in the population
of all penguins.

Instead of presenting the linear model results in the form of a regression table,
we can also perform an ANOVA. We do that as follows, where we have to
indicate we want sum-to-zero coding for both variables species and sex:

out <- penguin_data %>%
lm(flipper_length_mm ~ species + sex + species:sex,

data = .,
contrasts = list(species = contr.sum, sex = contr.sum))

out %>% Anova(type = 3)

## Anova Table (Type III tests)
##
## Response: flipper_length_mm
## Sum Sq Df F value Pr(>F)
## (Intercept) 6909660 1 1.8941e+05 < 2.2e-16 ***
## species 1518 1 4.1620e+01 7.518e-10 ***
## sex 1898 1 5.2031e+01 9.759e-12 ***
## species:sex 147 1 4.0293e+00 0.046 *
## Residuals 7661 210
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## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that the statistical results for the interaction effect are the same as for
the linear model with dummy coding. We can report either based on the linear
model, reporting the 𝑡-value:

”We found an interaction effect where the effect of sex was larger in
Chinstrap than in Adelie penguins (3.56 mm, 95% CI 0.06 – 7.06,
𝑡(210) = 2.01, 𝑝 = 0.046).”

or based on the ANOVA, reporting the 𝐹 -value:

”The interaction effect was significant, 𝐹(1, 210) = 4.03, 𝑝 = 0.046.”

Note that the 𝐹 -value is simply the square of the 𝑡-value, when we take into
account rounding errors (4.04 = 2.012), and that the 𝑝-values are exactly the
same. Note that the advantage of the linear model is that we have an estimate
of the size of the effect, together with a confidence interval.

9.6 Moderation involving two numeric variables
in R

In all previous examples, we saw at least one categorical variable. We saw that
for different levels of a dummy variable, the slope of another variable varied.
We also saw that for different levels of a dummy variable, the effect of another
dummy variable varied. In this section, we look at how the slope of a numeric
variable can vary, as a function of the level of another numeric variable.

As an example data set, we look at the mpg data frame, available in the ggplot2
package. It contains data on 234 cars. Let’s analyse the dependent variable
cty (city miles per gallon) as a function of the numeric variables cyl (number
of cylinders) and displ (engine displacement). First we plot the relationship
between engine displacement and city miles per gallon. We use colours, based
on the number of cylinders. We see that there is in general a negative slope:
the higher the displacement value, the lower the city miles per gallon.

mpg %>%
ggplot(aes(x = displ, y = cty)) +
geom_point(aes(colour = cyl)) +
geom_smooth(method = "lm", se = F)
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When we run separate linear models for the different number of cylinders, we
get

mpg %>%
ggplot(aes(x = displ, y = cty, colour = cyl, group = cyl)) +
geom_point() +
geom_smooth(method = "lm", se = F)
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We see that the slope is different, depending on the number of cylinders: the
more cylinders, the less negative is the slope: very negative for cars with low
number of cylinders, and slightly positive for cars with high number of cilinders.
In other words, the slope increases in value with increasing number of cylinders.
If we want to quantify this interaction effect, we need to run a linear model with
an interaction effect.
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out <- mpg %>%
lm(cty ~ displ + cyl + displ:cyl, data = .)

out %>%
tidy()

## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 38.6 2.03 19.0 3.69e-49
## 2 displ -5.29 0.825 -6.40 8.45e-10
## 3 cyl -2.70 0.376 -7.20 8.73e-12
## 4 displ:cyl 0.559 0.104 5.38 1.85e- 7

We see that the displ by cyl interaction effect is 0.559. It means that the slope
of displ changes by 0.559 for every unit increase in cyl.
For example, when we look at the predicted city miles per gallon with cyl = 2,
we get the following model equation:

ĉty = 0.6 − 5.285 × displ − 2.704cyl + 0.559 × displ × cyl
ĉty = 0.6 − 5.285 × displ − 2.704 × 2 + 0.559 × displ × 2
ĉty = 0.6 − 5.285 × displ − 5.408 + 1.118 × displ
ĉty = (0.6 − 5.408) + (1.118 − 5.285) × displ
ĉty = −4.808 − 4.167 × displ

If we increase the number of cylinders from 2 to 3, we obtain the equation:

ĉty = 0.6 − 5.285 × displ − 2.704 × 3 + 0.559 × displ × 3
ĉty = −7.512 − 3.608 × displ

We see a different intercept and a different slope. The difference in the slope
between 3 and 2 cylinders equals 0.559, which is exactly the interaction effect.
If you do the same exercise with 4 and 5 cylinders, or 6 and 7 cylinders, you
will always see this difference again. This parameter for the interaction effect
just says that the best prediction for the change in slope when increasing the
number of cylinders with 1, is 0.559. We can plot the predictions from this
model in the following way:

library(modelr)
mpg %>%
add_predictions(out) %>%
ggplot(aes(x = displ, y = cty, colour = cyl)) +
geom_point() +
geom_line(aes(y = pred, group = cyl))
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If we compare these predicted regression lines with those in the previous figure

mpg %>%
add_predictions(out) %>%
ggplot(aes(x = displ, y = cty, group = cyl)) +
geom_point() +
geom_line(aes(y = pred), colour = "black") +
geom_smooth(method = "lm", se = F)
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we see that they are a little bit different. That is because in the model we
treat cyl as numeric: for every increase of 1 in cyl, the slope changes by a
fixed amount. When you treat cyl as categorical, then you estimate the slope
separately for all different levels. You would then see multiple parameters for
the interaction effect:
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out <- mpg %>%
mutate(cyl = factor(cyl)) %>%
lm(cty ~ displ + cyl + displ:cyl, data = .)

out %>%
tidy()

## # A tibble: 8 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 33.8 1.70 19.9 1.50e-51
## 2 displ -5.96 0.785 -7.60 7.94e-13
## 3 cyl5 1.60 1.17 1.37 1.72e- 1
## 4 cyl6 -11.6 2.50 -4.65 5.52e- 6
## 5 cyl8 -23.4 2.89 -8.11 3.12e-14
## 6 displ:cyl5 NA NA NA NA
## 7 displ:cyl6 4.21 0.948 4.44 1.38e- 5
## 8 displ:cyl8 6.39 0.906 7.06 2.05e-11

When cyl is turned into a factor, you see that cars with 4 cylinders are taken
as the reference category, and there are effects of having 5, 6, or 8 cylinders.
We see the same for the interaction effects: there is a reference category with
4 cylinders, where the slope of displ equals -5.96. Cars with 6 and 8 cylinders
have different slopes: the one for 6 cylinders is 5.96 + 4.21 and the one for 8
cylinders is 5.96 + 6.39. The slope for cars with 5 cylinders can’t be separately
estimated because there is no variation in displ in the mpg data set.

You see that you get different results, depending on whether you treat a variable
as numeric or as categorical. Treated as numeric, you end up with a simpler
model with fewer parameters, and therefore a larger number of degrees of
freedom. What to choose depends on the research question and the amount of
data. In general, a model should be not too complex when you have relatively
few data points. Whether the model is appropriate for your data can be checked
by looking at the residuals and checking the assumptions.

9.7 Take-away points

• When having two independent variables, it is possible to also quantify the
extent to which one variable moderates (modifies) the effect of the other
variable on the dependent variable.

• This quantity, the extent to which one variable moderates (modifies) the
effect of the other variable on the dependent variable, is termed interaction
effect.
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Key concepts

• Main effect
• Interaction
• Moderation
• Means and errors plot
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Chapter 10

Contrasts

10.1 Introduction

In Chapter 6 where we discussed ANOVA, we saw that we can make comparisons
between means of different groups. Suppose we want to compare the mean
height in three countries A, B and C. When we run a linear model, we see
that usually the first group (country A) becomes the reference group. In the
output then, the intercept is equal to the mean in this reference group, and
the two slope parameters are the differences between countries B and A, and
the difference between countries C and A, respectively. This choice of what
comparisons are made, is the default choice. You may well have the desire to
make other comparisons. Suppose you want to regard country C as the reference
category, or perhaps you would like to make a comparison between the means
of countries B and C? This chapter focuses on how to make choices regarding
what comparisons you would like to make. We also explain how to do to it in R
and at the same time tell you a bit more about how linear models work in the
first place.

10.2 The idea of a contrast

This chapter deals with contrasts. We start out by explaining what we mean
with contrasts and what role they play in linear models with categorical
variables. In later sections, we discuss how specifying contrasts can help us to
make the standard lm() output more relevant and easier to interpret.

A contrast is a linear combination of parameters or statistics. Another word for
a linear combination is a weighted sum. A regression equation like 𝑏1𝑋1 + 𝑏2𝑋2
is also a linear combination: a linear combination of independent variables 𝑋1
and 𝑋2, with weights 𝑏1 and 𝑏2 (that’s why we are talking about linear models).
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Instead of variables, let’s focus now on two sample statistics, the mean
bloodpressure 𝑀𝐷𝑢𝑡𝑐ℎ in a random sample of two Dutch persons and the mean
bloodpressure 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 in a random sample of two German persons. We can
take the sum of these two means and call it 𝐿1.

𝐿1 = 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 𝑀𝐷𝑢𝑡𝑐ℎ

Note that this is equivalent to defining 𝐿1 as

𝐿1 = 1 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 1 × 𝑀𝐷𝑢𝑡𝑐ℎ

This is a weighted sum, where the weights for the two statistics are 1 and 1
respectively. Alternatively, you could use other weights, for example 1 and -1.
Let’s call such a contrast 𝐿2:

𝐿2 = 1 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 1 × 𝑀𝐷𝑢𝑡𝑐ℎ

This 𝐿2 could be simplified to

𝐿2 = 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 𝑀𝐷𝑢𝑡𝑐ℎ

which shows that 𝐿2 is then equal to the difference between the German mean
and the Dutch mean. If 𝐿2 is positive, it means that the German mean is higher
than the Dutch mean. When 𝐿2 is negative, it means that the Dutch mean is
higher. We can also say that 𝐿2 contrasts the German mean with the Dutch
mean.

Example

If we define 𝐿2 = 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 −𝑀𝐷𝑢𝑡𝑐ℎ and we find that 𝐿2 equals +2.13,
it means that the mean of the Germans is 2.13 units higher than the
mean of the Dutch. If we find a 95% confidence interval for 𝐿2 of <1.99,
2.27>, this means that the best guess is that the German population
mean is between 1.99 and 2.27 units higher than the Dutch population
mean.

If we would fix the order of the two means 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 and 𝑀𝐷𝑢𝑡𝑐ℎ, we can make a
nice short summary for a contrast. Suppose we order the groups alphabetically:
first the Dutch, then the Germans. That means that we also fix the order of the
weights: the first weight belongs to the group that comes first alphabetically,
and the second weight belongs to the group that comes second alphabetically.
Then we could summarise 𝐿1 by stating only the weights: 1 and 1. A more
common way to display these values is using a row vector:

L1 = [1 1]
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representing 1 × 𝑀𝐷𝑢𝑡𝑐ℎ + 1 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛. Contrast 𝐿2 could be summarised as
-1 and 1, to represent −1 × 𝑀𝐷𝑢𝑡𝑐ℎ + 1 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛. Written as a row vector we
get

L2 = [−1 1]

We can combine these two row vectors by pasting them on top of each other
and display them as a contrast matrix L with two rows and two columns:

L = [L1
L2] = [ 1 1

−1 1]

In summary, a contrast is a weighted sum of group means, and can be
summarised by the weights for the respective group means. Several contrasts,
represented as row vectors, can be combined into a contrast matrix. Below we
discuss why this simple idea of contrasts is of interest when discussing linear
models. But first, let’s have a quick overview of what we learned in previous
chapters.

10.3 A quick recap

Let’s briefly review what we learned earlier about linear models when dealing
with categorical variables. In Chapter 4 we were introduced to the simplest
linear model: a numeric dependent variable Y and one numeric independent
variable X. In Chapter 6 we saw that we can also use this framework when we
want to use a categorical variable X. Suppose that X has two categories, say
“Dutch” and “German”, to indicate the nationality of participants in a study
on bloodpressure. We saw that we could create a numeric variable with only 1s
and 0s that conveys the same information about nationality. Such a numeric
variable with only 1s and 0s is usually called a dummy variable. Let’s use a
dummy variable to code for nationality and call that variable German. All
participants that are German are coded as 1 for this variable and all other
participants are coded as 0. Table 10.1 shows a small imaginary data example
on diastolic bloodpressure.

We learned that we can plug such a dummy variable as a numeric predictor
variable into a linear regression model, here with bp_diastolic (diastolic
bloodpressure) as the dependent variable. The data and the OLS regression
line are visualised in Figure 10.1.

We learned that the slope in the model with such a dummy variable can be
interpreted as the difference in the means for the two groups. In this case, the
slope is equal to the difference in the means of the two groups in the sample
data. The mean bloodpressure in the Dutch is 92+92

2 = 92 and in the Germans
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Table 10.1: Small imaginary data example on bloodpressure with one dummy
variable German to code for a categorical variable nationality.

participant nationality German bp_diastolic
1 Dutch 0 92
2 German 1 97
3 German 1 89
4 Dutch 0 92

89

90

91

92

93

94

95

96

97

0.00 0.25 0.50 0.75 1.00
German

bp
_d

ia
st

ol
ic

Figure 10.1: Linear regression of diastolic bloodpressure on the dummy variable
German.
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Table 10.2: Regression table for diastolic bloodpressure on the dummy variable
German.

term estimate std.error statistic p.value
(Intercept) 92 2.828 32.527 0.0009
German 1 4.000 0.250 0.8259

Table 10.3: Small data example on bloodpressure with categorical variable
nationality with three levels.

participant nationality bp_diastolic
1 Dutch 92
2 German 97
3 German 89
4 Dutch 92
5 Italian 91
6 Italian 96

it is 89+97
2 = 93. The increase in mean bloodpressure if we move from German

= 0 (Dutch) to German = 1 (German) is therefore equal to +1.
This is also what we see if R computes the regression for us, see Table 10.2.
We see that being German has an effect of +1 units on the bloodpressure scale,
with the individuals that are not German (Dutch) as the reference group. The
intercept has the value 92 and that is the average bloodpressure in the non-
German group. We can therefore view this +1 as the difference between mean
German bloodpressure and mean Dutch bloodpressure.
Now suppose we do not have two groups, but three. We learned in Chapter 6
that we can have a hypothesis about the means of several groups. Suppose we
have data from three groups, say Dutch, German and Italian. The data are in
Table 10.3.
When we run an ANOVA, the null hypothesis states that the means of the
three groups are equal in the population. For example, the mean diastolic
bloodpressure might be 92 for the Dutch, 93 for the Germans and 93.5 for the
Italians, but this could result when the actual means in the population are the
same: 𝜇𝐷𝑢𝑡𝑐ℎ = 𝜇𝐺𝑒𝑟𝑚𝑎𝑛 = 𝜇𝐼𝑡𝑎𝑙𝑖𝑎𝑛.
If we would run an ANOVA we could get the following results

library(car)

## Loading required package: carData
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##
## Attaching package: 'car'

## The following object is masked from 'package:dplyr':
##
## recode

## The following object is masked from 'package:purrr':
##
## some

out <- bloodpressure %>%
lm(bp_diastolic ~ nationality, data = ., contrasts = list(nationality = contr.sum))

out %>%
Anova(type = 3)

## Anova Table (Type III tests)
##
## Response: bp_diastolic
## Sum Sq Df F value Pr(>F)
## (Intercept) 51708 1 3485.9438 1.07e-05 ***
## nationality 2 2 0.0787 0.9262
## Residuals 44 3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We see an 𝐹 -test with 2 and 3 degrees of freedom. The 2 results from the fact
that we have three groups. This test is about the equality of the three group
means. Compare this with the effects of the automatically created dummy
variables in the lm() analysis below:

out <- bloodpressure %>%
lm(bp_diastolic ~ nationality, data = .)

out %>%
tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 92.0 2.72 33.8 0.0000570
## 2 nationalityGerman 1.00 3.85 0.260 0.812
## 3 nationalityItalian 1.50 3.85 0.389 0.723
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In the output, the first 𝑡-test (33.8) is about the equality of the mean
bloodpressure in the first group and 0. The second 𝑡-test (0.26) is about the
equality of the means in groups 1 and 2, and the third 𝑡-test (0.389) is about
the equality of the means in groups 1 and 3. The 𝐹 -test from the ANOVA
can be seen as a combination of two separate 𝑡-tests: the second and the third
in this example, which are the ones about the equality of the last two group
means and the first one. These two effects are from the two dummy variables
created to code for the categorical variable nationality.
In the research you carry out, it is important to be clear on what you actually
want to learn from the data. If you want to know if the data could have resulted
from the situation where all population group means are equal, then the 𝐹 -
test is most appropriate. If you are more interested in whether the differences
between certain countries and the first country (the reference country) are 0
in the population, the regular lm() table with the standard 𝑡-tests are more
appropriate. If you are interested in other types of questions, then keep reading.

10.4 Contrasts and dummy coding

In the previous section we saw that when we run a linear model with a categorical
predictor with two categories, we actually run a linear regression with a dummy
variable. When the dummy variable codes for the category German, we see that
the slope is the same as the mean of the German category minus the mean of
the reference group. And we see that the intercept is the same as the mean of
the reference group (the non-German group). We see that the dummy variable
is 1 for Germans and 0 for Dutch, and that the use of this dummy variable
in the analysis results in two parameters: (1) the intercept and (2) the slope.
Actually these two parameters represent two contrasts. The first parameter
contrasts the difference between the Dutch mean and 0 (again, the Dutch come
first alphabetically and then the weight for the Germans):

𝐿1 = 𝑀𝐷𝑢𝑡𝑐ℎ = 𝑀𝐷𝑢𝑡𝑐ℎ − 0 = 1 × 𝑀𝐷𝑢𝑡𝑐ℎ − 0 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛

In the R output, this parameter (or contrast) is called ‘(Intercept)’. The second
parameter contrasts the German mean with the Dutch mean:

𝐿2 = 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 𝑀𝐷𝑢𝑡𝑐ℎ = −1 × 𝑀𝐷𝑢𝑡𝑐ℎ + 1 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛

This parameter is often denoted as the slope. In Table 10.2 above it is denoted
as ‘German’.

These two contrasts can be represented in a contrast matrix containing two rows

L = [ 1 0
−1 1]
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Suppose we want to have some different output. Suppose instead we want to see
in the output the mean of the Germans first and then the extra bloodpressure in
the Dutch. Earlier we learned that we can get that by using a dummy variable
for being Dutch, so that the German group becomes the reference group. Here,
we focus on the contrasts. Suppose we want the Germans to form the reference
group, then we have to estimate the contrast:

𝐿3 ∶ 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 = 0 × 𝑀𝐷𝑢𝑡𝑐ℎ + 1 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛

and then we can contrast the Dutch with this reference group:

𝐿4 ∶ 𝑀𝐷𝑢𝑡𝑐ℎ − 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 = 1 × 𝑀𝐷𝑢𝑡𝑐ℎ − 1 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛

We then have the following contrast matrix:

L = [0 1
1 −1]

You see that when you make a choice regarding the dummy variable (either
coding for being German or coding for being Dutch), this choice directly affects
the contrasts that you make in the regression analysis (i.e., the output that you
get). When using dummy variable German, the output gives contrasts 𝐿1 and
𝐿2, whereas using dummy variable Dutch leads to an output for contrasts 𝐿3
and 𝐿4.
To make this a bit more interesting, let’s look at a data example with three
nationalities: Dutch, German and Italian. Suppose we want to use the German
group as the reference group. We can then use the following contrast (the
intercept):

𝐿1 ∶ 𝑀𝐺𝑒𝑟𝑚𝑎𝑛

Next, we are interested in the difference between the Dutch and this reference
group:

𝐿2 ∶ 𝑀𝐷𝑢𝑡𝑐ℎ − 𝑀𝐺𝑒𝑟𝑚𝑎𝑛

and the difference between the Italian and this reference group:

𝐿3 ∶ 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛 − 𝑀𝐺𝑒𝑟𝑚𝑎𝑛

If we again order the three categories alphabetically, we can summarise these
three contrasts with the contrast matrix
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Table 10.4: Small data example with categorical variable nationality with three
levels, and two dummy variables.

participant nationality Dutch Italian bp_diastolic
1 Dutch 1 0 92
2 German 0 0 97
3 German 0 0 89
4 Dutch 1 0 92
5 Italian 0 1 91
6 Italian 0 1 96

L = ⎡⎢
⎣

0 1 0
1 −1 0
0 −1 1

⎤⎥
⎦

(please check this for yourself).

Based on what we learned from previous chapters, we know we can obtain
these comparisons when we compute a dummy variable for being Dutch and a
dummy variable for being Italian and use these in a linear regression. We see
these dummy variables Dutch and Italian in Table 10.4.

This section showed that if you change the dummy coding, you change the
contrasts that you are computing in the analysis. There exists a close connection
between the contrasts and the actual dummy variables that are used in an
analysis. We will discuss that in the next section.

10.5 Connection between contrast and coding
schemes

We saw that what dummy coding you use determines the contrasts you get in
the output of a linear model. In this section we discuss this intricate connection.
As we saw earlier, the contrasts can be represented as a matrix L with each row
representing a contrast. Now let’s focus on the dummy coding. The way we
code dummy variables, can be represented in a matrix S where each column
gives information about how to code a new numeric variable.

For a simple example, see the following matrix

S = [1 0
0 1]
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Each row in this matrix represents a category: the first row is for the first
category and the second row is for the second category. The columns represent
the coding scheme for new variables. The first column specifies the coding
scheme for the first new variable. The values are the values that should be used
in constructing the new variables. The first column of S specifies a dummy
variable where the first category is coded as 1 and the second category as 0.
The second column specifies the opposite: a dummy variable that codes the
first category as 0 and the second category as 1.

If you want the short story for how (dummy) coding and contrasts are related:
matrix S (the coding scheme) is the inverse of the contrast matrix L. That is, if
you have matrix L and you want to know the coding scheme S, you can simply
ask R to compute the inverse of L. This also goes the other way around: if
you know what coding is used, you can take the inverse of the coding scheme to
determine what the output represents. If you want to know what is meant with
the inverse, see the advanced clickable section below, although it is not strictly
necessary to know it. In order to work with linear models in R, it is sufficient
to know how to compute the inverse in R.

A closer look at the L and S matrices and their connection

By default, R orders the categories of a factor alphabetically. If we have two
groups, R uses by default the following coding scheme:

S = [1 0
1 1]

This matrix has two rows and two columns. Each row represents a category.
In our earlier example, the first category is “Dutch” and the second category
is “German” (categories sorted alphabetically). Each column of the matrix S
represents a new numeric variable that R will compute in order to code for
the categorical factor variable. The first column (representing a new numeric
variable) says that for both categories (rows), the new variable gets the value
1. The second column holds a 0 and a 1. It says that the first category is coded
as 0, and the second category is coded as 1.

Thus, this matrix says that we should create two new variables. They
are displayed in Table 10.5, where we call them Intercept and German,
respectively. Why we name the second new variable German is obvious: it’s
simply a dummy variable for coding “German” as 1. Why we call the first
variable Intercept is less obvious, but we will come back to that later.

Thus, with matrix S, you have all the information you need to perform a linear
regression analysis with only numerical variables.

With matrix S as the default, what kind of contrasts will we get, and how can
we find out? It turns out that once you know S, you can immediately calculate
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(or have R calculate) what kind of contrast matrix L you get. The connection
between matrices L and S is the same as the connection between 4 and 1

4 .

You might know that 1
4 is called the reciprocal of 4. The reciprocal of 4 can also

be denoted by 4−1. Thus we can write that the reciprocal of 4 is as follows:

4−1 = 1
4

We can say that if we have a quantity 𝑥, the reciprocal of 𝑥 is defined as that
number when multiplied with 𝑥, results in 1.

𝑥𝑥−1 = 𝑥−1𝑥 = 1

Examples

• The reciprocal of 3 is equal to 1
3 , because 3 × 1

3 = 1.
• The reciprocal of 1

100 is equal to 100, because 1
100 × 100 = 1.

• The reciprocal of 3
4 is equal to 4

3 , because
3
4 × 4

3 = 1.

Just like a number has a reciprocal, a matrix has an inverse. Similar to
reciprocals, we use the “-1” to indicate the inverse of a matrix. We have that by
definition, LL−1 = I and SS−1 = I, where matrix I is the matrix analogue of a
1, and its called an identity matrix. It turns out that the inverse of matrix L is
S: L−1 = S, and the inverse of S equals L: S−1 = L. That implies we have that
LS = I. The only difference with reciprocals is that L and S are matrices, so
that we are in fact performing matrix algebra, which is a little bit different from
algebra with single numbers. Nevertheless, it is true that if we matrix multiply
L and S, we get a matrix I. This matrix is as we said an identity matrix, which
means it has only 1s on the diagonal (from top-left to bottom-right) and 0s
elsewhere:

LS = SL = I = [1 0
0 1]

It turns out that if we have S as defined above (the default coding scheme), the
contrast matrix L can only be

L = [ 1 0
−1 1]

or written in full:

SL = [1 0
1 1] × [ 1 0

−1 1] = [1 0
0 1]
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Table 10.5: Small data example with a variable Intercept consisting of only
1s and a dummy variable German. This is the default way to transform a
categorical variable nationality into a numeric one.

participant nationality Intercept German bp_diastolic
1 Dutch 1 0 92
2 German 1 1 97
3 German 1 1 89
4 Dutch 1 0 92

Please note that you don’t have to know matrix algebra when studying this book,
but it helps to understand what is going on when performing linear regression
analysis with categorical variables. By having R do the matrix algebra for you,
you can fully control what kind of output you want from an analysis.

10.6 Working with matrices S and L in R

In the last section we saw that coding scheme matrix S is the inverse of contrast
matrix L, and contrast matrix L is the inverse of coding scheme matrix S. In
this section we see how to compute the inverse of a matrix R.

Let’s take the bloodpressure example again, where we had data on three
nationalities: in alphabetical order the Dutch data, then the German data, and
lastly the Italian data.

Let’s assume we want to use the German group as the reference group. We
then need a matrix L similar to the one from a previous section with the
nationalities Dutch, German and Italian (in alphabetical order), with German
as the reference category (the second group). We enter that contrast matrix L
in R as follows:

L <- matrix(c(0, 1, 0,
1, -1, 0,
0, -1, 1), byrow = TRUE, nrow = 3)

L

## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 1 -1 0
## [3,] 0 -1 1
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The first row is the contrast for the mean of the second group (German). The
second row contrasts the first group (Dutch) with the second group (German).
The third row contrasts the third group (Italian) with the second group
(German).

If we are interested in the coding scheme matrix, we take the inverse of L to get
matrix S by using the ginv() function, that is available in the package MASS.

library(MASS)
S <- ginv(L) # S is calculated as the inverse of L
S %>% fractions() # to get more readable output

## [,1] [,2] [,3]
## [1,] 1 1 0
## [2,] 1 0 0
## [3,] 1 0 1

The output is a coding scheme matrix with 3 columns:

S = ⎡⎢
⎣

1 1 0
1 0 0
1 0 1

⎤⎥
⎦

This coding scheme matrix S tells us what kind of variables to compute to
obtain these contrasts in L in the output of the linear model. Each column of
S contains the information for each new variable. Since we have three columns,
we know that we need to compute three variables. The first column tells us that
the first variable consists of the value 1 for all groups. We will come back to this
variable of 1s later (it represents the intercept). The second column indicates
we need a dummy variable that codes the first group (Dutch) as 1 and the other
two groups as 0. The third column tells us we need a third variable that is also
a dummy variable, coding 1 for group 3 (Italian) and 0 for the other two groups.

If we apply this coding scheme to our data set, then we get the following data
matrix:

Now let’s do the exercise the other way around. If you know the coding scheme
(how your dummy variables are coded), you can easily determine what the
output will represent. For instance, let S be the coding scheme for a dummy
variable for group 1 (Dutch) and a dummy variable for group 2 (German) (with
reference group “Italian”). We enter that in R:

S <- matrix(c(1, 0,
0, 1,
0, 0), byrow = TRUE, nrow = 3)

341



Table 10.6: Data frame with the three new variables, as specified in matrix S.

participant nationality bp_diastolic v1 v2 v3
1 Dutch 92 1 1 0
2 German 97 1 0 0
3 German 89 1 0 0
4 Dutch 92 1 1 0
5 Italian 91 1 0 1
6 Italian 96 1 0 1

By default, any lm() analysis includes an intercept, and an intercept is always
coded as 1. We therefore add a variable of only 1s to represent the intercept
(why these 1s are included will become clear).

S <- cbind(1, S)
S

## [,1] [,2] [,3]
## [1,] 1 1 0
## [2,] 1 0 1
## [3,] 1 0 0

We can then determine what contrasts these three variables will lead to by
taking the inverse to calculate contrast matrix L:

L <- ginv(S)
L %>% fractions() # for readability

## [,1] [,2] [,3]
## [1,] 0 0 1
## [2,] 1 0 -1
## [3,] 0 1 -1

This matrix L contains three rows, one for each contrast. The first row gives a
contrast 𝐿1 which is 0×𝑀1 +0×𝑀2 +1×𝑀3 which is equal to 𝑀3 (the Italian
mean). The second row gives contrast 1×𝑀1 +0×𝑀2 −1×𝑀3 which amounts
to the first group mean minus the last one, 𝑀1 − 𝑀3 (difference between Dutch
and Italian). The third row gives the contrast 0 × 𝑀1 + 1 × 𝑀2 − 1 × 𝑀3 which
is 𝑀2 − 𝑀3 (difference between German and Italian).

Remember, contrast matrix L is organised in rows, whereas coding scheme
matrix S is organised in columns. One way to memorise this is to realise that
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coding scheme matrix S defines new variables, and variables are organised as
columns in a data matrix, as you may recall from Chapter 1.
You may wonder, what is this variable with only 1s doing in this story? Didn’t
we learn that we only need to compute 2 dummy variables for a categorical
variable with 3 categories? The short answer is: the variable with only 1s (for
all categories) represents the intercept, which is always included in a linear
model by default. For more explanation, click on the link below.

A closer look at the intercept represented as a variable with 1s
In most regression analyses, we want to include an intercept in the linear model.
This happens so often that we forget that we have a choice here. For instance, in
R, an intercept is included by default. For example, if you use the code with the
formula bp_diastolic ~ nationality, you get the exact same result as with
bp_diastolic ~ 1 + nationality. In other words, by default, R computes a
variable that consists of only 1s. This can be seen if we use the model.matrix()
function. This function shows the actual variables that are computed by R and
used in the analysis.

lm(bp_diastolic ~ nationality, data = bloodpressure) %>%
model.matrix()

## (Intercept) nationalityGerman nationalityItalian
## 1 1 0 0
## 2 1 1 0
## 3 1 1 0
## 4 1 0 0
## 5 1 0 1
## 6 1 0 1
## attr(,"assign")
## [1] 0 1 1
## attr(,"contrasts")
## attr(,"contrasts")$nationality
## [1] "contr.treatment"

In the output, we see the actual numeric variables that are used in the analysis
for the six observations in the data set (six rows). Taken together, these
variables, displayed as columns in a matrix, are called the design matrix. We
see a variable called (Intercept) with only 1s and two dummy variables, one
coding for Germans, with the name nationalityGerman, and one coding for
Italians with the name nationalityItalian. These variable names we see again
when we look at the results of the lm() analysis:

lm(bp_diastolic ~ nationality, data = bloodpressure) %>%
tidy()
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## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 92.0 2.72 33.8 0.0000570
## 2 nationalityGerman 1.00 3.85 0.260 0.812
## 3 nationalityItalian 1.50 3.85 0.389 0.723

Now the names of the newly computed variables have become the names of
parameters (the intercept and slope parameters). These parameter values
actually represent the (default) contrasts 𝐿1, 𝐿2 and 𝐿3, here quantified as
92.0, 1.0 and 1.5, respectively. The ‘intercept’ of 92.0 is simply the quantity
that we find for the first contrast (the first row in the contrast matrix L).

In summary, when you have three groups, you can invent a quantitative variable
called (intercept) that is equal to 1 for all observations in your data matrix. If
you then also invent a dummy variable for being German and a dummy variable
for being Italian, and submit these three variables to a linear model analysis,
the output will yield the mean of the Dutch, the difference between the German
mean and the Dutch mean, and the difference between the Italian mean and
the Dutch mean. In the code below, you see what is actually going on: the
computation of the three variables and submitting these three variables to an
lm() analysis. Note that R by default includes an intercept. To suppress this
behaviour, we include -1 in the formula:

dummy_German <- c(0, 1, 1, 0, 0, 0)
dummy_Italian <- c(0, 0, 0, 0, 1, 1)
iNtErCePt <- c(1, 1, 1, 1, 1, 1)
bp_diastolic <- c(92, 97, 89, 92, 91, 96)

lm(bp_diastolic ~ iNtErCePt + dummy_German + dummy_Italian - 1) %>%
tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 iNtErCePt 92.0 2.72 33.8 0.0000570
## 2 dummy_German 1.00 3.85 0.260 0.812
## 3 dummy_Italian 1.50 3.85 0.389 0.723

You see that you get the exact same results as in the default way, by specifying
a categorical variable nationality:
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nationality <- factor(c(1, 2, 2, 1, 3,3 ),
labels = c("Dutch", "German", "Italian"))

lm(bp_diastolic ~ nationality) %>%
tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 92.0 2.72 33.8 0.0000570
## 2 nationalityGerman 1.00 3.85 0.260 0.812
## 3 nationalityItalian 1.50 3.85 0.389 0.723

Or when doing the dummy coding yourself:

lm(bp_diastolic ~ dummy_German + dummy_Italian) %>%
tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 92.0 2.72 33.8 0.0000570
## 2 dummy_German 1.00 3.85 0.260 0.812
## 3 dummy_Italian 1.50 3.85 0.389 0.723

and in a way where we explicitly include an intercept of 1s:

lm(bp_diastolic ~ 1 + nationality) %>%
tidy()

## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 92.0 2.72 33.8 0.0000570
## 2 nationalityGerman 1.00 3.85 0.260 0.812
## 3 nationalityItalian 1.50 3.85 0.389 0.723

lm(bp_diastolic ~ 1 + dummy_German + dummy_Italian) %>%
tidy()

## # A tibble: 3 x 5
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## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 92.0 2.72 33.8 0.0000570
## 2 dummy_German 1.00 3.85 0.260 0.812
## 3 dummy_Italian 1.50 3.85 0.389 0.723

with the only difference that the first parameter is now called ‘(Intercept)’.

In conclusion: linear models by default include an ‘intercept’ that is actually
coded as an independent variable consisting of all 1s.

10.7 Choosing the reference group in R for
dummy coding

Let’s see how to run an analysis in R, when we want to control what contrasts are
actually computed. This time, we want to let the Germans form the reference
group, and then compare the Dutch and Italian means with the German mean.

Let’s first put the data from Table 10.3 in R, so that you can follow along using
your own computer (copy the code below into an R-script).

# create a dataframe (a tibble is the tidyverse version of a dataframe)
bloodpressure <- tibble(
participant = c(1, 2, 3, 4, 5, 6),
nationality = c("Dutch", "German", "German", "Dutch", "Italian", "Italian"),
bp_diastolic = c(92, 97, 89, 92, 91, 96))

bloodpressure

## # A tibble: 6 x 3
## participant nationality bp_diastolic
## <dbl> <chr> <dbl>
## 1 1 Dutch 92
## 2 2 German 97
## 3 3 German 89
## 4 4 Dutch 92
## 5 5 Italian 91
## 6 6 Italian 96

Note that we omit dummy variables for now. Next we turn the nationality
variable in the tibble bloodpressure into a factor variable. This ensures that
R knows that it is a categorical variable.
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bloodpressure <-
bloodpressure %>%
mutate(nationality = as.factor(nationality))

If we then look at this factor,

bloodpressure$nationality

## [1] Dutch German German Dutch Italian Italian
## Levels: Dutch German Italian

we see that it has three levels. With the levels() function, we see that the
first level is Dutch, the second level is German, and the third level is Italian.
This is default behaviour: R chooses the order alphabetically.

bloodpressure$nationality %>% levels()

## [1] "Dutch" "German" "Italian"

This means that if we run a standard lm() analysis, the first level (the Dutch)
will form the reference group, and that the two slope parameters stand for
the contrasts of the bloodpressure in Germans and Italians versus the Dutch,
respectively:

bloodpressure %>%
lm(bp_diastolic ~ nationality, data = .)

##
## Call:
## lm(formula = bp_diastolic ~ nationality, data = .)
##
## Coefficients:
## (Intercept) nationalityGerman nationalityItalian
## 92.0 1.0 1.5

In the case that we want to use the Germans as the reference group instead
of the Dutch, we have to specify a set of contrasts that is different from this
default set of contrasts.
One way to easily do this is to permanently set the reference group to another
level of the nationality variable. We work with the variable nationality in the
dataframe (or tibble) called bloodpressure. We use the relevel() function to
change the reference group to “German”.
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bloodpressure <- bloodpressure %>%
mutate(nationality = relevel(nationality, ref = "German"))

If we check this by using the function levels() again, we see that the first
group is now German, and no longer Dutch:

bloodpressure$nationality %>% levels()

## [1] "German" "Dutch" "Italian"

If we run an lm() analysis, we see from the output that the reference group is
now indeed the German group (i.e., with contrasts for being Dutch and Italian).

bloodpressure %>% lm(bp_diastolic ~ nationality, data = .)

##
## Call:
## lm(formula = bp_diastolic ~ nationality, data = .)
##
## Coefficients:
## (Intercept) nationalityDutch nationalityItalian
## 93.0 -1.0 0.5

To check this fully, we can ask R to show us the dummy variables that it created
for the analysis, using the function model.matrix().

bloodpressure %>%
lm(bp_diastolic ~ nationality, data = .) %>%
model.matrix()

## (Intercept) nationalityDutch nationalityItalian
## 1 1 1 0
## 2 1 0 0
## 3 1 0 0
## 4 1 1 0
## 5 1 0 1
## 6 1 0 1
## attr(,"assign")
## [1] 0 1 1
## attr(,"contrasts")
## attr(,"contrasts")$nationality
## [1] "contr.treatment"
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The output gives the values for the new variables for all individuals in the
original dataset. We see that R created a dummy variable for being Dutch
(named nationalityDutch), and another dummy variable for being Italian
(named nationalityItalian). Therefore, the reference group is now formed by
the Germans. Note that R also created a variable called (Intercept), that
consists of only 1s for all six individuals.

The variable nationality in the dataframe bloodpressure is now permanently
altered. From now on, every time we use this variable in an analysis, the
reference group will be formed by the Germans. By using mutate() and
relevel() again, we can change everything back or pick another reference
group.

This fixing of the reference category is very helpful in data analysis for
experimental data. Suppose a researcher wants to quantify the effects of
vaccine A and vaccine B on hospitalisation for COVID-19. She randomly
assigns individuals to one of three groups: A, B and C, where group C is
the control condition in which individuals receive a saline injection (placebo).
Individuals in group A and group B get vaccines A and B, respectively. In
order to quantify the effect of vaccine A, you would like to contrast group A
with group C, and in order to quantify the effect of vaccine B, you would like to
contrast group B with group C. In that case, it is helpful if the reference group
is group C. By default, R uses the first category as the reference category, when
ordered alphabetically. By default therefore, R would choose group A as the
reference group. R would then by default compute the contrast between B and
A, and between C and A, apart from the mean of group A (the intercept). By
changing the reference category to group C, the output would be more helpful
to answer the research question.

Summary

General steps to take for using dummy coding and choosing the
reference category:

1. Use levels() to check what group is named first. That
group will generally be the reference group. For example, do
levels(data$variable).

2. If the reference group is not the right one, use mutate()
and relevel() to change the reference group, for example
do something like: data <- data %>% mutate(variable =
relevel(variable, ref = "German")).

3. Verify with levels() whether the right reference category is now
mentioned first. Any new analysis using lm() will now yield an
analysis with dummy variables for all categories except the first
one.

349



10.8 Alternative coding schemes

By default, R uses dummy coding. Contrasts that are computed by using
dummy variables are called treatment contrasts: these contrasts are the
difference between the individual groups and the reference group. Similar
to defining the reference group for a particular variable (so that the first
parameter value in the output is the mean of this reference group, usually
termed (Intercept)), you can set all contrasts that are used in the linear
model analysis. For instance by typing

bloodpressure$nationality %>% contrasts()

## Dutch Italian
## German 0 0
## Dutch 1 0
## Italian 0 1

you see that the first variable that is created (the first column) is a dummy
variable for being Dutch, and the second variable is a dummy for being Italian.
What you see in the contrasts() matrix is not the contrasts per se, but the
coding scheme for the new variables that are created by R. In other words, with
contrasts() you get to see the coding scheme matrix S. Note however that
the default variable with 1s (the intercept) is not displayed.

This default treatment coding (dummy coding) is fine for linear regression, but
not so great for ANOVAs. We will come back to this issue in a later section when
discussing moderation. For now it suffices to know that if you are interested
in an ANOVA rather than a linear regression analysis, it is best to use effects
coding (sometimes called sum-to-zero contrasts). Above we saw that the first
column after the contrasts() function (called ‘Dutch’) sums to 1, and the
second column (called ‘Italian’) also sums to 1. In effects coding on the other
hand, the weights for each contrast sum to 0 (hence the name sum-to-zero
contrasts). Effects coding is also useful if we have specific research questions
where we are interested in differences between combinations of groups. We will
see in a moment what that means. Below we discuss effects coding in more
detail, and also discuss other standard ways of coding (Helmert contrasts and
successive differences contrast coding).

10.8.1 Effects coding

Below we will illustrate how to use and interpret a linear model when we apply
effects coding. You can type along in R.

First, let’s check that we have everything in the original alphabetical order.
This makes it easier to not get distracted by details.

350



bloodpressure$nationality %>% levels() # German is now the first group

## [1] "German" "Dutch" "Italian"

# change the order such that "Dutch" becomes the first group
bloodpressure <- bloodpressure %>%
mutate(nationality = relevel(nationality, ref = "Dutch"))

bloodpressure$nationality %>%
levels() # Check that Dutch is now the first group

## [1] "Dutch" "German" "Italian"

Next, we need to change the default dummy coding into effects coding for
the nationality variable in the bloodpressure dataframe. We do that by
again fixing something permanently for this variable. We use the function
code_deviation() from the codingMatrices package.

library(codingMatrices) # install if not already done
contrasts(bloodpressure$nationality) <- code_deviation

When we run contrasts() again, we see a different set of columns, where each
column now sums to 0. We no longer see dummy coding.

contrasts(bloodpressure$nationality)

## MD1 MD2
## Dutch 1 0
## German 0 1
## Italian -1 -1

The values in this coding scheme matrix are used to code for the new numeric
variables. The first column says that a variable should be created with 1s for
Dutch, 0s for Germans and -1s for Italians. The second column indicates that
another variable should be created with 0s for Dutch, 1s for Germans and -1s
for Italians. Any new analysis with the variable nationality in the dataframe
bloodpressure will now by default use this sum-to-zero coding scheme. If we
run a linear model analysis with this factor variable, we see that we get very
different values for the parameters.

bloodpressure %>%
lm(bp_diastolic ~ nationality, data = .) %>%
tidy()
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## # A tibble: 3 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 92.8 1.57 59.0 0.0000107
## 2 nationalityMD1 -0.833 2.22 -0.375 0.733
## 3 nationalityMD2 0.167 2.22 0.0750 0.945

Let’s check that we understand how the new variables are computed.

bloodpressure %>%
lm(bp_diastolic ~ nationality, data = .) %>%
model.matrix()

## (Intercept) nationalityMD1 nationalityMD2
## 1 1 1 0
## 2 1 0 1
## 3 1 0 1
## 4 1 1 0
## 5 1 -1 -1
## 6 1 -1 -1
## attr(,"assign")
## [1] 0 1 1
## attr(,"contrasts")
## attr(,"contrasts")$nationality
## MD1 MD2
## Dutch 1 0
## German 0 1
## Italian -1 -1

We still have a variable called (Intercept) with only 1s, which is used by
default, as we saw earlier. There are also two other new variables, one called
nationalityMD1 and the other called nationalityMD2, where there are 1s,
0s and -1s.

Based on this coding scheme it is hard to say what the new values in the output
represent. But we saw earlier that the output values are simply the values for
the contrasts, and the contrasts can be determined by taking the inverse of the
coding scheme matrix S.

Matrix S consists now of the effects coding scheme. S is therefore the same as
the output of contrasts(bloodpressure$nationality).

S <- contrasts(bloodpressure$nationality)
S
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## MD1 MD2
## Dutch 1 0
## German 0 1
## Italian -1 -1

We see that it has the two new numeric variables. We miss however the variable
with 1s that is used by default in the analysis. If we add that we get the full
matrix S with the three new variables.

S <- cbind(1, S)
S

## MD1 MD2
## Dutch 1 1 0
## German 1 0 1
## Italian 1 -1 -1

Next we take the inverse to compute contrast matrix L.

L <- ginv(S)
L

## [,1] [,2] [,3]
## [1,] 0.3333333 0.3333333 0.3333333
## [2,] 0.6666667 -0.3333333 -0.3333333
## [3,] -0.3333333 0.6666667 -0.3333333

L %>% fractions()

## [,1] [,2] [,3]
## [1,] 1/3 1/3 1/3
## [2,] 2/3 -1/3 -1/3
## [3,] -1/3 2/3 -1/3

This gives us what we need to know about how to interpret the output. Briefly,
the first parameter in the output now represents what is called the grand mean.
This is the mean of all group means. This is so, because if we put the group
means in the right order, and we use the weights from the first row in L, we get

𝐿1 ∶ 1
3𝑀𝐷𝑢𝑡𝑐ℎ + 1

3𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 1
3𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛

which can be simplified to
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𝐿1 ∶ 𝑀𝐷𝑢𝑡𝑐ℎ + 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛
3

which is the mean of the three group means. We generally call the mean of
group means the grand mean.

For the meaning of the second parameter we look at the second row of the
contrast matrix and fill in the numbers for a second contrast:

𝐿2 ∶ 2
3𝑀𝐷𝑢𝑡𝑐ℎ − 1

3𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 1
3𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛

𝐿2 can be rewritten as

𝐿2 ∶ 2
3 × (𝑀𝐷𝑢𝑡𝑐ℎ − 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛

2 )

𝐿2 is therefore the difference between the Dutch mean and the mean of the
other two means, multiplied by 2

3 .

Although it makes sense to interpret this contrast as the difference between the
Dutch mean and the other two means, the fraction 2

3 looks weird here. Let’s
therefore rewrite contrast 𝐿2 in a different way:

𝐿2 ∶ 2
3𝑀𝐷𝑢𝑡𝑐ℎ − 1

3𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 1
3𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛

= 2
3𝑀𝐷𝑢𝑡𝑐ℎ + 1

3𝑀𝐷𝑢𝑡𝑐ℎ − 1
3𝑀𝐷𝑢𝑡𝑐ℎ − 1

3𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 1
3𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛

= 𝑀𝐷𝑢𝑡𝑐ℎ − 𝑀𝐷𝑢𝑡𝑐ℎ + 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛
3

In other words, this contrast is about the difference between the Dutch mean
and the grand mean.

For the meaning of the third parameter we look at the third row of the contrast
matrix and fill in the numbers for a second contrast:

𝐿3 ∶ −1
3𝑀𝐷𝑢𝑡𝑐ℎ + 2

3𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 1
3𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛

which can be written as

𝐿3 ∶ 2
3 × (𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 𝑀𝐷𝑢𝑡𝑐ℎ + 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛

2 )

and interpreted as the difference between the German mean and the mean of
the other two means, multiplied by 2

3 , or, when writing it out like
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𝐿3 ∶ 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 𝑀𝐷𝑢𝑡𝑐ℎ + 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛
3

as the difference between the German mean and the grand mean.

Let’s check whether this makes sense. Let’s get an overview of the group means
in the data, and the coefficients again:

bloodpressure %>%
group_by(nationality) %>%
summarise(mean = mean(bp_diastolic))

## # A tibble: 3 x 2
## nationality mean
## <fct> <dbl>
## 1 Dutch 92
## 2 German 93
## 3 Italian 93.5

bloodpressure %>%
lm(bp_diastolic ~ nationality, data = .) %>% coef()

## (Intercept) nationalityMD1 nationalityMD2
## 92.8333333 -0.8333333 0.1666667

The first parameter ‘(Intercept)’ equals 92.833 and this is indeed equal to the
grand mean (92+93+93.5)

3 = 92.833.
The second parameter ‘nationalityMD1’ equals -0.833 and this is equal to the
difference between the Dutch mean 92 and the German and Italian means
combined, (93+93.5)

2 = 93.25, so 92 − 93.25 = −1.25. When we multiply this
by 2

3 , we get −1.25 × 2
3 = −0.833.

The third parameter ‘nationalityMD2’ equals 0.167 and this is indeed equal to
the difference between the German mean 93 and the Dutch and Italian means
combined, (92+93.5)

2 = 92.75, so 93 − 92.75 = 0.25. When multiplied by 2
3 , we

get 0.25 × 2
3 = 0.167. This multiplication is explained in more detail below.

It also computes when we define the contrasts in terms of the grand mean. Let’s
first compute the grand mean (the mean of all three means):

bloodpressure %>%
group_by(nationality) %>%
summarise(mean = mean(bp_diastolic)) %>% # the group means
summarise(grandmean = mean(mean)) # compute mean of the group means
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## # A tibble: 1 x 1
## grandmean
## <dbl>
## 1 92.8

and compare it to the group means:

bloodpressure %>%
group_by(nationality) %>%
summarise(mean = mean(bp_diastolic))

## # A tibble: 3 x 2
## nationality mean
## <fct> <dbl>
## 1 Dutch 92
## 2 German 93
## 3 Italian 93.5

We see that 𝐿2 should be 92−92.8 = −0.8, and that 𝐿3 should be 93−92.8 = 0.2,
which is exactly what we find as coefficients in the output (safe rounding).

bloodpressure %>%
lm(bp_diastolic ~ nationality, data = .) %>% coef()

## (Intercept) nationalityMD1 nationalityMD2
## 92.8333333 -0.8333333 0.1666667

Effects coding is interesting in all cases where you want to test a null-hypothesis
about one group versus the mean of the other groups (or versus the grand mean).
As we saw above, the second parameter in the output is about the difference
between the first group mean and the average of all group means (the grand
mean). The 𝑡-test that goes along with that parameter informs us about the
null-hypothesis that the first group has the same population mean as the average
of all the other group means (in other words, that the group mean is the same
as the grand mean). This is useful in a situation where you for example want
to compare the control/placebo condition with several experimental conditions
combined: do the various treatments in general result in a different mean than
when doing nothing?

Suppose for example that we do a study on various types of therapy to quit
smoking. In one group, people are put on a waiting list, in a second group
people receive treatment using nicotine patches and in a third group, people
receive treatment using cognitive behavioural therapy.
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If your main questions are (1) what is the effect of nicotine patches on the
number of cigarettes smoked, and (2) what is the effect of cognitive behavioural
therapy on number of cigarettes smoked, you may want to go for the default
dummy coding strategy and make sure that the control condition is the first
level of your factor. The parameters and the 𝑡-tests that are relevant for your
research questions are then in the second and third row of your regression table.

However, if your main question is: “Do treatments like nicotine patches and
cognitive behavioural therapy help reduce the number of cigarettes smoked,
compared to doing nothing?” you might want to opt for a sum-to-zero (effects
coding) strategy, where you make sure that the control condition (waiting list) is
the first level of your factor. The relevant null-hypothesis test for your research
question is then given in the second line of your regression table (contrasting
the control group with the two treatments groups, i.e., contrasting the control
group with the grand mean).

Summarising, there are multiple ways of carrying out a linear model analysis
with categorical variables. The R default way is to use dummy coding, and
the second way is effects coding. Unless you are particularly interested in an
ANOVA with multiple independent categorical variables, or about combinations
of groups, the default way with dummy coding is just fine. Regarding ANOVA,
most software packages and functions that perform ANOVA actually use
effects coding by default, so it is important to be familiar with it. It must be
said however, that ANOVA results for analyses with one independent variable
will not be affected by using a different coding scheme. The coding scheme
underlying an ANOVA only matters as soon as you have multiple independent
variables.

In previous chapters we learned how to read the output from an lm() analysis
when it is based on dummy coding. In the current subsection we saw how to
figure out what the numbers in the output represent in case of effects coding.
Now we will look at a number of other alternatives of coding categorical
variables, after which we will look into how to make user-specified contrasts,
that help you answer your own particular research question.

10.8.2 Helmert contrasts

One other well-known coding scheme is a Helmert coding scheme. We can
specify we want Helmert contrasts for the nationality variable if we code the
following

contrasts(bloodpressure$nationality) <- code_helmert
contrasts(bloodpressure$nationality) %>% fractions()

## H2 H3
## Dutch -1/2 -1/3

357



## German 1/2 -1/3
## Italian 0 2/3

The first column indicates how the first new variable is coded (Dutch as − 1
2 ,

Germans as 1
2 and Italians as 0), and the second column indicates a new variable

with − 1
3 for Germans and Dutch, and 2

3 for Italians. By default another variable
is computed as 1s for all groups, representing some kind of intercept.
If we do the same trick to this matrix as before, by adding a column of 1s and
then using ginv(), we get the following weights for the contrasts that we are
quantifying this way

S <- cbind(1, contrasts(bloodpressure$nationality))
L <- ginv(S)
L %>% fractions()

## [,1] [,2] [,3]
## [1,] 1/3 1/3 1/3
## [2,] -1 1 0
## [3,] -1/2 -1/2 1

Again each row gives the weights for the contrasts that are computed. Similar
as with effects coding, the first contrast represents the grand mean (the mean
of the group means):

𝐿1 ∶ 𝑀𝐷𝑢𝑡𝑐ℎ + 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛
3

The second row represents the difference between German and Dutch means:

𝐿2 ∶ −1 × 𝑀𝐷𝑢𝑡𝑐ℎ + 1 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 0 × 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛 = 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 − 𝑀𝐷𝑢𝑡𝑐ℎ

and the third row represents the difference between the Italian mean on the one
hand, and the Dutch and German means combined.

−1
2 × 𝑀𝐷𝑢𝑡𝑐ℎ − 1

2 × 𝑀𝐺𝑒𝑟𝑚𝑎𝑛 + 1 × 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛 = 𝑀𝐼𝑡𝑎𝑙𝑖𝑎𝑛 − 𝑀𝐷𝑢𝑡𝑐ℎ + 𝑀𝐺𝑒𝑟𝑚𝑎𝑛
2

In general, with a Helmert coding scheme (1) the first group is compared to
the second group, (2) the first and second group combined is compared to the
third group, (3) the first, second and third group combined is compared to the
fourth group, and so on. Let’s imagine we have a country factor variable with
five levels. Let’s then indicate that we want to have Helmert contrasts.
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country <- c("A", "B", "C", "D", "E") %>% as.factor()
contrasts(country) <- code_helmert
contrasts(country)

## H2 H3 H4 H5
## A -0.5 -0.3333333 -0.25 -0.2
## B 0.5 -0.3333333 -0.25 -0.2
## C 0.0 0.6666667 -0.25 -0.2
## D 0.0 0.0000000 0.75 -0.2
## E 0.0 0.0000000 0.00 0.8

then we do the trick to get the rows with the contrasts weights

S <- cbind(1, contrasts(country))
L <- ginv(S)
L %>% fractions() # to make it easier to read

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1/5 1/5 1/5 1/5 1/5
## [2,] -1 1 0 0 0
## [3,] -1/2 -1/2 1 0 0
## [4,] -1/3 -1/3 -1/3 1 0
## [5,] -1/4 -1/4 -1/4 -1/4 1

Then we see that the first contrast is the general mean. The second row is a
comparison between A and B, the third one a comparison between (A+B)/2
and C, the fourth one a comparison between (A+B+C)/3 and D, and the fifth
one a comparison between (A+B+C+D)/4 with E. To put it differently, the
Helmert contrasts compare each level with the average of the ‘preceding’ levels.
Thus, we can compare categories of a variable with the mean of the preceding
categories of the variable.
You can also choose to go the other way around. If we use the function
code_helmert_forward instead of code_helmert

contrasts(country) <- code_helmert_forward
S <- cbind(1, contrasts(country))
L <- ginv(S)
L %>% fractions() # to make it easier to read

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1/5 1/5 1/5 1/5 1/5
## [2,] 1 -1/4 -1/4 -1/4 -1/4
## [3,] 0 1 -1/3 -1/3 -1/3
## [4,] 0 0 1 -1/2 -1/2
## [5,] 0 0 0 1 -1
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you see that we go ‘forward’: after the general mean, we see that country A
is compared to (B+C+D+E)/4, then country B is compared to (C+D+E)/3;
next, country C is compared to (D + E)/2 and lastly D is compared to E. This
forward type of Helmert coding is usually the default Helmert coding in other
statistical packages.

Helmert contrasts are useful when you have a particular logic for ordering the
levels of a categorical variable (i.e. if you have an ordinal variable). An example
where a Helmert contrast might be useful is when you want to know the minimal
effective dose in a dose-response study. Suppose we have a new medicine and we
want to know how much of it is needed to end a headache. We split individuals
with headache into four groups. In group A, people take a placebo pill, in group
B people take 1 tablet of the new medicine, in group C people take 3 tablets,
and in group D people take 4 tablets. In the data analysis, we first want to
establish whether 1 tablet leads to a significant reduction compared to placebo.
If that is not the case, we can test whether 3 tablets (group C) work better than
either 1 tablet or no tablet (groups A and B combined). If that doesn’t show
a significant improvement either, we may want to compare 6 tablets (group D)
versus fewer tablets (groups A, B and C combined).

There are a couple of other standard options in R for coding your variables.
Successive differences contrast coding is also an option for meaningfully ordered
categories. It compares the second level with the first level, the third level with
the second level, the fourth level with the third level, and so on. The function
to be used is code_diff (available in the codingMatrices package). It could
be a useful alternative to Helmert coding for a dose-response study. Other
alternatives are given in Table 10.7.
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Table 10.7: Contrast options available in the ‘codingMatrices‘ package.

option description
code_control For contrasts that compare the group means

(the ’treatments’) with the first class mean
(the reference group).

code_control_last Similar to ’code_control’, but using the final
class mean as the reference group

code_diff The contrasts are the successive differences of
the treatment means, e.g. group 2 - group 1,
group 3 - group 2, etc.

code_diff_forward Very similar to ’code_diff’, but using forward
differences: group 1 vs group 2, group 2 -
group 3, etc.

code_helmert The contrasts now compare each group mean,
starting from the second, with the average of
all group previous group means.

code_helmert_forward Similar to code_helmert, but comparing each
class mean, up to the second last, with the
average of all class means coming after it.

code_deviation Effect coding or sum-to-zero coding. A more
precise description might be to say that the
contrasts are the deviations of each group
mean from the average of the other ones. To
avoid redundancy, the last deviation is
omitted.

code_deviation_first Very similar to code_deviation, but omitting
the first deviation to avoid redundancy rather
than the last.

code_poly For polynomial contrasts. When you are
interested in linear, quadratic, and cubic
effects of different treatment levels.
(advanced)

contr.diff Very similar in effect to ’code_diff’, yielding
the same differences as the contrasts, but
using the first group mean as the intercept
rather than the simple average of the
remaining class means, as with ’code_diff’.
Some would regard this as making it
unsuitable for use in some non-standard
ANOVA tables, so use with care.
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Overview

Pre-set coding schemes in R using the codingMatrices package

1) Default is dummy coding (referring to the coding scheme S),
also called treatments contrasts (referring to matrix L). R can
compute this coding scheme matrix by using code_control. With
this coding, the first level of the factor variable is used as the
reference group. Alternatively, with code_control_last, dummy
coding is used with the last level of the factor variable as the
reference group.

2) For ANOVAs, generally sum-to-zero coding is used, also called
effects coding. R can compute the coding scheme matrix using
code_deviation. It is the same as contr.sum in the lm()
function.

3) For categories that are ordered meaningfully, Helmert contrasts
are often used. R can compute the coding scheme matrix using
code_helmert. Another option is successive differences contrast
coding, using code_diff or code_diff_forward.

10.9 Custom-made contrasts

Sometimes, the standard contrasts available in the codingMatrices package
are not what you are looking for. In this section we will look at a situation
where we have more elaborate research questions that we can only answer with
special, tailor-made contrasts. We will give an example of a data set with ten
groups.

Thus far, we’ve seen different ways of specifying contrasts and in each case,
the number of contrasts was equal to the number of categories. In the two-
category dummy coding examples, you saw two categories and the output shows
an intercept (contrast 1) and a slope (contrast 2). In the three-category dummy
example, we saw an intercept for one category (the reference group), one slope
for the second category vs. the first category and one slope for the third category
vs. the first category. In the Helmert example, we saw the same thing: for three
categories and Helmert coding, we saw one general mean (the intercept), then
the difference between group 2 and 1, and then the difference between group
3 on the one hand and group 1 and 2 combined on the other hand. Thus in
general we state that if we run a model for a variable with 𝐽 categories, we
see 𝐽 parameters in the output (including the intercept). We will not go into
the details here but it is paramount that even when you have fewer than 𝐽
questions, you should still have 𝐽 contrasts in your analysis. We will illustrate
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Table 10.8: Overview of the grapes used in a wine tasting study.

Wine_ID grape origin colour
1 Cabernet Sauvignon French Red
2 Merlot French Red
3 Airén Spanish White
4 Tempranillo Spanish Red
5 Chardonnay French White
6 Syrah (Shiraz) French Red
7 Garnacha (Garnache) Spanish Red
8 Sauvignon Blanc French White
9 Trebbiano Toscana (Ugni Blanc) Italian White
10 Pinot Noir French Red

Table 10.9: Part of the wine tasting data.

winetasterID Wine_ID grape origin rating
1 9 Trebbiano Toscana (Ugni Blanc) Italian 20
2 8 Sauvignon Blanc French 8
3 8 Sauvignon Blanc French 27
4 1 Cabernet Sauvignon French 70
5 9 Trebbiano Toscana (Ugni Blanc) Italian 32

this principle here. In this section we show you an example where it can be
very helpful to take full control over the contrasts that R computes for you, but
where we must make sure that the number of parameters in the output matches
the total number of categories.

Suppose you do a wine tasting study, where you have ten different wines, each
made from one of ten different grapes, and each evaluated by one of ten different
groups of people. Each person tastes only one wine and gives a score between 1
(worst quality imaginable) and 100 (best quality imaginable). Table 10.8 gives
an overview of the ten wines made from ten different grapes.

The units of this research are the people that taste the wine. The kind of wine
is a grouping variable: some people taste the Sauvignon Blanc, whereas other
people taste the Pinot Noir. Table 10.9 shows a small part of the data.

Suppose we would like to answer the following research questions:

1. How large is the difference in quality experienced between the red and the
white wines?

2. How large is the difference in quality experienced between French origin
and Spanish origin grapes?

363



3. How large is the difference in quality experienced between the Italian origin
grapes and the other two origins?

Note that these three questions can be conceived as three contrasts for the wine
tasting data, whereas the grouping variable has ten categories. We will come
back to this issue later.

We address these three research questions by translating them into three
contrasts for the factor variable Wine_ID. Suppose that the ordering of the
grapes is similar to above, where Cabernet Sauvignon is the first level, Merlot
is the second level, etc.

Contrast 𝐿1 is about the difference between the mean of 6 red wine grapes and
the mean of 4 white wine grapes:

𝐿1 ∶ 𝑀1 + 𝑀2 + 𝑀4 + 𝑀6 + 𝑀7 + 𝑀10
6 − 𝑀3 + 𝑀5 + 𝑀8 + 𝑀9

4
This is equivalent to:

𝐿1 ∶ 1
6𝑀1 + 1

6𝑀2 − 1
4𝑀3 + 1

6𝑀4 − 1
4𝑀5 + 1

6𝑀6 + 1
6𝑀7 − 1

4𝑀8 − 1
4𝑀9 + 1

6𝑀10

We can store this contrast for the variable grape as row vector

[ 1
6

1
6 − 1

4
1
6 − 1

4
1
6

1
6 − 1

4 − 1
4

1
6 ]

The second question can be answered by the following contrast where we have
the mean of the 6 French mean ratings minus the mean of the 3 Spanish mean
ratings:

𝐿2 ∶ 𝑀1 + 𝑀2 + 𝑀5 + 𝑀6 + 𝑀8 + 𝑀10
6 − 𝑀3 + 𝑀4 + 𝑀7

3
This is equivalent to

𝐿2 ∶ 1
6𝑀1 + 1

6𝑀2 − 1
3𝑀3 − 1

3𝑀4 + 1
6𝑀5 + 1

6𝑀6 − 1
3𝑀7 + 1

6𝑀8 + 0 × 𝑀9 + 1
6𝑀10

We can store this contrast for the variable grape as row vector

[ 1
6

1
6 − 1

3 − 1
3

1
6

1
6 − 1

3
1
6 0 1

6 ]

The third question can be stated as the contrast
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𝐿3 ∶ 𝑀9 −
( 𝑀1+𝑀2+𝑀5+𝑀6+𝑀8+𝑀10

6 + 𝑀3+𝑀4+𝑀7
3 )

2
In other words, we take the grand mean for the 6 French wines, the grand mean
of the 3 Spanish wines, and take the average of these two grand means. We
then contrast this grand mean with the mean rating of the single Italian wine.
This contrast is equivalent to

𝐿3 ∶ − 1
12𝑀1− 1

12𝑀2−1
6𝑀3−1

6𝑀4− 1
12𝑀5− 1

12𝑀6−1
6𝑀7− 1

12𝑀8+1×𝑀9− 1
12𝑀10

and can be stored in row vector

[− 1
12 − 1

12 − 1
6 − 1

6 − 1
12 − 1

12 − 1
6 − 1

12 1 − 1
12 ]

Combining the three row vectors, you get the contrast matrix L

L = ⎡⎢
⎣

1
6

1
6 − 1

4
1
6 − 1

4
1
6

1
6 − 1

4 − 1
4

1
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6
1
6 − 1

3 − 1
3

1
6

1
6 − 1

3
1
6 0 1

6
− 1

12 − 1
12 − 1

6 − 1
6 − 1

12 − 1
12 − 1

6 − 1
12 1 − 1

12

⎤⎥
⎦

We can enter this matrix L in R, and then compute the inverse:

l1 <- c(1/6, 1/6, -1/4, 1/6, -1/4, 1/6, 1/6, -1/4, -1/4, 1/6)
l2 <- c(1/6, 1/6, -1/3, -1/3, 1/6, 1/6, -1/3, 1/6, 0, 1/6)
l3 <- c(-1/12, -1/12, -1/6, -1/6, -1/12, -1/12, -1/6, -1/12, 1, -1/12)

L <- rbind(l1, l2, l3) # bind the rows together
L %>% fractions()

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## l1 1/6 1/6 -1/4 1/6 -1/4 1/6 1/6 -1/4 -1/4 1/6
## l2 1/6 1/6 -1/3 -1/3 1/6 1/6 -1/3 1/6 0 1/6
## l3 -1/12 -1/12 -1/6 -1/6 -1/12 -1/12 -1/6 -1/12 1 -1/12

S <- ginv(L) # compute the inverse
S

## [,1] [,2] [,3]
## [1,] 4.000000e-01 0.3333333 -2.193395e-17
## [2,] 4.000000e-01 0.3333333 -8.707943e-20
## [3,] -8.000000e-01 -0.6166667 -3.000000e-01
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## [4,] 4.000000e-01 -0.6666667 -2.841861e-17
## [5,] -8.000000e-01 0.3833333 -3.000000e-01
## [6,] 4.000000e-01 0.3333333 -4.437680e-17
## [7,] 4.000000e-01 -0.6666667 -2.841861e-17
## [8,] -8.000000e-01 0.3833333 -3.000000e-01
## [9,] 1.164701e-17 -0.1500000 9.000000e-01
## [10,] 4.000000e-01 0.3333333 -4.437680e-17

Note that we have three new variables to be computed. An intercept is missing,
but R will include that by default when running a linear model.

Let’s invent some data and submit that to R.

# inventing two ratings for each of the 10 wines
winedata <- tibble(rating = c(70,88,81,25,59,2,93,27,32,23,13,21,8,7,76,5,57,8,20,96),

Wine_ID = rep(1:10, 2) %>% as.factor(),
grape = c("Cabernet Sauvignon",

"Merlot",
"Airén",
"Tempranillo",
"Chardonnay",
"Syrah (Shiraz)",
"Garnacha (Garnache)",
"Sauvignon Blanc",
"Trebbiano Toscana (Ugni Blanc)",
"Pinot Noir") %>% rep(2),

colour = factor(c(1, 1, 2, 1, 2, 1, 1, 2, 2, 1),
labels = c("Red", "White")) %>% rep(2),

origin = factor(c(1, 1, 3, 3, 1, 1, 3, 1, 2, 1),
labels = c("French", "Italian", "Spanish")) %>% rep(2))

Let’s look at the group means per grape:

winedata %>%
group_by(grape) %>%
summarise(mean = mean(rating))

## # A tibble: 10 x 2
## grape mean
## <chr> <dbl>
## 1 Airén 44.5
## 2 Cabernet Sauvignon 41.5
## 3 Chardonnay 67.5
## 4 Garnacha (Garnache) 75
## 5 Merlot 54.5
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## 6 Pinot Noir 59.5
## 7 Sauvignon Blanc 17.5
## 8 Syrah (Shiraz) 3.5
## 9 Tempranillo 16
## 10 Trebbiano Toscana (Ugni Blanc) 26

For the first research question, we want to estimate the difference in mean rating
between the red wines and the white wines.

If we look at the means and compute this difference by hand, by calculating the
grand means for red and white wines separately and take the difference, we get
41.7 − 38.9 = 2.8.
It is a bit tiresome and error prone to compute things by hand, while we have
such a great computing device as R available to us. Alternatively therefore we
can compute this by simply taking the weighted sum of all the means, with
the weights from the first contrast 𝐿1. In R this is easy: we take the vector of
means for the 10 different groups and piecewise multiply them by the 𝐿1 contrast
weights that we have in l1, and then sum them (in algebra this is called the
inner product, if that rings any bell). It’s exactly the same as computing the
weighted sum of the means.

# compute the sample means for each level of the Wine_ID variable
means <- winedata %>%
group_by(Wine_ID) %>% # for each level of the Wine_ID factor
summarise(mean = mean(rating)) %>% # compute the mean per level
dplyr::select(mean) %>% # select only the column of the means
as_vector() # turn the column into a vector

means

## mean1 mean2 mean3 mean4 mean5 mean6 mean7 mean8 mean9 mean10
## 41.5 54.5 44.5 16.0 67.5 3.5 75.0 17.5 26.0 59.5

l1 %*% means # take a weighted sum of the group means

## [,1]
## [1,] 2.791667

The difference between the grand means of the French and Spanish wine grapes
(research question 2) can be computed by using the weights for contrast 𝐿2:

l2 %*% means

## [,1]
## [1,] -4.5

367



We see that the difference between the French and Spanish grand means equals
−4.5.
The third question was about the Italian mean versus the mean of the grand
means of the French and Spanish wines. if we take the weights from contrast
𝐿3 we get

l3 %*% means

## [,1]
## [1,] -16.91667

The output tells us that the difference in rating of the Italian wines and the
other wines combined equals −16.9.
If we want to have information about these differences in the population, such
as standard errors, confidence intervals and null-hypothesis testing, R needs the
coding scheme matrix and run the linear model. We can do that by providing
the S matrix for the relevant factor in the analysis.

First we need to assign matrix S to the variable Wine_ID. Now pay close
attention. Remember that S contained 3 variables, one for each of the research
questions.

S %>% fractions()

## [,1] [,2] [,3]
## [1,] 2/5 1/3 0
## [2,] 2/5 1/3 0
## [3,] -4/5 -37/60 -3/10
## [4,] 2/5 -2/3 0
## [5,] -4/5 23/60 -3/10
## [6,] 2/5 1/3 0
## [7,] 2/5 -2/3 0
## [8,] -4/5 23/60 -3/10
## [9,] 0 -3/20 9/10
## [10,] 2/5 1/3 0

contrasts(winedata$Wine_ID) <- S

But now look at the variable winedata$Wine_ID:

contrasts(winedata$Wine_ID)
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## [,1] [,2] [,3] [,4] [,5]
## 1 4.000000e-01 0.3333333 -2.193395e-17 -4.655128e-01 -3.703222e-01
## 2 4.000000e-01 0.3333333 -8.707943e-20 5.080988e-01 -2.142072e-01
## 3 -8.000000e-01 -0.6166667 -3.000000e-01 -7.710846e-02 1.500931e-01
## 4 4.000000e-01 -0.6666667 -2.841861e-17 -1.657550e-02 -1.073408e-01
## 5 -8.000000e-01 0.3833333 -3.000000e-01 5.385542e-01 -7.504653e-02
## 6 4.000000e-01 0.3333333 -4.437680e-17 -5.984724e-02 8.673112e-01
## 7 4.000000e-01 -0.6666667 -2.841861e-17 9.368396e-02 -4.275228e-02
## 8 -8.000000e-01 0.3833333 -3.000000e-01 -4.614458e-01 -7.504653e-02
## 9 1.164701e-17 -0.1500000 9.000000e-01 3.459485e-17 3.538807e-18
## 10 4.000000e-01 0.3333333 -4.437680e-17 -5.984724e-02 -1.326888e-01
## [,6] [,7] [,8] [,9]
## 1 -7.677688e-02 -4.655128e-01 -2.533806e-01 -3.703222e-01
## 2 -3.116414e-01 5.080988e-01 -2.693679e-01 -2.142072e-01
## 3 -4.077412e-01 -7.710846e-02 -4.703661e-01 1.500931e-01
## 4 -3.273038e-01 -1.657550e-02 6.931016e-01 -1.073408e-01
## 5 2.038706e-01 -4.614458e-01 2.351831e-01 -7.504653e-02
## 6 -9.661462e-03 -5.984724e-02 2.619120e-02 -1.326888e-01
## 7 7.350450e-01 9.368396e-02 -2.227354e-01 -4.275228e-02
## 8 2.038706e-01 5.385542e-01 2.351831e-01 -7.504653e-02
## 9 1.590885e-17 -1.439127e-17 9.098508e-17 1.741659e-17
## 10 -9.661462e-03 -5.984724e-02 2.619120e-02 8.673112e-01

It seems that R automatically added six other columns. The total number of
columns is now nine, and if we run a linear model together with an intercept
we will see ten parameters in our linear model output.

We tell R to run a linear model, with rating as the dependent variable,
Wine_ID as the independent variable, where the coding scheme matrix is the
new coding scheme matrix.

winedata %>%
lm(rating ~ Wine_ID, data = .) %>%
tidy(conf.int = TRUE)

## # A tibble: 10 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 40.5 7.21 5.62 0.000221 24.5 56.6
## 2 Wine_ID1 2.79 14.7 0.190 0.853 -30.0 35.6
## 3 Wine_ID2 -4.50 16.1 -0.279 0.786 -40.4 31.4
## 4 Wine_ID3 -16.9 24.2 -0.699 0.500 -70.8 37.0
## 5 Wine_ID4 36.2 22.8 1.59 0.144 -14.6 87.0
## 6 Wine_ID5 -36.5 22.8 -1.60 0.140 -87.4 14.3
## 7 Wine_ID6 28.3 22.8 1.24 0.243 -22.5 79.1
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## 8 Wine_ID7 -13.8 22.8 -0.604 0.559 -64.6 37.0
## 9 Wine_ID8 -30.1 22.8 -1.32 0.216 -80.9 20.7
## 10 Wine_ID9 19.5 22.8 0.854 0.413 -31.4 70.3

In the output we see ten different parameters. The first (intercept) we can ignore
as it has no research question associated with it. The next three parameters do
have research questions associated with them.

We see the values of 2.79 for research question 1, -4.50 for research question
2 and -16.9 for research question 3, similar to what we found by looking at
the inner products (verify this for yourself). This check tells us that we have
indeed computed the contrasts that we wanted to compute. In addition to these
estimates for the contrasts, we see standard errors, null-hypothesis tests and 95%
confidence intervals for these contrasts. We can ignore all other parameters
(Wine_ID4 thru Wine_ID_ID9): these are only there to make sure that we have
as many parameters as we have categories, so that the residual error variance is
computed correctly.

Note that also the intercept was included automatically. In order to see what it
represents, we can add this intercept of 1s to S and take the inverse to obtain
the contrast matrix

cbind(1, contrasts(winedata$Wine_ID)) %>% ginv()

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 0.10000000 0.10000000 0.10000000 0.1000000 0.10000000 0.100000000
## [2,] 0.16666667 0.16666667 -0.25000000 0.1666667 -0.25000000 0.166666667
## [3,] 0.16666667 0.16666667 -0.33333333 -0.3333333 0.16666667 0.166666667
## [4,] -0.08333333 -0.08333333 -0.16666667 -0.1666667 -0.08333333 -0.083333333
## [5,] -0.46551281 0.50809884 -0.07710846 -0.0165755 0.53855423 -0.059847243
## [6,] -0.37032217 -0.21420722 0.15009306 -0.1073408 -0.07504653 0.867311224
## [7,] -0.07677688 -0.31164140 -0.40774121 -0.3273038 0.20387060 -0.009661462
## [8,] -0.46551281 0.50809884 -0.07710846 -0.0165755 -0.46144577 -0.059847243
## [9,] -0.25338058 -0.26936792 -0.47036610 0.6931016 0.23518305 0.026191197
## [10,] -0.37032217 -0.21420722 0.15009306 -0.1073408 -0.07504653 -0.132688776
## [,7] [,8] [,9] [,10]
## [1,] 0.10000000 0.10000000 1.000000e-01 0.100000000
## [2,] 0.16666667 -0.25000000 -2.500000e-01 0.166666667
## [3,] -0.33333333 0.16666667 -5.620379e-18 0.166666667
## [4,] -0.16666667 -0.08333333 1.000000e+00 -0.083333333
## [5,] 0.09368396 -0.46144577 -1.629503e-17 -0.059847243
## [6,] -0.04275228 -0.07504653 1.186856e-17 -0.132688776
## [7,] 0.73504500 0.20387060 -7.619694e-17 -0.009661462
## [8,] 0.09368396 0.53855423 7.997995e-18 -0.059847243
## [9,] -0.22273545 0.23518305 1.209841e-16 0.026191197
## [10,] -0.04275228 -0.07504653 3.908467e-17 0.867311224
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We see that the first row yields the grand mean over all 10 wines:

1
10𝑀1 + 1

10𝑀2 + 1
10𝑀3 + 1

10𝑀4 + 1
10𝑀5 + 1

10𝑀6 + 1
10𝑀7 + 1

10𝑀8 + 1
10𝑀9 + 1

10𝑀10

= 𝑀1 + 𝑀2 + 𝑀3 + 𝑀4 + 𝑀5 + 𝑀6 + 𝑀7 + 𝑀8 + 𝑀9 + 𝑀10
10

You may ignore this value in the output, if it is not of interest.

Overview

User-defined contrasts in an lm() analysis

1) Check the order of your levels using levels().
2) Specify your contrast row vectors and combine them into a matrix

L.
3) Have R compute matrix S, the inverse of matrix L, using ginv()

from the MASS package.
4) Assign the matrix S to the grouping variable, so something like

contrasts(data$variable) <- S.
5) Run the linear model.
6) R will automatically generate an intercept. Its value in the output

will often be the grand mean. The remaining parameters are
estimates for your contrasts in L. If the number of rows in L
is smaller than the number of categories, R will automatically
add extra columns in the actual coding scheme matrix. The
parameters for these columns in the output can be ignored.

10.10 Contrasts in the case of two categorical
variables

Up till now we only discussed situations with one categorical independent
variable in your data analysis. Here we discuss the situation where we
have two independent variables. We start with two categorical independent
variables. The next section will discuss the situation with one numerical and
one categorical independent variable.
Specifying contrasts for two categorical variables is a straightforward extension
of what we saw earlier. For each categorical variable, you can specify what
contrasts you would like to have in the output.
Let’s have a look at a data set called jobsatisfaction to see how that is done
practically. The dataframe is part of the package datarium (don’t forget to
install that package, if you haven’t already).
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data("jobsatisfaction", package = "datarium")

jobsatisfaction %>%
glimpse()

## Rows: 58
## Columns: 4
## $ id <fct> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,~
## $ gender <fct> male, male, male, male, male, male, male, male, male, ~
## $ education_level <fct> school, school, school, school, school, school, school~
## $ score <dbl> 5.51, 5.65, 5.07, 5.51, 5.94, 5.80, 5.22, 5.36, 4.78, ~

We see one numeric variable score and three factor variables. Factors are always
stored with the categories in a certain order. Let’s have a look at the variable
gender.

jobsatisfaction$gender %>% levels()

## [1] "male" "female"

Variable gender has two levels, with “male” being the first. Note that the order
is not alphabetic, so it was clearly intended by the person who prepared this
dataframe for the males to be the first category.

The pre-specified coding matrix for this variable can also be inspected:

contrasts(jobsatisfaction$gender)

## female
## male 0
## female 1

We see that it is standard dummy coding (treatment coding) with a dummy
variable for being female, so that “male” will be the reference category if we
don’t change anything.

Let’s now look at the factor variable education_level.

jobsatisfaction$education_level %>% levels()

## [1] "school" "college" "university"
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Again, the ordering is not alphabetical, but in an ordered fashion from ‘lower’
to ‘higher’ education.

The coding scheme matrix shows standard dummy coding, with “school” being
the reference category.

contrasts(jobsatisfaction$education_level)

## college university
## school 0 0
## college 1 0
## university 0 1

Suppose we want to run a linear model where job satisfaction is predicted or
explained by gender and education level. For the gender effect, we are content
with the males forming the reference group, so we keep treatment coding. We
also are content with dummy coding for education_level with “school” being
the reference category.

# run linear model with gender and education_level
out1 <- jobsatisfaction %>%
lm(score ~ gender + education_level,

data = .)
out1 %>% tidy()

## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 5.66 0.164 34.6 1.66e-38
## 2 genderfemale -0.125 0.161 -0.777 4.41e- 1
## 3 education_levelcollege 0.757 0.198 3.82 3.47e- 4
## 4 education_leveluniversity 3.25 0.196 16.6 7.01e-23

In the output we see that job satisfaction scores are on average 0.125 points
lower in females than in males. Furthermore, we see that the contrast between
college and school (education_levelcollege) equals 0.757. That means that
job satisfaction scores in male college graduates are 0.757 higher than those
males with only high school. The contrast between university and school
(education_leveluniversity) shows that university graduates score 3.25
points higher on job satisfaction than school graduates. The intercept equals
5.66, meaning that the people that are in the reference group of male students,
graduated from school, score on average 5.66.

To check whether we are right in our interpretations, we can check the group
means.
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jobsatisfaction %>%
group_by(education_level, gender) %>%
summarise(mean = mean(score))

## `summarise()` has grouped output by 'education_level'. You can override using
## the `.groups` argument.

## # A tibble: 6 x 3
## # Groups: education_level [3]
## education_level gender mean
## <fct> <fct> <dbl>
## 1 school male 5.43
## 2 school female 5.74
## 3 college male 6.22
## 4 college female 6.46
## 5 university male 9.29
## 6 university female 8.41

To check interpretation of the intercept, we do

jobsatisfaction %>%
filter((gender == "male") & (education_level == "school")) %>% # only males with school
summarise(mean = mean(score)) # compute mean

## # A tibble: 1 x 1
## mean
## <dbl>
## 1 5.43

We see a slight discrepancy: the observed mean is not what the linear model
predicts!

The interpretation of the output that we just discussed and the predictions
that are made are only valid if the model is a good representation of the actual
situation in the population. In reality, there might be moderation: the effect of
gender might be moderated by education level. That is, the difference between
females and males may be different, depending on the education level. The
model with only two main effects assumes that the differences between females
and males is -0.125, regardless of education. If we want to know whether this
difference in gender is moderated by education, we need to look for interaction
effects. For that we need to include an interaction term in the model. We keep
the default treatment coding (dummy coding).
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out2 <- jobsatisfaction %>%
lm(score ~ gender + education_level + gender:education_level, data = .)

out2 %>% tidy(conf.int = TRUE)

## # A tibble: 6 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 5.43 0.183 29.6 3.26e-34 5.06 5.79
## 2 genderfemale 0.314 0.253 1.24 2.19e- 1 -0.193 0.821
## 3 education_levelcolle~ 0.797 0.259 3.07 3.37e- 3 0.276 1.32
## 4 education_levelunive~ 3.87 0.253 15.3 6.87e-21 3.36 4.37
## 5 genderfemale:educati~ -0.0747 0.357 -0.209 8.35e- 1 -0.792 0.643
## 6 genderfemale:educati~ -1.20 0.353 -3.40 1.29e- 3 -1.91 -0.493

Now we are only interested in whether the interaction term is different from
0. If we look at the out2 output, we see two interaction terms: one for the
extra gender effect in college students (compared to high school graduates), and
one for the extra gender effect in university graduates. In Chapter 9 we learned
that if we want to know whether the overall moderation is significant, we should
perform an analysis of variance.

library(car)
jobsatisfaction %>%
lm(score ~ gender + education_level + gender:education_level, data = .,

contrasts = list(gender = contr.sum, education_level = contr.sum)) %>%
Anova(type = 3)

## Anova Table (Type III tests)
##
## Response: score
## Sum Sq Df F value Pr(>F)
## (Intercept) 2774.84 1 9172.2752 < 2.2e-16 ***
## gender 0.18 1 0.5856 0.447601
## education_level 114.46 2 189.1724 < 2.2e-16 ***
## gender:education_level 4.44 2 7.3379 0.001559 **
## Residuals 15.73 52
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We compare the gender effect across three different education levels, so we
should see two degrees of freedom for the interaction term. The 𝐹 -value is more
than 1, and shows to be significant at the 0.05 level, 𝐹(2, 52) = 7.34, 𝑝 = .002.
We can therefore conclude that the gender effect is different, depending on
education level.
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Now this Anova() output and the lm() output only tell us that the gender
effect is different for different education levels: that the gender effect is -
0.07 larger in college graduates than in school graduates, and -1.20 larger in
university graduates, compared to school graduates. However, what if one
research question was to estimate the gender effect for various education levels?
That is, how large is the effect of gender in school graduates, how large is
the effect of gender in college graduates, and how large is the gender effect in
university graduates?

We should be able to get estimates for these quantities by working with the
various parameters in the output of the lm() analysis. For instance, the gender
effect in school graduates must be equal to parameter 2 (genderfemale). Since
the reference group is male school graduates, the genderfemale parameter gives
the difference with female school graduates. This parameter has a standard error
and we can ask for the confidence interval. But it is trickier when we want to
estimate the gender effect in college graduates and university graduates. On the
basis of the parameters in the model output, we could figure out the expected
gender effects in these groups, but we would not have information about the
standard errors and consequently the confidence intervals.

Mathematically, the standard error of a linear combination of parameters
depends on the standard errors of the original parameters and the extent
that the estimates are related to each other (correlated). But since most of
us are not mathematicians, we do not want to worry about that. We simply
ask R to do the necessary computations for us. We show you now how to
obtain standard errors and confidence intervals for the effect of one categorical
variable, given the level of an other categorical level.

We use the reghelper package (install it first). We first run the model with
the interaction effects included, and then use the function simple_slopes() on
the output of the model.

# using reghelper package
library(reghelper)

jobsatisfaction %>%
lm(score ~ gender + education_level + gender:education_level, data = .) %>%
simple_slopes(confint = TRUE,

ci.width = 0.95)

## gender education_level Test Estimate Std. Error 2.5% 97.5% t value
## 1 male sstest (college) 0.7967 0.2593 0.2764 1.3170 3.0726
## 2 male sstest (university) 3.8653 0.2527 3.3582 4.3724 15.2950
## 3 female sstest (college) 0.7220 0.2460 0.2284 1.2156 2.9352
## 4 female sstest (university) 2.6650 0.2460 2.1714 3.1586 10.8343
## 5 sstest school 0.3143 0.2527 -0.1928 0.8214 1.2438
## 6 sstest college 0.2397 0.2527 -0.2674 0.7468 0.9484
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## 7 sstest university -0.8860 0.2460 -1.3796 -0.3924 -3.6020
## df Pr(>|t|) Sig.
## 1 52 0.0033741 **
## 2 52 < 2.2e-16 ***
## 3 52 0.0049525 **
## 4 52 6.074e-15 ***
## 5 52 0.2191473
## 6 52 0.3473349
## 7 52 0.0007058 ***

In the output you see seven rows. In the first row, you see the effect of being a
college graduate (reference group is “school”), given that one is male. In other
words, in males we see that the difference between college graduates and school
graduates equals 0.7967, with standard error of 0.2593 and the 95% confidence
interval, and a null-hypothesis test.
We ignore the first four rows, because they are about the effects of
education_level given a particular value for gender (male or female).
Because we are interested in the effect of gender, given a certain level of
education level, we only inspect the last three lines. In lines 5, 6, and 7, we
see that the effect of gender equals 0.31 for school graduates, 0.24 for college
graduates and -0.89 for university graduates. The respective standard errors,
confidence intervals and null-hypothesis tests are also given. We can therefore
report:

”In a data set on job satisfaction, we estimated the gender effect
(females relative to males) at three levels of education: school,
college and university graduates. Results showed that in school
graduates, the gender difference was 0.314 (SE = 0.253, 95% CI:
-0.193, 0.821). In college graduates the difference was 0.240 (SE
= 0.253 , 95% CI: -0.267, 0.747) and in university graduates the
difference was -0.886 (SE = 0.246, 95% CI: -1.380, -0.392).”

Note that the general term “simple slopes” refers to the effects of one
independent variable on a dependent variable, given a certain value for an other
independent variable. Another term for this is “simple effects”. Such simple
effects can be studied when you have two categorical independent variables,
but also in situations with numeric independent variables, as we will see in the
next section.

10.11 Contrasts in the case of one categorical
variable and one numeric variable

Let’s return to the example in Chapter 9 where we analysed vocabulary as a
function of age and socio-economic status (SES). The dependent variable was
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Table 10.10: Example data set on vocabulary in children from country X.

childID SES age words
1 average 4 111
2 low 1 94
3 average 4 116
4 average 1 82
5 high 1 103
6 low 4 124

the number of words one knows. We looked for moderation of the effect of
age (numerical), by SES (categorical). In other words, we modelled a different
linear relationship between age and vocabulary, depending on SES. For this
chapter, we extend that example a bit, by introducing three levels of SES: low,
average and high.

Let’s suppose we want to know what the slopes are for each of the SES levels.
The data have the structure as in Table 10.10. In total the data came from 100
children, with one measurement per child.

Similar to the previous section, we ask what the effect is of one variable, given
a certain level of the second variable. The only difference now is that the
first variable is numeric, instead of categorical. Similar to the previous section
therefore, we can solve the problem in the following way.

We run a standard analysis, using dummy coding and look at the output, and
make sure that we understand the values in the output correctly. For that we
need to know the ordering of the levels and the coding scheme.

levels(data_words$SES) # verify level ordering

## NULL

data_words <- data_words %>%
mutate(SES = factor(SES)) # turn SES into a factor variable

levels(data_words$SES)

## [1] "average" "high" "low"

contrasts(data_words$SES) # verify dummy coding

## high low
## average 0 0
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## high 1 0
## low 0 1

out_words <- data_words %>%
lm(words ~ age + SES + age:SES, data = .) # run model with dummy coding

out_words %>% tidy()

## # A tibble: 6 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 87.0 4.95 17.6 1.90e-31
## 2 age 3.70 1.53 2.42 1.76e- 2
## 3 SEShigh 12.5 6.66 1.87 6.43e- 2
## 4 SESlow 8.81 7.12 1.24 2.19e- 1
## 5 age:SEShigh -4.04 2.04 -1.98 5.06e- 2
## 6 age:SESlow -1.85 2.19 -0.844 4.01e- 1

In Chapter 9 we learned how to read this output. We see that the “average”
SES group is the reference group. The effect of age for this group is equal to
3.70 (the slope).

Now let’s use the simple_slopes() function again to also see the effect of age
for the other SES groups.

library(reghelper)
data_words %>%
lm(words ~ age + SES + age:SES, data = .) %>%
simple_slopes(confint = TRUE,

ci.width = 0.95)

## age SES Test Estimate Std. Error 2.5% 97.5% t value df
## 1 1.803566 sstest (high) 5.1778 3.5549 -1.8805 12.2360 1.4565 94
## 2 1.803566 sstest (low) 5.4767 3.7220 -1.9134 12.8669 1.4714 94
## 3 3.03 sstest (high) 0.2204 2.5593 -4.8612 5.3020 0.0861 94
## 4 3.03 sstest (low) 3.2097 2.5773 -1.9076 8.3271 1.2454 94
## 5 4.256434 sstest (high) -4.7369 3.6048 -11.8942 2.4204 -1.3141 94
## 6 4.256434 sstest (low) 0.9427 3.7217 -6.4468 8.3322 0.2533 94
## 7 sstest average 3.6957 1.5297 0.6583 6.7330 2.4159 94
## 8 sstest high -0.3464 1.3511 -3.0290 2.3362 -0.2564 94
## 9 sstest low 1.8472 1.5662 -1.2626 4.9570 1.1794 94
## Pr(>|t|) Sig.
## 1 0.14858
## 2 0.14451
## 3 0.93155
## 4 0.21610
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## 5 0.19202
## 6 0.80059
## 7 0.01763 *
## 8 0.79820
## 9 0.24122

In the last three rows, we see the effects (slopes) of age given average, high or
low SES. Hence we can report:

”In a data set on the vocabulary size of 100 children of various ages,
we estimated the slope coefficient for the regression of number of
words on age in years at three levels of SES: low, average and high.
Results showed that in low SES children, the slope was 1.85 (SE =
1.57, 95% CI: -1.26, 4.96). In average SES children the slope was
3.70 (SE = 1.53, 95% CI: 0.66, 6.73) and in high SES children the
slope was -0.35 (SE = 1.35, 95% CI: -3.03, 2.34).”

Now that our research questions are answered, you may wonder how to interpret
the other six lines in the simple slopes output. For instance, in the first line,
we see the effect of having a high SES (relative to “average”), given a certain
value for age, namely 1.803566 years. In other words, for children of age 1.80
(almost two years old), we see that high SES children score 5.1778 points higher
on vocabulary than average SES children.

In the second line we see that in children of age 1.80, low SES children score
5.4767 points higher than average SES children.

In the next two lines (lines 3 and 4) we see other estimates for children of age
3.03, and in lines 5 and 6, we see the effects of SES in children of age 4.26.

These three values for age (1.80, 3.03 and 4.26) are selected by the function
simple_slopes() by computing the mean (3.03), subtracting the standard
deviation of the age variable from the mean (3.03 − 1.23 = 1.80), and by adding
the standard deviation to the mean (3.03 + 1.23 = 4.26, when rounding to two
decimals). This can be verified by getting some descriptive statistics for the age
variable.

data_words %>% summarise(mean = mean(age),
sd = sd(age))

## # A tibble: 1 x 2
## mean sd
## <dbl> <dbl>
## 1 3.03 1.23
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Because with a numeric variable, you do not have categories, but rather an
infinite number of possible values, we simply have to choose a couple of values
for which we study the effect of SES. You could say that we look at the effect of
SES, given three values for age: “relatively young” (1.80 years), “average” (3.03
years), and “relatively old” (4.26).

10.12 Why not simply partition the data in
subsets?

You may wonder, wouldn’t it be easier to divide the data into three parts? For
instance, in the previous section, we could divide the data into low, average and
high SES children, and then model the effect of age on words for each separate
group? Or in the section before that: divide the data into three data sets, one
for each level of education and then look for the difference between females and
males for every data set separately?

Well, you may be right that it would perhaps be simpler, but it would lead to
slightly different results. If we would cut up the data into three pieces, and do
three separate analyses, we would have fewer data points to base our conclusions
on. In each separate analysis, we would have three model parameters: one for
the intercept, one for the slope, but also one for the variance of the residuals.
This residual variance is used to compute the standard error of the intercept
and slope parameters. Therefore, if you cut up the data and do the analysis
on each part separately, you would end up with three different values for this
residual variance. If on the other hand, you carry out the analysis once using all
the data, and computing the contrasts, there is only one estimate of the residual
variance. And not only that: also the degrees of freedom is larger. It’s the total
sample size minus the number of parameters in the regression table. Together
with the calculated single residual variance, this affects the size of the standard
errors, and also the critical 𝑡-value for the confidence intervals. In general you
can expect more statistical power when using all the data at once, then when
doing separate analyses.

In general it is better to perform one analysis on your data, and to answer you
research questions using the results of that single analysis, rather than cutting
up the data and do separate analyses. Unless you have doubts that the residual
variance is the same for different groups (homoscedasticity, see Chapter 7), you
should use only one linear model.

10.13 Take-away points

• When analysing categorical variables in a linear model, the categorical
variable is represented by a new set of numeric variables.
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• These new variables can be dummy variables (default) but can also be
other types of numeric variables.

• How these numeric variables relate to the original categorical variable is
summarised in a coding matrix S.

• The coding matrix S determines what values are printed in the regression
table. These values are actually contrasts.

• Contrasts are weighted sums of group means. The contrasts are
represented in a contrast matrix L.

• Contrasts are meant to address specific research questions.

• Matrix L is the inverse of S, and S is the inverse of L.

• If your model involves moderation, you can calculate “simple effects” (or
“simple slopes”): the effects of one independent variable given particular
values of a second independent variable.

Key concepts

• Contrasts
• Weighted sum
• Linear combination
• Contrast matrix L
• Coding scheme matrix S
• Dummy coding/treatment coding
• Effect coding
• Helmert contrasts
• Successive differences contrast coding
• Simple effects (simple slopes)
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Chapter 11

Post-hoc comparisons

11.1 Introduction

Analysis of variance, as we have seen, can be used to test null-hypotheses about
overall effects of certain factors (categorical variable) or combinations of factors
(moderation). This is done with 𝐹 -test statistics, with degrees of freedom that
depend on the number of (combinations of) categories. The regression table,
with 𝑡-tests in the output, can be used to compute specific contrasts, either the
standard contrasts based on dummy coding, or contrasts based on alternative
coding schemes.

In the previous chapter, all alternatives for specifying contrasts have been
discussed in the context of specific research questions. It is important to make
a distinction here between research questions that are posed before the data
gathering and analysis, and research questions that pop up during the data
analysis. Research questions of the first kind we call a priori (“at the outset”)
questions, and questions of the second kind we call post hoc (“after the fact”)
questions.

We’ve seen that the whole data analysis approach for inference is based on
sampling distributions, for instance the sampling distribution of the 𝑡-statistic
given that a population value equals 0. We then look at what 𝑡-value can be
deemed large enough to reject the null-hypothesis (or to construct a confidence
interval). Such a critical 𝑡-value is chosen in a way that if the null-hypothesis is
true, it only happens in a low percentage of cases (𝛼) that we find a 𝑡-value more
extreme than this critical value. This helps us to reject the null-hypothesis: we
see something extreme that can’t be explained very well by the null-hypothesis.

However, if we look at a linear regression output table, we often see many 𝑡-
values: one for the intercept, several for slope coefficients, and if the model
includes moderation, we also may see several 𝑡-values for interaction effects.
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Every single 𝑡-value is based on a hypothesis that the null-hypothesis is true,
that is, that the actual parameter value (or contrast) is 0 in the population.
For every single 𝑡-test, we therefore know that if we would draw many many
samples, in only 𝛼% of the samples, we would find a 𝑡-value more extreme than
the critical value (given that the null-hypothesis is true). But if we have for
instance 6 different 𝑡-values in our output, how large is the probability that any
of these 6 different 𝑡-values is more extreme than than the critical value?

Let’s use a very simple example. Let’s assume we have a relatively large data
set, so that the 𝑡-distibution is very close to the normal distribution. When we
assume we use two-sided testing with an 𝛼 of 5%, we know that the critical
values for the null-hypothesis are −1.96 and 1.96. Imagine we have a dependent
variable 𝑌 and a categorical independent variable 𝑋 that consists of two levels,
A and B. If we run a standard linear model on those variables 𝑌 and 𝑋, using
dummy coding, we will see two parameters in the regression table: one for
reference level A (labelled “(Intercept)”), and one coefficient for the difference
between level B and A (labelled “XB”). Suppose that in reality, the population
values for these parameters are both 0. That would mean that the two group
means are equal to 0. When we do the research many times, drawing a large
sample and repeat taking new samples 100 times, how many times will the
intercept have a 𝑡-value more extreme than ±1.96? Well, by definition, that
frequency would be about 5, because we know that for the 𝑡-distribution, 5% of
this distribution has values more extreme than ±1.96. Thus, if the intercept is
truly 0 in the population, we will see a significant 𝑡-value in 5% of the samples.

The same is true for the second parameter “XB”: if this value is 0 in the
population, then we will see a significant 𝑡-value for this parameter in the output
in 5% of the samples.

Both of these events would be Type I errors: the kind of error that you make
when you reject the null-hypothesis while it is actually true (see Chapter 2).

For any given sample, there can be either no Type I error, or there is one Type
I error, of there are two Type I errors. Now, if the probability for a Type I error
is 5% for a significant value for “(Intercept)”, and the probability is 5% for a
type I error for “XB”, what then is the probability for at least one Type I error?

This is a question for probability theory. If we assume that the Type I errors for
the intercept and the slope are independent, we can use the binomial distribution
(Ch. 3) and know that the probability of finding no Type I errors equals

𝑃 (𝑒𝑟𝑟𝑜𝑟𝑠 = 0|𝛼 = 0.05) = (2
0) × 0.050 × (1 − 0.05)2 = 0.952 = 0.9025

[Note: In case you skipped Chapter 3, (4
2) is pronounced as “4 choose 2” and it

stands for the number of combinations of two elements that you can have when
you have four elements. For instance, if you have 4 letters A, B, C and D, then
there are 6 possible pairs: AB, AC, AD, BC, BD, and CD. The general case of
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(𝑎
𝑏) can be computed by R using choose (a, b). (2

0) is defined as 1 (there is
only one way in which neither of the 2 tests results in a Type I error.)]
Therefore, since probabilities sum to 1, we know that the probability of at least
one Type I error equals 1 − 0.9025 = 0.0975.
We see that when we look at two 𝑡-tests in one analysis, the probability of a
Type I error is no longer 5%, but almost twice that: 9.75%. This is under the
assumption that the 𝑡-tests are independent of each other, which is often not
the case. We will discuss what we mean with independent later. For now it
suffices to know that the more null-hypotheses you test, the higher the risk of a
Type I error.
For instance, if you have a categorical variable 𝑋 with not two, but ten different
groups, your regression output table will contain ten null-hypothesis tests: one
for the intercept (reference category) and nine tests for the difference between
the remaining groups and the reference group. In that case, the probability of
at least one Type I error, if you perform each test with an 𝛼 of 5%, will be

1 − 𝑃(𝑒𝑟𝑟𝑜𝑟𝑠 = 0|𝛼 = 0.05) = 1 − (10
0 ) × 0.050 × 0.9510 = 1 − 0.9510 = 0.4013

And all this is only in the situation that you stick to the default output of a
regression. Imagine that you not only test the difference between each group and
the reference group, but that you also make many other contrasts: difference
between group 2 and group 9, etcetera. If we would look at each possible pair
among these ten groups, there would be (10

2 ) = 144 contrasts and consequently
144 𝑡-tests. The probability of a Type I error will then be very close to 1, almost
certainty!
The problem is further complicated by the fact that tests for all these possible
pairs cannot be independent of each other. This is easy to see: If Jim is 5
centimetres taller than Sophie, and Sophie is 4 centimetres taller than Wendy,
we already know the difference in height between Jim and Sophie: 5 + 4 = 9
centimetres. In other words, if you want to know the contrast between Jim and
Wendy, you don’t need a new analysis: the answer is already there in the other
two contrasts. Such a dependence in the contrasts that you estimate can lead
to an even higher probability of a Type I error.
In order to get some grip on this dependence problem, we can use the so-called
Bonferroni inequality. In the context of null-hypothesis testing, this states that
the probability of at least one Type I error is less than or equal to 𝛼 times the
number of contrasts J. This is called the upper bound.

𝑃(𝑒𝑟𝑟𝑜𝑟𝑠 > 0) = 1 − 𝑃(𝑒𝑟𝑟𝑜𝑟𝑠 = 0) ≤ 𝐽𝛼

This inequality is true whether two contrast are heavily dependent (as in the
height example above) or only slightly, or not at all. For instance, if you have

385



two contrasts in your output (the intercept and the slope), the probability of at
least one Type I error equals 0.0975, but only if we assume these two contrasts
are independent. In contrasts, if the two contrasts are dependent, we can use
the Bonferroni inequality to know that the probability of at least one Type I
error is less than or equal to 0.05 × 2 = 0.10. Thus, if there is dependency we
know that the probability of at least one Type I error is at the most 0.10 (it
could be less bad).
Note that if 𝐽𝛼 > 1, then the upper bound is set equal to 1.
This Bonferroni upperbound can help us to take control over the overall
probability of making Type I errors. Here we make a distinction between
the test-wise Type I error rate, 𝛼𝑇 𝑊 , and the family-wise Type I error rate,
𝛼𝐹𝑊 . Here, 𝛼𝑇 𝑊 is the probability of a Type I error used for one individual
hypothesis test, and 𝛼𝐹𝑊 is the probability of at least one Type I error among
all tests performed. If we have a series of null-hypothesis tests, and if we want
to have an overall probability of at most 5% (i.e., 𝛼𝐹𝑊 = 0.05), then we should
set the level for any individual test 𝛼𝑇 𝑊 at 𝛼𝐹𝑊 /𝐽 . Then we know that the
probability of at least one error is 5% or less.
Note that what is true here for null-hypothesis testing is also true for the
calculation of confidence intervals. Also note that we should only look at output
for which we have research questions. Below we see an example of how to apply
these principles.

Example

We use the ChickWeight data available in R. It is a data set on the weight
of chicks over time, where the chicks are categorised into four different groups,
each on a different feeding regime. Suppose we do a study on diet in chicks
with one control group and three experimental groups. For each of these
three experimental groups, we want to estimate the difference with the control
condition (hence there are three research questions). We perform a regression
analysis with dummy coding with the control condition (Diet 3) as the reference
group to obtain these three contrasts. For the calculation of the confidence
intervals, we want to have a family-wise Type I error rate of 0.05. That means
that we need to have a test-wise Type I error rate of 0.05/3 = 0.0167. We
therefore need to compute 100 − 1.67 = 98.33% confidence intervals and we do
null-hypothesis testing where we reject the null-hypothesis if 𝑝 < 0.0167. The
R code would look something like the following:

ChickWeight <- ChickWeight %>%
mutate(Diet = relevel(Diet, ref = "3"))

model <- ChickWeight %>%
lm(weight ~ Diet, data =.)

model %>%
tidy(conf.int = TRUE, conf.level = 0.9833)
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## # A tibble: 4 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 143. 6.33 22.6 2.59e-81 128. 158.
## 2 Diet1 -40.3 7.87 -5.12 4.11e- 7 -59.2 -21.4
## 3 Diet2 -20.3 8.95 -2.27 2.35e- 2 -41.8 1.15
## 4 Diet4 -7.69 8.99 -0.855 3.93e- 1 -29.3 13.9

model$df

## [1] 574

In the output we see the three contrasts that we need to answer our research
questions. We can then report:

”We estimated the difference between each of the three experimental
diet with the control diet. In order to control the family-wise Type I
error rate and keep it below 5%, we used Bonferroni correction and
chose a test-wise significance level of 0.0167 and computed 98.3%
confidence intervals. The chicks on Diet 1 had a significantly lower
weight than the chicks in the control conditions (Diet 3, 𝑏 = −40.3,
𝑆𝐸 = 7.87, 𝑡(574) = −5.12, 𝑝 < .001, 98.33% CI: -59.2, -21.4).
The chicks on Diet 2 also had a lower weight than chicks on Diet
3, although the null-hypothesis could not be rejected (𝑏 = −20.3,
𝑆𝐸 = 8.95, 𝑡(574) = −2.27, 𝑝 = .024, 98.33% CI: -41.8, 1.15). The
chicks on Diet 4 also had a weight not significantly different from
chicks on Diet 3, (𝑏 = −7.69, 𝑆𝐸 = 8.99, 𝑡(574) = −0.855, 𝑝 = .039,
98.33% CI: -29.3, 13.9). ”

Note that we do not report on the Intercept. Since we had no research question
about the average weight of chicks on Diet 3, we ignore those results in the
regression table, and divide the desired family-wise error rate by 3 (and not 4).

As we said, there are two kinds of research questions: a priori questions and post
hoc questions. A priori questions are questions posed before the data collection.
Often they are the whole reason why data were collected in the first place. Post
hoc questions are questions posed during data analysis. When analysing data,
some findings may strike you and they inspire you to do some more analyses. In
order to explain the difference, let’s think of two different scenarios for analysing
the ChickWeight data.

In Scenario 1, researchers are interested in the relationship between the diet
and the weight of chicks. They see that in different farms, chicks show different
mean sizes, and they are also on different diets. The researchers suspect that
the weight differences are induced by the different diets, but they are not sure,
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because there are also many other differences between the farms (differences in
climate, chicken breed and daily regime). In order to control for these other
differences, the researchers pick one specific farm, they use one particular breed
of chicken, and assign the chicks randomly to one of four diets. They reason
that if they find differences between the four groups regarding weight, then diet
is the factor responsible for those differences. Thus, their research question is:
“Are there any differences in mean weight as a function of diet?” They run an
ANOVA and find the following results:

library(car)

## Loading required package: carData

##
## Attaching package: 'car'

## The following object is masked from 'package:dplyr':
##
## recode

## The following object is masked from 'package:purrr':
##
## some

ChickWeight %>%
lm(weight ~ Diet, data =.,

contrasts = list(Diet = contr.sum)) %>%
Anova(type = 3)

## Anova Table (Type III tests)
##
## Response: weight
## Sum Sq Df F value Pr(>F)
## (Intercept) 8538737 1 1776.65 < 2.2e-16 ***
## Diet 155863 3 10.81 6.433e-07 ***
## Residuals 2758693 574
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

They answer their (a priori) research question in the following way.

”We tested the null-hypothesis of equal mean weights in the four
diet groups at an alpha of 5%, and found that it could be rejected,
𝐹(3, 574), 𝑝 < .001. We conclude that diet does have an influence
on the mean weight in chicks.”
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When analysing the data more closely, they also look at the mean weights per
group.

ChickWeight %>%
group_by(Diet) %>%
summarise(mean = mean(weight))

## # A tibble: 4 x 2
## Diet mean
## <fct> <dbl>
## 1 3 143.
## 2 1 103.
## 3 2 123.
## 4 4 135.

They are struck by the relatively small difference in mean weight between Diet
4 and Diet 3. They are surprised because they know that one of them contains
a lot more protein than the other. They are therefore curious to see whether the
difference between Diet 4 and Diet 3 is actually significant. Moreover, they are
very keen on finding out which Diets are different from each other, and which
Diets are not different from each other. They decide to perform 6 additional
𝑡-tests: one for every possible pair of diets.

In this Scenario I, we see two kinds of research questions: the initial a priori
question was whether Diet affects weight, and they answer this question with
one F-test. The second question only arose during the analysis of the data.
They look at the means, see some kind of pattern and want to know whether all
means are different from each other. This follow-up question that arises during
data analysis is a post hoc question.

Let’s look at Scenario II. A group of researchers wonder whether they can get
chicks to grow more quickly using alternative diets. There is one diet, Diet 3,
that is used in most farms across the world. They browse through the scientific
literature and find three alternative diets. These alternative diets each have
a special ingredient that makes the researchers suspect that they might lead
to weight gain in chicks. The objective of their research is to estimate the
differences between these three alternative diets and the standard diet, Diet
3. They use one farm and one breed of chicken and assign chicks randomly to
one of the four diets. They perform the regression analysis with the dummy
coding and reference group Diet 3 as shown above, and find that the differences
between the three experimental diets and the standard diet are all negative:
they show slower growth rather than faster growth. They report the estimates,
the standard errors and the confidence intervals.

In general we can say that a priori questions can be answered with regular alphas
and confidence intervals. For instance, if you state that your Type I error rate
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𝛼 is set at 0.05, then you can use this 𝛼 = 0.05 also for all the individual tests
that you perform confidence intervals that you calculate. However, for post
hoc questions, where your questions are guided by the results that you see, you
should correct the test-wise error rate 𝛼𝑇 𝑊 in such a way that you control the
family-wise error rate 𝛼𝐹𝑊 .

Returning to the two scenarios, let’s look at the question whether Diet 4 differs
from Diet 3. In Scenario I, this is a post hoc question, where in total you have 6
post hoc questions. You should therefore do the hypothesis test with an alpha
of 0.05/6 = 0.0083, and/or compute a 99.17% confidence interval. In contrast,
in Scenario II, the same question about Diets 4 and 3 is an a priori question, and
can therefore be answered with an 𝛼 = 5% and/or a 95% confidence interval.

Summarising, for post hoc questions you adjust your test-wise type I error
rate, whereas you do not for a priori questions. The reason for this different
treatment has to do with the dependency in contrasts that we talked about
earlier. It also has to do with the fact that you only have a limited number
of model degrees of freedom. In the example of the ChickWeight data, we
have four groups, hence we can estimate only four contrasts. In the regression
analysis with dummy coding, we see one contrast for the intercept and then
three contrasts between the experimental groups and the reference group. Also
if we use Helmert contrasts, we will only obtain four estimates in the output.
This has to do with the dependency between contrasts: if you know that group
A has a mean of 5, group B differs from group A by +2 and group C differs
from group A by +3, you don’t need to estimate the difference between B and
C any more, because you know that based on these numbers, the difference can
only be +1. In other words, the contrast C to B totally depends on the contrast
A versus B and A versus C. The next section discusses the dependency problem
in more detail.

11.2 Independent (orthogonal) contrasts

Whether two contrasts are dependent is easily determined. Suppose we have
𝐽 independent samples (groups), each containing values from a population of
normally distributed values (assumption of normality). Each group is assumed
to come from a population with the same variance 𝜎2

𝑒 (assumption of equal
variance). For the moment also assume that the 𝐽 groups have an equal sample
size 𝑛. Any group 𝑗 will have a mean ̄𝑌𝑗. Now imagine two contrasts among these
means. The first contrast, 𝐿1, has the weights 𝑐1𝑗, and the second contrasts, 𝐿2,
has the weights 𝑐2𝑗. Then we know that contrasts 𝐿1 and 𝐿2 are independent if

𝐽
∑
𝑗=1

𝑐1𝑗𝑐2𝑗 = 0
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Thus, if you have 𝐽 independent samples (groups), each of size 𝑛, one can decide
if two contrasts are dependent by checking if the products of the weights sum
to zero:

𝑐11𝑐21 + 𝑐12𝑐22 + ⋯ + 𝑐1𝐽𝑐2𝐽 = 0

Another word for independent is orthogonal. Two contrasts are said to be
orthogonal if the two contrasts are independent. Let’s look at some examples for
a situation of four groups: one set of dependent contrasts and a set of orthogonal
contrasts. For the first example, we look at default dummy coding. For contrast
𝐿1, we estimate the mean of group 1. Hence

𝐿1 = [1 0 0 0]

Let contrast 𝐿2 be the contrast between group 2 and group 1:

𝐿2 = [−1 1 0 0]

If we calculate the products of the weights, we get:

∑
𝑗

𝑐1𝑗𝑐2𝑗 = 1 × −1 + 0 × 1 + 0 × 0 + 0 × 0 = −1

So we see that when we use dummy coding, the contrasts are not independent
(not orthogonal).

For the second example, we look at Helmert contrasts. Helmert contrasts are
independent (orthogonal). The Helmert contrast matrix for four groups looks
like

𝐿 =
⎡
⎢⎢
⎣

1
4

1
4

1
4

1
4

−1 1 0 0
− 1

2 − 1
2 1 0

− 1
3 − 1

3 − 1
3 1

⎤
⎥⎥
⎦

For the first two contrasts, we see that the product of the weights equals zero:

∑
𝑗

𝑐1𝑗𝑐2𝑗 = 1
4 × −1 + 1

4 × 1 + 1
4 × 0 + 1

4 × 0 = 0

Check for yourself and find that all four Helmert contrasts are independent of
each other.
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11.3 The number of independent contrasts is
limited

Earlier we saw that there is only so much information you can gain from a
data set. Once you have certain information, asking further questions leads to
answers that depend on the answers already available.

This dependency has a bearing on the number of orthogonal comparisons that
can be made with 𝐽 group means. Given 𝐽 independent sample means, there
can be, apart from the grand mean, no more than 𝐽 − 1 comparisons, without
them being dependent on each other. This means that if you have 𝐽 completely
independent contrasts for 𝐽 group means, it is impossible to find one more
comparison which is also orthogonal to the first 𝐽 ones.

This implies that if you ask more questions (i.e., ask for more contrasts) you
should tread carefully. If you ask more questions, the answers to your questions
will not be independent of each other (you are to some extent asking the same
thing twice).

As an example, earlier we saw that if you know that group B differs from group
A by +2 and group C differs from group A by -3, you don’t need to estimate the
difference between B and C any more, because you know that based on these
numbers, the difference can only be 5. In other words, the contrast C to B
totally depends on the contrasts A versus B and A versus C. You can also see
this in the contrast matrix for groups A, B and C below:

𝐿 =
⎡
⎢⎢
⎣

1 0 0
−1 1 0
−1 0 1
0 −1 1

⎤
⎥⎥
⎦

The last contrast is dependent both on the third and the second contrast.
Contrast 𝐿4 can be calculated as 𝐿3 − 𝐿2 by doing the calculation element-
wise:

[−1 0 1] − [−1 1 0] = [0 −1 1]

In other words, 𝐿4 is a linear combination (weighted sum) of 𝐿2 and 𝐿3: 𝐿4 =
1 × 𝐿3 − 1 × 𝐿2. Statistically therefore, contrast 𝐿4 is completely redundant
given the contrasts 𝐿2 and 𝐿3: it doesn’t provide any extra information.

It should however be clear that if you have a research question that can be
answered with contrast 𝐿4, it is perfectly valid to make this contrast. However,
you should realise that the number of independent research questions is limited.
It is a wise idea to limit the number of research questions to the number of
contrasts you can make: apart from the grand mean, you should make no more
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than 𝐽 − 1 comparisons (your regression table should have no more than 𝐽
parameters).
These contrasts that you specify belong to the a priori research question. Good
research has a limited number of precisely worded research questions that should
be answerable by a limited number of contrasts, usually 2 or 3, sometimes only
1. These can be answered by using the regular significance level. In social and
behavioural sciences, oftentimes 𝛼 for each individual test or confidence interval
equals 5%. However, the follow-up questions that arise only after the initial
data analysis (computing means, plotting the data, etc.), should however be
corrected to control the overall Type I error rate.

11.4 Fishing expeditions

Research and data analysis can sometimes be viewed as a fishing expedition.
Imagine you fish the high seas for herring. Given your experience and what
colleagues tell you (you browse the scientific literature, so to speak), you choose
a specific location where you expect a lot of herring. By choosing this location,
you maximise the probability of finding herring. This is analogous to the setting
up of a data collection scheme where you maximise the probability of finding a
statistically significant effect, or you maximise the precision of your estimates;
in other words, you maximise statistical power (see Chapter 5). However, while
fishing in that particular spot for herring, irrespective of whether you actually
find herring, you find a lot of other fish and seafood. This is all coincidence, as
you never planned to find these kinds of fish and seafood in your nets. The fact
that you find a crab in your nets, might seem very interesting, but it should
never be reported as if you were looking for that crab. You would have equally
regarded it interesting if you had found a lobster, or a seahorse, or a baseball
hat. You have to realise that it is pure random sampling error: you hang out
your nets, and just pick up what’s there by chance. In research it works the
same way: if you do a lot of statistical tests, or compute a large number of
confidence intervals, you’re bound to find something that seems interesting, but
is actually merely random noise due to sampling error. If the family-wise error
rate is large, say 60%, then you cannot tell your family and friends ashore that
the base-ball hat you found is very fascinating. Similarly, in research you have
to control the number of Type I errors by adjusting the test-wise error rate in
such a way that the family-wise error rate is low.

11.5 Several ways to define your post hoc
questions

One question that often arises when we find that a categorical variable has an
effect in an ANOVA, is to ask where this overall significant effect is coming
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from. For instance, we find that the four diets result in different mean weights
in the chicks. This was demonstrated with an 𝐹 -test at an 𝛼 of 5%. A follow-up
question might then be, what diets are different from each other. You might
then set up contrasts for all (4

2) = 6 possible pairs of the four diets.

Alternatively, you may specify your post hoc questions as simple or more
complex contrasts in the same way as for your a priori questions, but now
with no limit on how many. For instance, you may ask what alternative diets
are significantly different from the standard diet (Diet 3). The number of
comparisons is then limited to 3. Additionally, you might ask whether the
alternative diets combined (grand mean of diets 1, 2 and 4) are significantly
different from Diet 3.

Be aware, however, that the more comparisons you make, the more severe the
correction must be to control the family-wise Type I error rate.

The analyses for the questions that you answer by setting up the entire data
collection, and that are thus planned before the data collection (a priori), can
be called confirmatory analyses. You would like to confirm the workings of
an intervention, or you want to precisely estimate the size of a certain effect.
Preferably, the questions that you have are statistically independent of each
other, that is, the contrasts that you compute should preferably be orthogonal
(independent).

In contrast, the analyses that you do for questions that arise while analysing the
data (post hoc) are called exploratory analyses. You explore the data for any
interesting patterns. Usually, while exploring data, a couple of questions are not
statistically independent. Any interesting findings in these exploratory analyses
could then be followed up by confirmatory analyses using a new data collection
scheme, purposely set up to confirm the earlier findings. It is important to do
that with a new or different sample, since the finding could have resulted from
mere sampling error (i.e., a Type I error).

Also be aware of the immoral practice of 𝑝-hacking. 𝑃 -hacking, sometimes
referred to as selective reporting, is defining your research questions and setting
up your analysis (contrasts) in such a way that you have as many significant
results as possible. With p-hacking one presents their research in such a way
that they find all these interesting results, ignoring the fact that they made a
selection of the results based on what they saw in the data (post-hoc). For
instance, their research was set up to find evidence for the workings of medicine
A on the alleviation of migraine. Their study included a questionnaire on all
sorts of other complaints and daily activities, for the sake of completeness. When
analysing the results, they might find that the contrast between medicine A with
placebo is not significant for migraine. But when exploring the data further,
they find that medicine A was significantly better with regards to bloodpressure
and the number of walks in the park. A 𝑝-hacker would write up the research
as a study of the workings of medicine A on bloodpressure and walks in the
park. This form of 𝑝-hacking is called cherry-picking: only reporting statistically
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significant findings and pretending you never set out to find the other things
and not reporting them. Another 𝑝-hacking example would be to make a clever
selection of the migraine data after which the effect becomes significant, for
instance by filtering out the males in the study. Thus, 𝑝-hacking is the practice
of trying to select the data or choose the method of analysis in such a way that
the 𝑝-values in the report are as small as possible. The research questions are
then changed from exploratory to confirmatory, without informing the reader.

11.6 Controlling the family-wise Type I error
rate

There are several strategies that control the number of Type I errors. One is
the Bonferroni method, where we adjust the test-wise error rate by dividing the
family-wise error rate by the number of comparisons, 𝛼𝑇 𝑊 = 𝛼𝐹𝑊 /𝐽 . This
method is pretty conservative, in that the 𝛼𝑇 𝑊 becomes low with already a
couple of comparisons, so that the statistical power to spot differences that also
exist in the population becomes very low. The upside is that this method is
easy to understand and perform. Alternative ways of addressing the problem
are Scheffé’s procedure, and the Tukey HSD method. Of these two, Scheffé’s
procedure is also relatively conservative (i.e., little statistical power). The logic
of the Tukey HSD method is based on the probability that a difference between
two group means is more than a critical value, by chance alone. This critical
value is called Honestly Significant Difference (HSD). We fix the probability
of finding such a difference (or more) between the group means under the null-
hypothesis at 𝛼𝐹𝑊 . The details of the actual method will not be discussed here.
Interested readers may refer to Wikipedia and references therein.

11.7 Post-hoc analysis in R

In general, post hoc contrasts can be done in the same way as in the previous
chapter: specifying the contrasts in an L matrix, taking the inverse and assigning
the matrix to the variable in your model. Here, you are therefore limited to the
number of levels of a factor: you can only have 𝐽 − 1 new variables, apart
from the intercept of 1s. You can then adjust 𝛼 yourself using Bonferroni. For
instance if you want to have a family-wise type I error rate of 0.05, and you
look at two post-hoc contrasts, you can declare a contrast significant if the
corresponding 𝑝-value is less than 0.025.

There are also other options in R to get post hoc contrasts, where you can ask
for as many comparisons as you want.

There are two ways in which you can control the overall Type I error rate: either
by using an adjusted 𝛼 yourself (as above), or adjusting the 𝑝-value. For now
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we assume you generally want to test at an 𝛼 of 5%. But of course this can be
any value.

In the first approach, you run the model and the contrast just as you would
normally do. If the output contains answers to post hoc questions, you do not
use 𝛼 = 0.05, but you use 0.05 divided by the number of tests that you inspect:
𝛼𝑇 𝑊 = 𝛼𝐹𝑊 /𝑘, with 𝑘 being the number of tests you do.

For instance, if the output for a linear model with a factor with four levels
contains the comparison on groups 1 and 2, and it applies to an a priori question,
you simply report the statistics and concludes significance if the 𝑝 < .05.
If the contrast pertains to a post hoc question and you compare all six possible
pairs, you report the usual statistics and conclude significance if the 𝑝 < 0.05

6 .

In the second approach, you can change the 𝑝-value itself: you multiply the
plotted value by the number of comparisons and declare a difference to be
significant if the corresponding adjusted 𝑝-value is less than 0.05. As an example,
suppose you make six comparisons. Then you multiply the usual 𝑝-values by a
factor 6: 𝑝𝑎𝑑𝑗 = 6𝑝. Thus, if you see a 𝑝-value of 0.04, you compute 𝑝𝑎𝑑𝑗 to be
0.24 and conclude that the contrast is not significant. This is often done in R:
the output yields 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑝-values. Care should be taken with the confidence
intervals: make sure that you know whether these are adjusted 95% confidence
intervals or not. If not, then you should compute your own. Note that when
you use the adjusted 𝑝-values, you should no longer adjust the 𝛼. Thus, an
adjusted 𝑝-value of 0.24 is not significant, because 𝑝𝑎𝑑𝑗 > .05.
In this section we will see how to perform post hoc comparisons in two situations:
either with only one factor in your model, or when you have two factors in your
model.

11.7.1 ANOVA with only one factor

We give an example of an ANOVA post hoc analysis with only one factor, using
the data from the four diets. We first run an ANOVA to answer the primary
research question whether diet has any effect on weight gain in chicks.

ChickWeight %>%
lm(weight ~ Diet, data = .,

contrasts = list(Diet = contr.sum)) %>%
Anova(type = 3)

## Anova Table (Type III tests)
##
## Response: weight
## Sum Sq Df F value Pr(>F)
## (Intercept) 8538737 1 1776.65 < 2.2e-16 ***
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## Diet 155863 3 10.81 6.433e-07 ***
## Residuals 2758693 574
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Seeing these results, noting that there is indeed a significant effect of diet,
a secondary question pops up: “Which pairs of two diets show significant
differences?” We answer that by doing a post hoc analysis, where we study
each pair of diets, and control Type I error rate using the Bonferroni method.
We can do that in the following way:

# Check your sample means
ChickWeight %>%
group_by(Diet) %>%
summarise(mean = mean(weight))

## # A tibble: 4 x 2
## Diet mean
## <fct> <dbl>
## 1 3 143.
## 2 1 103.
## 3 2 123.
## 4 4 135.

pairwise.t.test(ChickWeight$weight, # dependent variable
ChickWeight$Diet, # independent variable
p.adjust.method = 'bonferroni') # adjustment method

##
## Pairwise comparisons using t tests with pooled SD
##
## data: ChickWeight$weight and ChickWeight$Diet
##
## 3 1 2
## 1 2.5e-06 - -
## 2 0.14077 0.06838 -
## 4 1.00000 0.00026 0.95977
##
## P value adjustment method: bonferroni

In the output we see six Bonferroni adjusted 𝑝-values for all six possible pairs.
The column and row numbers refer to the levels of the Diet factor: Diet 3, Diet
1 and Diet 2 in the three columns, and Diet 1, Diet 2 and Diet 4 in the three
rows. We see that all 𝑝-values are non significant (𝑝 > .05), except for two
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comparisons: the difference between Diet 3 and Diet 1 is significant, 𝑝 < .001.
as well as the difference between Diet 4 and Diet 1, 𝑝 < .001.

”An analysis of variance showed that the mean weight was
signficantly different for the four diets, 𝐹(3, 574) = 10.8, 𝑝 < .001.
We performed post hoc pair-wise comparisons, for all six possible
pairs of diets. A family-wise Type I error rate of 0.05 was used,
with Bonferroni correction. The difference between Diet 1 and Diet
3 was significant, and the difference between Diets 4 and 1 was
significant. All other differences were not signficantly different from
0. ”

11.7.2 ANOVA with two factors and moderation

In the previous subsection we did pair-wise comparisons in a one-way ANOVA
(i.e., ANOVA with only one factor). In the previous chapter we also discussed
how to set up contrasts in the situation of two factors that are modelled with
interaction effects (Ch. 10). Let’s return to that example.

data("jobsatisfaction", package = "datarium")

# Run linear model with interaction effect and compute simple slopes
sslopes <- jobsatisfaction %>%
lm(score ~ gender + education_level + gender:education_level,

data = .) %>%
simple_slopes(confint = TRUE, ci.width = 0.95)

sslopes

## gender education_level Test Estimate Std. Error 2.5% 97.5% t value
## 1 male sstest (college) 0.7967 0.2593 0.2764 1.3170 3.0726
## 2 male sstest (university) 3.8653 0.2527 3.3582 4.3724 15.2950
## 3 female sstest (college) 0.7220 0.2460 0.2284 1.2156 2.9352
## 4 female sstest (university) 2.6650 0.2460 2.1714 3.1586 10.8343
## 5 sstest school 0.3143 0.2527 -0.1928 0.8214 1.2438
## 6 sstest college 0.2397 0.2527 -0.2674 0.7468 0.9484
## 7 sstest university -0.8860 0.2460 -1.3796 -0.3924 -3.6020
## df Pr(>|t|) Sig.
## 1 52 0.0033741 **
## 2 52 < 2.2e-16 ***
## 3 52 0.0049525 **
## 4 52 6.074e-15 ***
## 5 52 0.2191473
## 6 52 0.3473349
## 7 52 0.0007058 ***
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In the example, we were only interested in the gender effect for each of the
education levels. That means only the last three lines are relevant.

In the simple_slopes() code we used the argument ci.width = 0.95. That
was because we hadn’t discussed post hoc analysis yet, nor adjustment of 𝑝 or 𝛼.
In the case that we want to control the Type I error rate, we could use Bonferroni
correction. We should then make the relevant 𝑝-values three times bigger than
what they are uncorrected, because we are interested in three contrasts.

# Obtain adjusted p-values
p_uncorrected <- sslopes[5:7, "Pr(>|t|)"] # get rows 5:7 and column with p-values
p_uncorrected # check you got the right ones

## [1] 0.2191473106 0.3473348890 0.0007057855

p_corrected <- p_uncorrected*3 # Bonferroni correction, multiplying by number of contrasts
p_corrected # for school, college and university, respectively

## [1] 0.657441932 1.042004667 0.002117357

Confidence intervals should also be changed. For that we need to adjust the
Type I error rate 𝛼.

# Correct Type I error rate
alpha <- 0.05 / 3 # adjust alpha
CI <- 1 - alpha # adjust confidence interval
CI

## [1] 0.9833333

sslopes <- jobsatisfaction %>%
lm(score ~ gender + education_level + gender:education_level, data = .) %>%
simple_slopes(confint = TRUE, ci.width = CI) # adjusted conf. interval

sslopes

## gender education_level Test Estimate Std. Error 0.833333333333336%
## 1 male sstest (college) 0.7967 0.2593 0.1552
## 2 male sstest (university) 3.8653 0.2527 3.2401
## 3 female sstest (college) 0.7220 0.2460 0.1135
## 4 female sstest (university) 2.6650 0.2460 2.0565
## 5 sstest school 0.3143 0.2527 -0.3109
## 6 sstest college 0.2397 0.2527 -0.3855
## 7 sstest university -0.8860 0.2460 -1.4945
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## 99.1666666666667% t value df Pr(>|t|) Sig.
## 1 1.4381 3.0726 52 0.0033741 **
## 2 4.4905 15.2950 52 < 2.2e-16 ***
## 3 1.3305 2.9352 52 0.0049525 **
## 4 3.2735 10.8343 52 6.074e-15 ***
## 5 0.9395 1.2438 52 0.2191473
## 6 0.8649 0.9484 52 0.3473349
## 7 -0.2775 -3.6020 52 0.0007058 ***

In the output we see adjusted confidence intervals (note that the 𝑝-values are
the original ones). We conclude for our three contrasts that in the “school”
group the females score 0.31 (adjusted 95% CI: -0.31, 0.94) higher than boys,
in the “college” group females score 0.24 (adjusted 95% CI: -0.39, 0.86) higher
than boys, and in the “university” group 0.89 (adjusted 95% CI: -1.49, -0.28)
lower than the boys.

The same logic of adjusting 𝑝-values and adjusting confidence intervals can be
applied in situations with numeric independent variables.

11.8 Take-away points

• Your main research questions are generally very limited in number. If they
can be translated into contrasts, we call these a priori contrasts.

• Your a priori contrasts can be answered using a pre-set level of significance,
in the social and behavioural sciences this is often 5% for 𝑝-values and
using 95% for confidence intervals. No adjustment necessary.

• This pre-set level of significance, 𝛼, should be set before looking at the
data (if possible before the collection of the data).

• If you are looking at the data and want to answer specific research
questions that arise because of what you see in the data (post hoc), you
should use adjusted 𝑝-values and confidence intervals.

• There are several ways of adjusting the test-wise 𝛼s to obtain a reasonable
family-wise 𝛼: Bonferroni is the simplest method but rather conservative
(low statistical power). Many alternative methods exist, among them are
Scheffé’s procedure, and Tukey HSD method.

Key concepts

• A priori
• Post hoc
• Orthogonality/independence
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• 𝑝-hacking
• Family-wise Type I error rate
• Test-wise Type I error rate
• Bonferroni correction
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Chapter 12

Linear mixed modelling:
introduction

12.1 Fixed effects and random effects

In the simplest form of linear modelling, we have one dependent numeric
variable, one intercept and one or more independent variables. Let’s look at
a simple regression equation where dependent variable 𝑌 is predicted by an
intercept 𝑏0 and a linear effect of independent variable 𝑋 with regression slope
parameter 𝑏1, and an error term 𝑒, where we assume that the error term 𝑒
comes from a normal distribution.

𝑌 = 𝑏0 + 𝑏1𝑋 + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2)

Using this model, we know that for a person with a value of 5 for 𝑋, we expect
𝑌 to be equal to 𝑏0 + 𝑏1 × 5. As another example, if 𝑌 is someone’s IQ score,
𝑋 is someone’s brain size in cubic millilitres, 𝑏0 is equal to 70, and 𝑏1 is equal
to 0.1, we expect on the basis of this model that a person with a brain size of
1500 cubic millimetres has an IQ score of 70 + 0.01 × 1500, which equals 85.

Now, for any model the predicted values usually are not the same as the observed
values. If the model predicts on the basis of my brain size that my IQ is 140,
my true IQ might be in fact 130. This discrepancy is termed the residual:
the observed 𝑌 , minus the predicted 𝑌 , or 𝑌 , so in this case the residual is
𝑌 − 𝑌 = 130 − 140 = −10.

Here we have the model for the relationship between IQ and brain size.
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IQ = 70 + 0.1 × Brain size + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2)

Note that in this model, the values of 70 and 0.1 are fixed, that is, we use the
same intercept and the same slope for everyone. You use these values for any
person, for Henry, Jake, Liz, and Margaret. We therefore call these effects of
intercept and slope fixed effects, as they are all the same for all units of analysis.
In contrast, we call the 𝑒 term, the random error term or the residual in the
regression, a random effect. This is because the error term is different for every
unit. We don’t know the specific values of these random errors or residuals for
every person, but nevertheless, we assume that they come from a distribution,
in this case a normal distribution with mean 0 and an unknown variance. This
unknown variance is given the symbol 𝜎2.

Here are a few more examples.

1. Suppose we study a number of schools, and for every school we use a simple
linear regression equation to predict the number of students (dependent
variable) on the basis of the number of teachers (independent variable).
For every unit of analysis (in this case: school), the intercept and the
regression slope are the same (fixed effects), but the residuals are different
(random effect).

2. Suppose we study reaction times, and for every measure of reaction time
– a trial – we use a simple linear regression equation to predict reaction
time in milliseconds on the basis of the characteristics of the stimulus.
Here, the unit of analysis is trial, and for every trial, the intercept and the
regression slope are the same (fixed effects), but the residuals are different
(random effect).

3. Suppose we study a number of students, and for every student we use
a simple linear regression equation to predict the math test score on the
basis of the number of hours of study the student puts in. Here, the unit of
analysis is student, and for every student, the intercept and the regression
slope are the same (fixed effects), but the residuals are different (random
effect).

Let’s focus for now on the last example. What happens when we have a lot of
data on students, but the students come from different schools? Suppose we
want to predict average grade for every student, on the basis of the number of
hours of study the student puts in. We again could use a simple linear regression
equation.

𝑌 = 𝑏0 + 𝑏1hourswork + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2)
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That would be fine if all schools would be all very similar. But suppose that
some schools have a lot of high scoring students, and some schools have a lot
of low scoring students? Then school itself would also be a very important
predictor, apart from the number of hours of study. One could say that the
data are clustered: math test scores coming from the same school are more
similar than math test scores coming from different schools. When we do not
take this into account, the residuals will not show independence (see Chapter 7
on the assumptions of linear models).

One thing we could therefore do to remedy this is to include school as a
categorical predictor. We would then have to code this school variable into a
number of dummy variables. The first dummy variable called school1 would
indicate whether students are in the first school (school1 = 1) or not (school1
= 0). The second dummy variable school2 would indicate whether students
are in the second school (school2 = 1) or not (school2 = 0), etcetera. You
can then add these dummy variables to the regression equation like this:

𝑌 = 𝑏0 + 𝑏1hourswork + 𝑏2school1 + 𝑏3school2 + 𝑏4school3 + ⋯ + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2)

In the output we would find a large number of effects, one for each dummy
variable. For example, if the students came from 100 different schools, you
would get 99 fixed effects for the 99 dummy variables. However, one could
wonder whether this is very useful. As stated earlier, fixed effects are called
fixed because they are the same for every unit of research, in this case every
student. But working with 99 dummy variables, where students mostly score 0,
this seems very much over the top. In fact, we’re not even interested in these
99 effects. We’re interested in the relationship between test score and hours
of work, meanwhile taking into account that there are test score differences
across schools. The dummy variables are only there to account for differences
across schools; the prediction for one school is a little bit higher or lower than
for another school, depending on how well students generally perform in each
school.

We could therefore try an alternative model, where we treat the school effect
as 𝑟𝑎𝑛𝑑𝑜𝑚: we assume that every school has a different average test score, and
that these averages are normally distributed. We call these average test score
deviations school effects:

𝑌 = 𝑏0 + 𝑏1hourswork + schooleffect + 𝑒
schooleffect ∼ 𝑁(0, 𝜎2

𝑠)
𝑒 ∼ 𝑁(0, 𝜎2

𝑒)

So in this equation, the intercept is fixed, that is, the intercept is the same for
all observed test scores. The regression coefficient 𝑏1 for the effect of hours of
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work is also fixed. But the schooleffect is random, since it is different for every
school. The residual 𝑒 is also random, being different for every student. It could
also be written like this:

𝑌 = (𝑏0 + schooleffect) + 𝑏1hourswork + 𝑒 (12.1)
schooleffect ∼ 𝑁(0, 𝜎2

𝑠)
𝑒 ∼ 𝑁(0, 𝜎2

𝑒)

This representation emphasises that for every school, the intercept is a little
bit different: for school A the intercept might be 𝑏0 + 2, and for school B the
intercept might be 𝑏0 − 3.
So, equation (12.2) states that every observed test score is

1. partly influenced by an intercept that is random, with a certain average
𝑏0 and variance 𝜎2

𝑠 , that is dependent on which school students are in,

2. partly influenced by the number of hours of work, an effect that is the
same no matter what school a student is in (fixed), and

3. partly influenced by unknown factors, indicated by a random residual 𝑒
coming from a normal distribution with variance 𝜎2

𝑒 .

To put it more formally: test score 𝑌𝑖𝑗, that is, the test score from student 𝑗 in
school 𝑖, is the sum of an effect of the school 𝑏0 + schooleffect𝑖 (the average
test score in school 𝑖), plus an effect of hours of work, 𝑏1 × hourswork, and an
unknown residual 𝑒𝑖𝑗 (a specific residual for the test score for student 𝑗 in school
𝑖).

𝑌𝑖𝑗 = 𝑏0 + schooleffect𝑖 + 𝑏1hourswork + 𝑒𝑖𝑗
schooleffect𝑖 ∼ 𝑁(0, 𝜎2

𝑠)
𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝑒)

So in addition to the assumption of residuals that have a normal distribution
with mean 0 and variance 𝜎2

𝑒 , we also have an assumption that the school
averages have a normal distribution, in this case with mean 𝑏0 and variance 𝜎2

𝑠 .

Let’s go back to the example of reaction times. Suppose in an experiment we
measure reaction time in a large number of trials. We want to know whether the
size of the stimulus (large or small) has an effect on reaction time. Let’s also
suppose that we carry out this experiment with 20 participants, where every
participant is measured during 100 trials: 50 large stimuli and 50 small stimuli,
in random order. Now probably, some participants show generally very fast
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responses, and some participants show generally very slow responses. In other
words, the average reaction time for the 100 trials may vary from participant to
participant. This means that we can use participant as an important predictor
of reaction times. To take this into account we can use the following linear
equation:

𝑌𝑖𝑗 = 𝑏0 + speed𝑖 + 𝑏1size + 𝑒𝑖𝑗
speed𝑖 ∼ 𝑁(0, 𝜎2

𝑠)
𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝑒)

where 𝑌𝑖𝑗, is the reaction time 𝑗 from participant 𝑖, (𝑏0 + speed𝑖) is a random
intercept representing the average speed for each participant 𝑖 (where 𝑏0 is the
overall average across all participants and speed𝑖 the random deviation for each
and every participant), 𝑏1 is the fixed effect of the size of the stimulus. Unknown
residual 𝑒𝑖𝑗 is a specific residual for the reaction time for trial 𝑗 of participant 𝑖.

The reason for introducing random effects is that when your observed data
are clustered, for instance student scores clustered within schools, or trial
response times are clustered within participants, you violate the assumption of
independence: two reaction times from the same person are more similar than
two reaction times from different persons. Two test scores from students from
the same school may be more similar than two scores from students in different
schools (see Chapter 7). When this is the case, when data are clustered, it is
very important to take this into account. When the assumption of independence
is violated, you are making wrong inference if you use an ordinary linear model,
the so-called general linear model (GLM). With clustered data, it is therefore
necessary to work with an extension of the general linear model or GLM, the
linear mixed model. The above models for students’ test scores across different
schools and reaction times across different participants, are examples of linear
mixed models. The term mixed comes from the fact that the models contain a
mix of both fixed and random effects. GLMs only contain fixed effects, apart
from the random residual.

If you have clustered data, you should take this clustering into account, either
by using the grouping variable as a categorical predictor or by using a random
factor in a linear mixed model. As a rule of thumb: if you have fewer than
10 groups, consider a fixed categorical factor; if you have 10 or more groups,
consider a random factor. Two other rules you can follow are: Use a random
factor if the assumption of normally distributed group differences is tenable.
Use a fixed categorical factor if you are actually interested in the size of group
differences.

Below, we will start with a very simple example of a linear mixed model, one
that we use for a simple pre-post intervention design.
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Table 12.1: Headache measurements in NY Times readers suffering from
headaches.

patient pre post
001 55 45
002 63 50
003 66 56
004 50 37
005 63 50

12.2 Pre-post intervention designs

Imagine a study where we hope to show that aspirin helps reduce headache. We
ask 100 patients to rate the severity of their headache before they use aspirin
(on a scale from 1 - 100), and to rate the severity again 3 hours after taking 500
mg of aspirin. These patients are randomly selected among people who read
the NY Times and suffer from regular headaches. So here we have clustered
data: we have 100 patients, and for each patient we have two scores, one before
(pre) and one after (post) the intervention of taking aspirin. Of course, overall
headache severity levels tend to vary from person to person, so we might have
to take into account that some patients have a higher average level of pain than
other patients.

The data could be represented in different ways, but suppose we have the data
matrix in Table 12.1 (showing only the first five patients). What we observe
in that table is that the severity seems generally lower after the intervention
than before the intervention. But you may also notice that the severity of
the headache also varies across patients: some have generally high scores
(for instance patient 003), and some have generally low scores (for example
patient 001). Therefore, the headache scores seem to be clustered, violating
the assumption of independence. We can quantify this clustering by computing
a correlation between the pre-intervention scores and the post-intervention
scores. We can also visualise this clustering by a scatter plot, see Figure 12.1.
Here it appears that there is a strong positive correlation, indicating that the
higher the pain score before the intervention, the higher the pain score after
the intervention.

There is an alternative way of representing the same data. Let’s look at the same
data in a new format in Table 12.2. In Chapter 1 we saw that this representation
is called long format.

By representing the data in long format we acknowledge that there is really only
one dependent measure: headache severity. The other two variables indicate
that this variable varies across both patients and time point (pre intervention
and post intervention). There is therefore a variable measure that indicates
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Figure 12.1: Scatterplot of pre and post headache levels.

Table 12.2: Headache severity measures in long format.

patient measure headache
1 1 55
1 2 45
2 1 63
2 2 50
3 1 66
3 2 56
4 1 50
4 2 37
5 1 63
5 2 50
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whether the headache severity was measured pre intervention (measure = 1) or
post intervention (measure = 2).

Here we might consider applying a simple linear regression model, using
headache as the dependent variable and measure (1st or 2nd) as a categorical
predictor. However, since we know that there is a correlation between the pre
and post severity measures, we know that measures also systematically vary
across patients: some score high on average and some score low on average.
The assumption of independence is therefore not tenable. Thus we have to run
a linear model, including not only an effect of measure but also an effect of
patient. We then have to decide between fixed effects or random effects for
these variables.

Let’s first look at the variable measure. Since we are really interested in the
effect of the intervention, that is, we want to know how large the effect of aspirin
is, we use a fixed effect for the time effect (the variable measure). Moreover,
the variable measure has only two levels, which is another reason to opt for a
fixed effect.

Then for the patient effect, we see that we have 100 patients. Are we really
interested by how much the average pain level in say patient 23 differs from
the average pain level in say patient 45? No, not really. We only want to
acknowledge that the individual differences exist, we want to take them into
account in our model so that our inference regarding the confidence intervals
and hypothesis testing is correct. We therefore prefer to assume random effects,
assuming they are normally distributed. We therefore end up with a fixed effect
for measure and a random effect for patient resulting in the following model:

𝑌𝑖𝑗 = 𝑏0 + patient𝑖 + 𝑏1measure2 + 𝑒𝑖𝑗
patient𝑖 ∼ 𝑁(0, 𝜎2

𝑝)
𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2

𝑒)

where 𝑌𝑖𝑗 is the 𝑗th headache severity score (first or second) for patient 𝑖,
(𝑏0 + patient𝑖) is the average amount of headache before aspirin that patient
𝑖 deviates from the mean, measure2 is a dummy variable, and 𝑏1 is the effect
of the intervention (by how much the severity changes from pre to post). We
assume that the average pain level for each patient shows a normal distribution
with average 𝑏0 and variance 𝜎2

𝑝. And of course we assume that the residuals
show a normal distribution.

An analysis with this model can be done with the R package lme4. That
package contains the function lmer() that works more or less the same as the
lm() function that we saw earlier, but requires the addition of at least one
random variable. Below, we run a linear mixed model, with dependent variable
headache, a regular fixed effect for the categorical variable measure, and a
random effect for the categorical variable patient.
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library(lme4)
out <- data %>%
lmer(headache ~ measure + (1|patient), data = .)

summary(out)

## Linear mixed model fit by REML ['lmerMod']
## Formula: headache ~ measure + (1 | patient)
## Data: .
##
## REML criterion at convergence: 1189.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.36239 -0.42430 -0.04973 0.49702 2.17096
##
## Random effects:
## Groups Name Variance Std.Dev.
## patient (Intercept) 27.144 5.210
## Residual 8.278 2.877
## Number of obs: 200, groups: patient, 100
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 59.6800 0.5952 100.28
## measure2 -10.3600 0.4069 -25.46
##
## Correlation of Fixed Effects:
## (Intr)
## measure2 -0.342

In the output we see the results. We’re mainly focused on the fixed effect of
the intervention: does aspirin reduce headache? Where it says ‘Fixed effects:’
in the output, we see the linear model coefficients, with an intercept of around
59 and a negative effect of the intervention dummy variable measure2, around
−10. We see that the dummy variable was coded 1 for the second measure
(after taking aspirin). So, for our dependent variable headache, we see that
the expected headache severity for the observations with a 0 for the dummy
variable measure2 (that is, measure 1, which is before taking aspirin), is equal
to 59 − (10) × 0 = 59.
Similarly, we see that the expected headache severity for the observations with
a 1 for the dummy variable measure2 (that is, after taking aspirin), is equal to
59−(10)×1 = 49−10 = 49. So, expected pain severity is 10 points lower after the
intervention than before the intervention. Whether this difference is significant
is indicated by a 𝑡-statistic. We see here that the average headache severity after
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taking an aspirin is significantly different from the average headache severity
before taking an aspirin, 𝑡 = −25.46. However, note that we do not see a 𝑝-
value. That’s because the degrees of freedom are not clear, because we also have
a random variable in the model. The determination of the degrees of freedom
in a linear mixed model is a complicated matter, with different choices, the
discussion of which is beyond the scope of this book.

However, we do know that for whatever the degrees of freedom really are, a 𝑡-
statistic of -25.46 will always be in the far tail of the 𝑡-distribution, see Appendix
B. So we have good reason to conclude that we have sufficient evidence to reject
the null-hypothesis that headache levels before and after aspirin intake are the
same.

If we do not want to test a null-hypothesis, but want to construct a confidence
interval, we run into the same problem that we do not know what 𝑡-distribution
to use. Therefore we do not know with what value the standard error of 0.40
should be multiplied to compute the margin of error. We could however use
a coarse rule of thump and say that the critical 𝑡-value for a 95% confidence
interval is more or less equal to 2 (see Appendix B). If we do that, then we get the
confidence level for the effect of aspirin: between −10.36 − 2 × 0.4069 = −11.17
and −10.36 + 2 × 0.4069 = −9.55.
Taking into account the direction of the effect and the confidence interval for
this effect, we might therefore carefully conclude that aspirin reduces headache
in the population of NY Times readers with headache problems, where the
reduction is around 10 points on a 1...100 scale (95% CI: 9.55 – 11.17).

Now let’s look at the output regarding the random effect of patient more
closely. The model assumed that the individual differences in headache severity
in the 100 patients came from a normal distribution. How large are these
individual differences actually? This can be gleaned from the ‘Random effects:’
part of the R output. The ‘intercept’ (i.e., the patient effect in our model)
seems to vary with a variance of 27, which is equivalent to a standard deviation
of

√
27 which is around 5.2. What does that mean exactly? Well let’s look at

the equation again and fill in the numbers:

𝑌𝑖𝑗 = 𝑏0 + patient𝑖 + 𝑏1measure2 + 𝑒𝑖𝑗
𝑌𝑖𝑗 = 59 + patient𝑖 − 10measure2 + 𝑒𝑖𝑗

𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑖 ∼ 𝑁(0, 27)
𝑒𝑖𝑗 ∼ 𝑁(0, 8)

Since R used the the headache level before the intervention as the reference
category, we conclude that the average pain level before taking aspirin is 59.
However, not everybody’s pain level before taking aspirin is 59: people show
variance (variation). The pain level before aspirin varies with a variance of 27,
which is equivalent to a standard deviation of around 5.2. Figure 12.2 shows

412



how much this variance actually is. It depicts a normal distribution with a mean
of 59 and a standard deviation of 5.2.
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Figure 12.2: Distribution of headache scores before taking aspirin, according to
the linear mixed model.

So before taking aspirin, most patients show headache levels roughly between
50 and 70. More specifically, if we would take the middle 95% by using plus or
minus twice the standard deviation, we can estimate that 95% of the patients
shows levels between 59 − 2 × 5.2 = 48.6 and 59 + 2 × 5.2 = 69.4.

Now let’s look at the levels after taking aspirin. The average headache level is
equal to 59 − 10 = 49. So 95% of the patients shows headache levels between
49 − 2 × 5.2 = 38.6 and 49 + 2 × 5.2 = 59.4 before taking aspirin.

Together these results are visualised in Figure 12.3. In this plot you see
there is variability in headache levels before taking aspirin, and there is
variation in headache levels after taking aspirin. We also see that these
distributions have the same spread (variance): in the model we assume that
the variability in headache before aspirin is equal to the variability after aspirin
(homoscedasticity). The distributions are equal, except for a horizontal shift:
the distribution for headache after aspirin is the same as the distribution before
aspirin, except for a shift to the left of about 10 points. This is of course the
effect of aspirin in the model, the 𝑏1 parameter in our model above.

The fact that the two distributions before and after aspirin show the same spread
(variance) was an inherent assumption in our model: we only have one random
effect for patient in our output with one variance (𝜎2

𝑝). If the assumption of equal
variance (homoscedasticity) is not tenable, then one should consider other linear
mixed models. But this is beyond the scope of this book. The assumption can
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Figure 12.3: Distribution of headache scores before and after taking aspirin,
according to the linear mixed model.

be checked by plotting the residuals, using different colours for residuals from
before taking aspirin and for residuals from after taking aspirin.

library(modelr)
data %>%
add_residuals(out) %>%
add_predictions(out) %>%
ggplot(aes(x = pred, y = resid, colour = measure)) +
geom_point() +
xlab("Predicted headache") +
ylab("Residual") +
scale_colour_brewer(palette = "Set1") + # use nice colours
theme_light()
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Alternatively one could create a box plot.

data %>%
add_residuals(out) %>%
ggplot(aes(x = measure, y = resid)) +
geom_boxplot() +
xlab("Measure") +
ylab("Residual") +
theme_light()
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The plots show that the variation in the residuals is about the same for pre
and post aspirin headache levels (box plot) and for all predicted headache levels
(scatter plot). This satisfies the assumption of homogeneity of variance.
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If all assumptions are satisfied, you are at liberty to make inferences regarding
the model parameters. We saw that the effect of aspirin was estimated at
about 10 points with a rough 95% confidence interval, that was based on the
rule of thumb of 2 standard errors around the estimate. For people that are
uncomfortable with such quick and dirty estimates, it is also possible to use
Satterthwaite’s approximation of the degrees of freedom. You can obtain these,
once you load the package lmerTest. After loading, your lmer() analysis will
yield (estimated) degrees of freedom and the 𝑝-values associated with the 𝑡-
statistics and those degrees of freedom.

library(lmerTest)
out <- data %>%
lmer(headache ~ measure + (1|patient), data = .)

summary(out)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: headache ~ measure + (1 | patient)
## Data: .
##
## REML criterion at convergence: 1189.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.36239 -0.42430 -0.04973 0.49702 2.17096
##
## Random effects:
## Groups Name Variance Std.Dev.
## patient (Intercept) 27.144 5.210
## Residual 8.278 2.877
## Number of obs: 200, groups: patient, 100
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 59.6800 0.5952 124.7464 100.28 <2e-16 ***
## measure2 -10.3600 0.4069 99.0000 -25.46 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## measure2 -0.342

The degrees of freedom for effect of measure2 is 99. If we look in Appendix
B or check using R, we see that the critical 𝑡-value with 99 degrees of freedom
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for a 95% confidence interval is equal to 1.98. That’s very close to our rough
estimate of 2.

qt(0.975, df = 99)

## [1] 1.984217

If we calculate the 95% confidence interval using the new critical value, we
obtain −10.36−1.98×0.41 = −11.17 and −10.36+1.98×0.41 = −9.55. That’s
only a minor difference with what we saw before.

12.3 Reporting on a linear mixed model for pre-
post data

When you want to write down the results from a linear mixed model, it is
important to explain what the model looked like, in terms of fixed and random
effects. Usually it is not necessary to mention what method you used to
determine degrees of freedom (e.g., Satterthwaite’s method).
If you would have to report on the aspirin study illustrated above, you could
write down the results as follows:

”In order to estimate the effect of aspirin, headache measures were
collected in 100 patients: one measure before aspirin intake and
one measure after aspirin intake. The data were analysed using a
linear mixed model, with a fixed effect for measure (before/after) and
a random effect for patient. The results showed that the average
headache score was 10.36 (SE = 0.41) points lower after aspirin
intake than before intake.”

If you want to include a confidence interval, you can compute it as shown above
using the degrees of freedom reported by the lmerTest package. We saw that the
95% confidence interval runs from −10.36 − 1.98 × 0.41 to −10.36 + 1.98 × 0.41,
that is, from -11.17 to -9.55. The value of -10.36 is negative, meaning that the
scores were lower after aspirin. You can report this negative number, but it
sounds strange to state that scores were on average -10.36 higher after aspirin
intake. Makes more sense to switch the signs and state that the scores were on
average 10.36 lower.
We therefore can report:

”The results showed that the average headache score was 10.36 (SE
= 0.41, 95% CI: 9.55, 11.17) points lower after aspirin intake than
before intake.”
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If the objective of the study was to test the null-hypothesis that the effect of
aspirin equals 0, then you could report:

”In order to test the null-hypothesis that the effect of aspirin
on headache equals 0, headache measures were collected in 100
patients: one measure before aspirin intake and one measure after
aspirin intake. The data were analysed using a linear mixed model,
with a fixed effect for measure (before/after) and a random effect
for patient. The results showed that the null-hypothesis could be
rejected, 𝑡(99) = −25.46, 𝑝 < .001. Headache level after aspirin
intake (𝑀 = 49.32) was significantly lower than headache level
before aspirin intake (𝑀 = 59.68).”

Usually no mention is made of the variance of the random effects, if it is not
relevant to the research question.
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Chapter 13

Linear mixed models for
more than two
measurements

13.1 Pre-mid-post intervention designs

In many intervention studies, one has more than two measurement moments.
Let’s go back to the example of the effect of aspirin on headache in Chapter
12. Suppose you’d like to know whether there is not only a short-term effect
of aspirin, but also a long-term effect. Imagine that the study on headache
among NY Times readers was extended by asking patients not only to rate
their headache before aspirin and 3 hours after intake, but also 24 hours after
intake. In this case our data could look like as presented in Table 13.1.

So for each patient we have three measures: pre, post1 and post2. To see
if there is some clustering, it is no longer possible to study this by computing
a single correlation. We could however compute 3 different correlations: pre-
post1, pre-post2, and post1-post2, but this is rather tedious, and moreover
does not give us a single measure of the extent of clustering of the data. But
there is an alternative: one could compute not a Pearson correlation, but an
intraclass correlation (ICC). To do this, we need to bring the data again into
long format, as opposed to wide format, see Chapter 1. This is done in Table
13.2.

Next, we can perform an analysis with the lmer() function from the lme4
package.
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Table 13.1: Headache measures in NY Times readers.

patient pre post1 post2
1 52 45 47
2 59 50 55
3 65 56 58
4 51 37 42
5 62 50 55
6 61 53 57
7 56 44 55
8 62 48 53
9 56 48 49
10 58 45 44

Table 13.2: Headache measures in NY Times readers in long format.

patient measure headache
1 pre 52
1 post1 45
1 post2 47
2 pre 59
2 post1 50
2 post2 55
3 pre 65
3 post1 56
3 post2 58
4 pre 51
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library(lme4)
model1 <- datalong %>%
lmer(headache ~ measure + (1|patient), data = .)

model1

## Linear mixed model fit by REML ['lmerMod']
## Formula: headache ~ measure + (1 | patient)
## Data: .
## REML criterion at convergence: 1730.488
## Random effects:
## Groups Name Std.Dev.
## patient (Intercept) 5.316
## Residual 2.923
## Number of obs: 300, groups: patient, 100
## Fixed Effects:
## (Intercept) measurepost2 measurepre
## 49.32 2.36 9.85

In the output we see the fixed effects of two automatically created dummy
variables measurepost2 and measurepre, and the intercept. We also see
the standard deviations of the random effects: the standard deviation of the
residuals and the standard deviation of the random effects for the patients.

From this output, we can plug in the values into the equation:

headache𝑖𝑗 = 49.32 + 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑖 + 2.36 measurepost2 + 9.85 measurepre + 𝑒𝑖𝑗
𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑖 ∼ 𝑁(0, 𝜎𝑝 = 5.316)

𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒 = 2.923)

Based on this equation, the expected headache severity score in the population
three hours after aspirin intake is 49.32 (the first post measure is the reference
group). Dummy variable measurepost2 is coded 1 for the measurements 24
hours after aspirin intake. Therefore, the expected headache score 24 hours after
aspirin intake is equal to 49.32 + 2.36 = 51.68. Dummy variable measurepre
was coded 1 for the measurements before aspirin intake. Therefore, the expected
headache before aspirin intake is equal to 49.32 + 9.85 = 59.17. In sum, in this
sample we see that the average headache level decreases directly after aspirin
intake from 59.17 to 49.32, but then increases again to 51.68.

There is quite some variation in individual headache levels: the variance is equal
to 5.3162 = 28.260, since the standard deviation (its square root) is equal to
5.316. Therefore, if we look at roughly 95% of the sample, we see that prior
to taking aspirin, the scores vary between 59.17 − 2 × 5.316 = 48.538 and
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59.17 + 2 × 5.29 = 69.802. For the short-term effect of aspirin after 3 hours, we
see that roughly 95% of the scores lie between 49.32 − 2 × 5.316 = 38.688 and
49.32 + 2 × 5.316 = 59.952. The normal distributions, predicted by this model,
are depicted in Figure 13.1.

before aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirinbefore aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin3 hrs after aspirin
24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin24 hrs after aspirin

0.00

0.02

0.04

0.06

0 25 50 75 100
headache

de
ns

ity

Figure 13.1: Distributions of the three headache levels before aspirin intake,
3 hours after intake and 24 hours after intake, according to the linear mixed
model.

So, are these distributions significantly different, in other words, do the means
differ significantly before aspirin, 3 hrs after aspirin and 24 hrs after aspirin?

To answer a question about the equality of three means, we need an analysis
of variance (ANOVA). Similar to what we did in previous chapters, we specify
sum-to-zero coding and type III sums of squares.

library(car)
datalong %>%
lmer(headache ~ measure + (1|patient), data = .,

contrasts = list(measure = contr.sum)) %>%
Anova(type = 3, test.statistic = "F")

## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: headache
## F Df Df.res Pr(>F)
## (Intercept) 9162.26 1 99 < 2.2e-16 ***
## measure 309.58 2 198 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Note that instead of an ANOVA table, R plots an Analysis of Deviance table,
which you can ignore. Instead of a regular 𝐹 -statistic, we see the Wald 𝐹 -test
statistic with an estimated Satterthwaite residual degrees of freedom of 198.
The degrees of freedom for the measure variable equals 2 (because we have
three group means). The 𝐹 -value is much larger than 1 (remember that the
expected value is always 1 if the null-hypothesis is true, see Chapter 6). The
𝑝-value shows the significance level. It is less than 0.05, so we can reject the
null-hypothesis. We can report:

”The null-hypothesis that the mean headache level does not change
over time was tested with a linear mixed model, with measure
entered as a fixed categorical effect (”before”, ”3hrs after”, ”24 hrs
after”) and random effects for patient. An ANOVA showed that
the null-hypothesis could be rejected, 𝐹(2, 198) = 309.58, 𝑝 < .001.”

If one has specific hypotheses regarding short-term and long-term effects, one
could perform a planned contrast analysis (see Chapter 10, comparing the first
measure with the second measure, and the first measure with the third measure.
If one is just interested in whether aspirin has an effect on headache, then the
overall 𝐹 -test should suffice. If apart from this general effect one wishes to
explore whether there are significant differences between the three groups of
data, without any prior research hypothesis about this, then one could perform
a post hoc analysis of the three means. See Chapter 10 on how to perform
planned comparisons and post hoc tests.

Now recall that we mentioned an intraclass correlation, or ICC. An intraclass
correlation indicates how much clustering there is within the groups, in this case,
clustering of headache scores within individual NY Times readers. How much
are the three scores alike that come from the same patient? This correlation
can be computed using the following formula:

𝐼𝐶𝐶 = 𝜎2
𝑝𝑎𝑡𝑖𝑒𝑛𝑡

𝜎2
𝑝𝑎𝑡𝑖𝑒𝑛𝑡 + 𝜎2𝑒

Here, the variance of the patient random effects is equal to 5.3162 = 28.260,
and the variance of the residuals 𝑒 is equal to 2.9232 = 8.544, so the intraclass
correlation for the headache severity scores is equal to

𝐼𝐶𝐶 = 28.260
28.260 + 8.544 = 0.77

As this correlation is substantially higher than 0, we conclude there is quite a
lot of clustering. Therefore it’s a good thing that we used random effects for
the individual differences in headache scores among NY Times readers. Had
this correlation been 0 or very close to 0, however, then it would not have
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mattered to include these random effects. In that case, we might as well use an
ordinary linear model, using the lm() function. Note from the formula that the
correlation becomes 0 when the variance of the random effects for patients is 0.
It approaches 0 as the random effects for patients grows small relative to the
residual variance. It approaches 1 as the random effects for patients grows large
relative to the residual variance. Because variance cannot be negative, ICCs
always have values between 0 and 1.

When is an ICC large and when is it small? This is best thought of as being at
a birthday party. Most birthday cakes are intended for 8 to 12 guests. If you
therefore have one tenth of a birthday cake, that’s a substantial piece. It will
most likely fill you up. Therefore, an ICC of 0.10 is definitely to be reckoned
with. A larger piece than the regular size will fill you up for the rest of the day.
A somewhat smaller piece, say 0.05, is also to be taken seriously. It is nice to
have a fraction of 0.05 of a whole birthday cake (you don’t mind sharing, do
you?). However, when the host offers you one percent of the cake (0.01), at
least I would be inclined to say no thank you. This implies that when we find
an ICC of 0.01, it is fair to simply state that it is very small.

Can we visualise an ICC, in order to better understand what an ICC of
0.01 or 0.50 actually means? Let’s try. Imagine a study where we measure
bloodpressure in 10 different patients of various ages. Generally, we observe
that older people have on average a higher bloodpressure than younger people.
In this particular imagined study, we measured bloodpressure 5 times in each
patient. This is done because bloodpressure depends very much on time of day,
what people are doing, whether they experience stress, etcetera. By measuring
bloodpressure 5 times per patient, we get a more reliable insight into people’s
general bloodpressure level and how it relates to age.

Imagine that we carry out a linear regression where we predict bloodpressure
using people’s age. We see then a positive relationship: the older the person,
the higher the bloodpressure. However, let’s look at the residuals of the model.
In the interactive app in Figure 13.2, you can change the value of the ICC and
see how that affects the residuals. For starters, put the ICC to the value of
0.85. On the left panel of the app, you then see the residuals of the linear
regression. It shows the residuals for each patient separately. You see that
patient 3 has only positive residuals: based on a prediction using this person’s
age, we overestimate this person’s bloodpressure. In contrast, we see that patient
4 has only negative residuals: based on a prediction using age, we underestimate
this person’s bloodpressure. Generally, you can see clear differences in what the
residuals look like for each patient separately. This pattern in the residuals
shows us that there are other factors besides age that determine a person’s
bloodpressure. In order to account for this, we can include the categorical
variable patient into our linear model. We do that here using random effects.
When we do that, and then look at the residuals again, we obtain the residual
plot on the right panel in the app. The boxplot shows that the medians are now
all very close to 0, which means there are no systematic differences between the
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residuals of the 10 different patients anymore.

Because the assumption of linear models is that the residuals are completely
random, that is, that there are not systematic effects in the residuals (see Ch.
7), we know that it is very important to include random effects if we observe
an ICC of 0.85. Ignoring a factor that causes an ICC of 0.85 can lead to wrong
inference (wrong standard errors and confidence intervals).

Intra class correlation
0.990.1

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.950.99

Figure 13.2: [Interactive] A residual plot when the patient variable is not
included in a linear model (left panel) and a residal plot when the patient
variable is included in the model using random effects (right panel). We see a
large difference between the plots, when the ICC has a high value.

However, when the ICC is very low, say 0.01, ignoring a factor does not greatly
affect inference. Change the value of the ICC to 0.01 in Figure 13.2, to see what
it does to the residuals. The left panel should now resemble the right panel very
closely: whether or not you include patient random effects into the model does
not visibly affect the pattern in the residuals. Hence, the patient variable can
be safely left out of the model.

Play around with different values for the ICC, to check for yourself with what
ICC-value you start to notice a difference between the left and the right panel.
A difference is indicative that the variable in question (the one on the 𝑥-axis)
should be included in the linear model.

13.2 Pre-mid-post intervention design: linear
effects

In the previous section, we’ve looked at categorical variables: measure (”pre-
intervention”, ”3 hours after”, and ”24 hours after”). We can use the same type
of analysis for numerical variables. In fact, we could have used a linear effect
for time in the headache example: using time of measurement as a numeric
variable. Let’s look at the headache data again. But now we’ve created a new
variable time that is based on the variable measure: all first measurements are
coded as time = 0, all second measurements after 3 hours are coded as time =
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Table 13.3: Headache measures in NY Times readers in long format with a new
variable time.

patient measure headache time
1 pre 52 0
1 post1 45 3
1 post2 47 24
2 pre 59 0
2 post1 50 3
2 post2 55 24
3 pre 65 0
3 post1 56 3
3 post2 58 24
4 pre 51 0

3, and all third measurements after 24 hours are coded as time = 24. Part of
the data are presented in Table 13.3.

Instead of using a categorical intervention variable, with three levels, we now
use a numeric variable, time, indicating the number of hours that have elapsed
after aspirin intake. At point 0 hours, we measure headache severity, and
patients take an aspirin. Next we measure headache after 3 hours and 24 hours.
Above, we wanted to know if there were differences in average headache between
before intake and 3 hrs and 24 hrs after intake. Another question we might ask
ourselves: is there a linear reduction in headache severity after taking aspirin?

For this we can do a linear regression type of analysis. We want to take into
account individual differences in headache severity levels among patients, so we
perform an lmer() analysis, using the following code, replacing the categorical
variable measure by numerical variable time:

model3 <- datalongnew %>%
lmer(headache ~ time + (1|patient), data = .)

model3

## Linear mixed model fit by REML ['lmerMod']
## Formula: headache ~ time + (1 | patient)
## Data: .
## REML criterion at convergence: 1993.735
## Random effects:
## Groups Name Std.Dev.
## patient (Intercept) 4.561
## Residual 5.560
## Number of obs: 300, groups: patient, 100
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## Fixed Effects:
## (Intercept) time
## 54.7913 -0.1557

In the output we see that the model for our data is equivalent to

headache𝑖𝑗 = 54.79 + 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑖 − 0.1557 × time + 𝑒𝑖𝑗
𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑖 ∼ 𝑁(0, 𝜎𝑝 = 4.561)

𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎𝑒 = 5.560)

This model predicts that at time 0, the average headache severity score equals
54.79, and that for every hour after intake, the headache level drops by 0.1557
points. So it predicts for example that after 10 hours, the headache has dropped
1.557 points to 53.23.

Is this a good model for the data? Probably not. Look at the variance of the
residuals: with a standard deviation of 5.56 it is now a lot bigger than in the
previous analysis with the same data (see previous section). Larger variance of
residuals means that the model explains the data worse: predictions are worse,
so the residuals increase in size.

That the model is not appropriate for this data set is also obvious when we plot
the data, focusing on the relationship between time and headache levels, see
Figure 13.3.
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Figure 13.3: Headache levels before aspirin intake, 3 hours after intake and 24
hours after intake.
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The line shown is the fitted line based on the output. It can be seen that the
prediction for time = 0 is systematically too low, for time = 3 systematically
too high, and for time = 24 again too low. So for this particular data set on
headache, it would be better to use a categorical predictor for the effect of time
on headache, like we did in the previous section.

30

40

50

60

70

80

0 1 2 3
time after aspirin intake

he
ad

ac
he

 s
co

re

Figure 13.4: Alternative headache levels before aspirin intake, 3 hours after
intake and 24 hours after intake.

As an example of a data set where a linear effect would have been appropriate,
imagine that we measured headache 0 hours, 2 hours and 3 hours after aspirin
intake (and not after 24 hours). Suppose these data would look like those in
Figure 13.4. There we see a gradual increase of headache levels right after
aspirin intake. Here, a numeric treatment of the time variable would be quite
appropriate.

Suppose we would then see the following output.

model4 <- datalongnew2 %>%
lmer(headache ~ time + (1|patient), data = .)

model4 %>% summary()

## Linear mixed model fit by REML ['lmerMod']
## Formula: headache ~ time + (1 | patient)
## Data: .
##
## REML criterion at convergence: 1738.8
##
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## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.78038 -0.55298 0.05078 0.55931 2.30389
##
## Random effects:
## Groups Name Variance Std.Dev.
## patient (Intercept) 28.186 5.309
## Residual 8.776 2.962
## Number of obs: 300, groups: patient, 100
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 58.9721 0.6028 97.83
## time -3.3493 0.1371 -24.42
##
## Correlation of Fixed Effects:
## (Intr)
## time -0.379

Because we are confident that this model is appropriate for our data, we can
interpret the statistical output. The Satterthwaite error degrees of freedom are
199, so we can construct a 95% confidence interval by finding the appropriate
𝑡-value.

qt(0.975, df = 199)

## [1] 1.971957

The 95% confidence interval for the effect of time is then from −3.35−1.97×0.14
to −3.35 + 1.97 × 0.14, so from -3.63 to -3.07. We can report:

”A linear mixed model was run on the headache levels, using a fixed
effect for the numeric predictor variable time and random effects for
the variable patient. We saw a significant linear effect of time on
headache level, 𝑡(200) = −24.42, 𝑝 < .001. The estimated effect
of time based on this analysis is negative, −3.35, so with every
hour that elapses after aspirin intake, the predicted headache score
decreases with 3.35 points (95% CI: 3.07 to 3.63 points)”.

13.3 Linear mixed models and interaction
effects

Suppose we carry out the aspirin and headache study not only with a random
sample of NY Times readers that suffer from regular headaches, but also with

429



Table 13.4: Headache measures in NY Times and Wall Street Journal readers
in wide format.

patient group pre post
1 NYTimes 55 45
2 WallStreetJ 63 50
3 NYTimes 66 56
4 WallStreetJ 50 37
5 NYTimes 63 50
6 WallStreetJ 65 53

Table 13.5: Headache measures in NY Times and Wall Street Journal readers
in long format.

patient group measure headache
1 NYTimes pre 55
1 NYTimes post 45
2 WallStreetJ pre 63
2 WallStreetJ post 50
3 NYTimes pre 66
3 NYTimes post 56

a random sample of readers of the Wall Street Journal that suffer from regular
headaches. We’d like to know whether aspirin works, but we are also interested
to know whether the effect of aspirin is similar in the two groups of readers. Our
null-hypothesis is that the effect of aspirin in affecting headache severity is the
same in NY Times and Wall Street Journal readers that suffer from headaches.

𝐻0: The effect of aspirin is the same for NY Times readers as for Wall Street
Journal readers.

Suppose we have the data set in Table 13.4 (we only show the first six patients),
and we only look at the measurements before aspirin intake and 3 hours after
aspirin intake (pre-post design).

In this part of the data set, patients 2, 4, and 6 read the Wall Street Journal,
and patients 1, 3 and 5 read the NY Times. We assume that people only read
one of these newspapers. We measure their headache before and after the intake
of aspirin (a pre-post design). The data are now in what we call wide format:
the dependent variable headache is spread over two columns, pre and post.
In order to analyse the data with linear models, we need them in long format,
as in Table 13.5.
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datalong <- datawide %>%
pivot_longer(cols = -c(patient, group),

names_to = "measure",
values_to = "headache")

The new variable measure now indicates whether a given measurement of
headache refers to a measurement before intake (pre) or after intake (post).
Again we could investigate whether there is an effect of aspirin with a linear
mixed model, with measure as our categorical predictor, but that is not really
what we want to test: we only want to know whether the effect of aspirin
(being small, large, negative or non-existent) is the same for both groups.
Remember that this hypothesis states that there is no interaction effect of aspirin
(measure) and group. The null-hypothesis is that group is not a moderator
of the effect of aspirin on headache. There may be an effect of aspirin or there
may not, and there may be an effect of newspaper (group) or there may not,
but we’re interested in the interaction of aspirin and group membership. Is the
effect of aspirin different for NY Times readers than for Wall Street Journal
readers?

In our model we therefore need to specify an interaction effect. Since the data
are clustered (2 measures per patient), we use a linear mixed model. First we
show how to analyse these data using dummy variables, later we will show the
results using a different approach.

We recode the data into two dummy variables, one for the aspirin intervention
(dummy1: 1 if measure = post, 0 otherwise), and one for group membership
(dummy2: 1 if group = NYTimes, 0 otherwise):

datalong <- datalong %>%
mutate(dummy1 = ifelse(measure == "post", 1, 0),

dummy2 = ifelse(group == "NYTimes", 1, 0))
datalong %>% head(3)

## # A tibble: 3 x 6
## patient group measure headache dummy1 dummy2
## <int> <chr> <chr> <dbl> <dbl> <dbl>
## 1 1 NYTimes pre 55 0 1
## 2 1 NYTimes post 45 1 1
## 3 2 WallStreetJ pre 63 0 0

Next we need to compute the product of these two dummies to code a dummy
for the interaction effect. Since with the above dummy coding, all post measures
get a 1, and all NY Times readers get a 1, only the observations that are post
aspirin and that are from NY Times readers get a 1 for this product.
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datalong <- datalong %>%
mutate(dummy_int = dummy1*dummy2)

datalong %>% head(3)

## # A tibble: 3 x 7
## patient group measure headache dummy1 dummy2 dummy_int
## <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 1 NYTimes pre 55 0 1 0
## 2 1 NYTimes post 45 1 1 1
## 3 2 WallStreetJ pre 63 0 0 0

With these three new dummy variables we can specify the linear mixed model.

model5 <- datalong %>%
lmer(headache ~ dummy1 + dummy2 + dummy_int + (1|patient),

data = .)
model5

## Linear mixed model fit by REML ['lmerMod']
## Formula: headache ~ dummy1 + dummy2 + dummy_int + (1 | patient)
## Data: .
## REML criterion at convergence: 1185.5
## Random effects:
## Groups Name Std.Dev.
## patient (Intercept) 5.229
## Residual 2.884
## Number of obs: 200, groups: patient, 100
## Fixed Effects:
## (Intercept) dummy1 dummy2 dummy_int
## 59.52 -10.66 0.32 0.60

In the output, we recognise the three fixed effects for the three dummy
variables. Since we’re interested in the interaction effect, we look at the effect
of dummy_int. The effect is in the order of +0.6. What does this mean?

Remember that all headache measures before aspirin intake are given a 0 for
the intervention dummy dummy1. A reader from the Wall Street Journal gets
a 0 for the group dummy dummy2. Since the product of 0 × 0 equals 0, all
measures before aspirin in Wall Street Journal readers get a 0 for the interaction
dummy dummy_int. Therefore, the intercept of 59.52 refers to the expected
headache severity of Wall Street Journal readers before they take their aspirin.

Furthermore, we see that the effect of dummy1 is -10.66. The variable
dummy1 codes for post measurements. So, relative to Wall Street Journal
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Table 13.6: Expected headache levels in Wall Street Journal and NY Times
readers, before and after aspirin intake.

measure group dummy1 dummy2 dummy_int exp_mean
pre WallStreetJ 0 0 0 60
post WallStreetJ 1 0 0 60 + (-11) = 49
pre NYTimes 0 1 0 60 + 0.3 = 60.3
post NYTimes 1 1 1 60 + (-11) + 0.3 +

0.6 = 49.9

readers prior to aspirin intake, the level of post intake headache is 10.66 points
lower.

If we look further in the output, we see that the effect of dummy2 equals
+0.32. This variable dummy2 codes for NY Times readers. So, relative to
Wall Street Journal readers and before aspirin intake (the reference group), NY
Times readers score on average 0.32 points higher on the headache scale.

However, we’re not interested in a general difference between those two groups
of readers, we’re interested in the effect of aspirin and whether it is different in
the two groups of readers. In the output we see the interaction effect: being a
reader of the NY Times AND at the same time being a measure after aspirin
intake, the expected level of headache is an extra +0.60. The effect of aspirin
is -10.66 in Wall Street Journal readers, as we saw above, but the effect is
−10.66 + 0.60 = −10.06 in NY Times readers. So in this sample the effect of
aspirin on headache is 0.60 smaller than in Wall Street Journal readers (note
that even while the interaction effect is positive, it is positive on a scale where
a high score means more headache).

Let’s look at it in a different way, using a table with the dummy codes, see
Table 13.6. For each group of data, pre or post aspirin and NY Times readers
and Wall Street Journal readers, we note the dummy codes for the new dummy
variables. In the last column we use the output estimates and multiply them
with the respective dummy codes (1 and 0) to obtain the expected headache
level (using rounded numbers):

The exact numbers are displayed in Figure 13.5.

We see that the specific effect of aspirin in NY Times readers is 0.60 smaller
than the effect of aspirin in Wall Street Journal readers. This difference in the
effect of aspirin between the groups was not significantly different from 0, as we
can see when we let R plot a summary of the results.

model5 %>% summary()

## Linear mixed model fit by REML ['lmerMod']
## Formula: headache ~ dummy1 + dummy2 + dummy_int + (1 | patient)
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Figure 13.5: Expected headache levels in NY Times readers and Wall Street
Journal readers based on a linear mixed model with an interaction effect.

## Data: .
##
## REML criterion at convergence: 1185.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.31732 -0.43239 -0.02912 0.50368 2.20297
##
## Random effects:
## Groups Name Variance Std.Dev.
## patient (Intercept) 27.346 5.229
## Residual 8.317 2.884
## Number of obs: 200, groups: patient, 100
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 59.5200 0.8445 70.476
## dummy1 -10.6600 0.5768 -18.482
## dummy2 0.3200 1.1944 0.268
## dummy_int 0.6000 0.8157 0.736
##
## Correlation of Fixed Effects:
## (Intr) dummy1 dummy2
## dummy1 -0.341
## dummy2 -0.707 0.241
## dummy_int 0.241 -0.707 -0.341
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”The null-hypothesis that the effect of aspirin is the same in the two
populations of readers cannot be rejected, 𝑡(98) = 0.736, 𝑝 = .464.
We therefore conclude that there is no evidence that aspirin has a
different effect for NY Times than for Wall Street Journal readers.”

Note that we could have done the analysis in another way, not recoding the
variables into numeric dummy variables ourselves, but by letting R do it
automatically. R does that automatically for factor variables like our variable
group. The code is then:

model6 <- datalong %>%
lmer(headache ~ measure + group + measure:group + (1|patient),

data = .)
model6 %>% summary()

## Linear mixed model fit by REML ['lmerMod']
## Formula: headache ~ measure + group + measure:group + (1 | patient)
## Data: .
##
## REML criterion at convergence: 1185.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.31732 -0.43239 -0.02912 0.50368 2.20297
##
## Random effects:
## Groups Name Variance Std.Dev.
## patient (Intercept) 27.346 5.229
## Residual 8.317 2.884
## Number of obs: 200, groups: patient, 100
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 49.7800 0.8445 58.943
## measurepre 10.0600 0.5768 17.442
## groupWallStreetJ -0.9200 1.1944 -0.770
## measurepre:groupWallStreetJ 0.6000 0.8157 0.736
##
## Correlation of Fixed Effects:
## (Intr) mesrpr grpWSJ
## measurepre -0.341
## grpWllStrtJ -0.707 0.241
## msrpr:grWSJ 0.241 -0.707 -0.341

R has automatically created dummy variables, one dummy measurepre
that codes 1 for all measurements before aspirin intake, one dummy
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groupWallStreetJ that codes 1 for all measurements from Wall Street
Journal readers, and one dummy measurepre:groupWallStreetJ that codes
1 for all measurements from Wall Street Journal readers before aspirin intake.
Because the dummy coding is different from the hand coding we did ourselves
earlier, the intercept and the main effects of group and measure are now
different. We also see that the significance level of the interaction effect is still
the same. You are always free to choose to either construct your own dummy
variables and analyse them in a quantitative way (using numeric variables), or
to let R construct the dummy variables for you (by using a factor variable):
the 𝑝-value for the interaction effect will always be the same (this is not true
for the intercept and the main effects).

Because the two analyses are equivalent (they end up with exactly the same
predictions, feel free to check!), we can safely report that we have found a non-
significant group by measure interaction effect, 𝑡(98) = 0.736, 𝑝 = .464. We
therefore conclude that we found no evidence that in the populations of NY
Times readers and Wall Street Journal readers, the short-term effect of aspirin
on headache is any different.

13.4 Mixed designs

The design in the previous section, where we had both a grouping variable and
a pre-post or repeated measures design, is often called a mixed design. It is a
mixed design in the sense that there are two kinds of variables: one is a between-
individuals variable, and one variable is a within-individual variable. Here the
between-individuals variable is group: two different populations of readers. It
is called between because one individual can only be part of one group. When
we study the effect of the group effect we are essentially comparing the scores of
one group of individuals with the scores of another group of individuals, so the
comparison is between different individuals. The two groups of data are said to
be independent, as we knew that none of the readers in this data set reads both
journals.

The within-variable in this design is the aspirin intervention, indicated by the
variable measure. For each individual we have two observations: all individuals
are present in both the pre condition data as well as in the post condition
data. With this intervention variable, we are comparing the scores of a group
of individuals with the scores of that same group of individuals at another time
point. The comparison of scores is within a particular individual, at time point
1 and at time point 2. So the pre and post sets of data are not independent:
the headache scores in both conditions are coming from the same individuals.

Mixed designs are often seen in psychological experiments. For instance, you
want to know how large the effect of alcohol intake is on driving performance.
You want to know whether the effect of alcohol on driving performance is the
same in a Fiat 600 as in a Porsche 918. Suppose you have 100 participants for
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your study. There are many choices you can make regarding the design of your
study. Here we discuss 4 alternative research designs:

1. One option is to have all participants participate in all four conditions:
they all drive a Fiat with and without alcohol, and they all drive a Porsche,
with and without alcohol. In this case, both the car and the alcohol are
within-participant variables.

2. The second option is to have 50 participants drive a Porsche, with and
without alcohol, and to have the other 50 participants drive the Fiat,
with and without alcohol. In this case, the car is the between-participants
variable, and alcohol is the within-participant variable.

3. The third option is to have 50 participants without alcohol drive both
the Porsche and the Fiat, and to have the other 50 participants drive the
Porsche and the Fiat with alcohol. Now the car is the within-participant
variable, and the alcohol is the between-participants variable.

4. The fourth option is to have 25 participants drive the Porsche with alcohol,
25 other participants drive the Porsche without alcohol, 25 participants
drive the Fiat with alcohol, and the remaining 25 participants drive the
Fiat without alcohol. Now both the car variable and the alcohol variable
are between-participant variables: none of the participants is present in
more than 1 condition.

Only the second and the third design described here are mixed designs, having
at least one between-participants variable and at least one within-participant
variable.
Remember that when there is at least one within variable in your design, you
have to use a linear mixed model. If all variables are between variables, one
can use an ordinary linear model. Note that the term mixed in linear mixed
model refers to the effects in the model that can be both random and fixed. The
term mixed in mixed designs refers to the mix of two kinds of variables: within
variables and between variables.
Also note that the within and between distinction refers to the units of analysis.
If the unit of analysis is school, then the denomination of the school is a between-
school variable. An example of a within-school variable could be time: before a
major curriculum reform and after a major curriculum reform. Or it could be
teacher: classes taught by teacher A or by teacher B, both teaching at the same
school.

13.5 Mixed design with a linear effect

In an earlier section we looked at a mixed design where the between variable
was group and the within variable was measure: pre or post. It was a 2 by
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Table 13.7: Cortisol measures over time.

person group measure cortisol
1 Olympian 1 19
1 Olympian 2 20
1 Olympian 3 22
1 Olympian 4 23
1 Olympian 5 24
1 Olympian 6 22

2 design (2 × 2) design: 2 measures and 2 groups, where we were interested in
the interaction effect. We wanted to know whether group moderated the effect
of measure, that is, the effect of aspirin on headache. We used the categorical
within-individual variable measure in the regression by dummy-coding it.

In an earlier section in this chapter we saw that we can also model linear effects
of numeric variables in linear mixed models, where we treated the time variable
numerically: 0hrs, 3hrs after aspirin intake and 24 hrs after intake. Here we will
give an example of a 3×20 mixed design: we have a categorical group (between-
individuals) variable with 3 levels and a numeric time (within) variable with 20
levels. The example is about stress in athletes that are going to take part in the
2018 Winter Olympics. Stress can be revealed in morning cortisol levels. In the
20 days preceding the start of the Olympics, each athlete was measured every
morning after waking and before breakfast by letting them chew on cotton. The
cortisol level in the saliva was then measured in the lab. Our research question
is by how much cortisol levels rise in athletes that prepare for the Olympics.

Three groups were studied. One group consisted of 50 athletes who were selected
to take part in the Olympics, one group consisted of 50 athletes that were very
good but were not selected (Control group I) and one group consisted of 50 non-
athlete spectators that were going to watch the games (Control group II). The
research question was about what the differences are in average cortisol increase
in these three groups: the Olympians, Control group I and Control group II.

In Table 13.7 you see part of the fictional data, the first 6 measurements on
person 1 that belongs to the group of Olympians.

When we plot the data, and use different colours for the three different groups,
we already notice that the Olympians show generally higher cortisol levels,
particularly at the end of the 20-day period (Figure 13.6).

We want to know to what extent the linear effect of time is moderated by group.
Since for every person we have 20 measurements, the data are clustered so we
use a linear mixed model. We’re looking for a linear effect of time, so we use
the measure variable numerically (i.e., it is numeric, and we do not transform
it into a factor). We also use the categorical variable group as a predictor. It
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Figure 13.6: Cortisol levels over time in three groups.

is a factor variable with three levels, so R will automatically make two dummy
variables. Because we’re interested in the interaction effects, we include both
main effects of group and measure as well as their interaction in the model.
Lastly, we control for individual differences in cortisol levels by introducing
random effects for person.

model7 <- datalong %>%
lmer(cortisol ~ measure + group + measure:group + (1|person),

data = .)
model7 %>% summary()

## Linear mixed model fit by REML ['lmerMod']
## Formula: cortisol ~ measure + group + measure:group + (1 | person)
## Data: .
##
## REML criterion at convergence: 8985.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.5807 -0.6414 -0.0112 0.6625 3.3128
##
## Random effects:
## Groups Name Variance Std.Dev.
## person (Intercept) 0.9862 0.9931
## Residual 0.9970 0.9985
## Number of obs: 3000, groups: person, 150
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##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 20.094018 0.155004 129.636
## measure 0.596989 0.005476 109.020
## groupControl group II -0.226802 0.219208 -1.035
## groupOlympian -0.402950 0.219208 -1.838
## measure:groupControl group II 0.006383 0.007744 0.824
## measure:groupOlympian 0.411896 0.007744 53.188
##
## Correlation of Fixed Effects:
## (Intr) measur grCgII grpOly m:CgII
## measure -0.371
## grpCntrlgII -0.707 0.262
## groupOlympn -0.707 0.262 0.500
## msr:grpCgII 0.262 -0.707 -0.371 -0.185
## msr:grpOlym 0.262 -0.707 -0.185 -0.371 0.500

In the output we see an intercept of 20.09, a slope of about 0.597 for the effect
of measure, two main effects for the variable group (Control group I is the
reference group), and two interaction effects (one for Control group II and one
for the Olympian group). Let’s fill in the linear model equation based on this
output:

cortisol𝑖𝑗 = 20.09 + 𝑝𝑒𝑟𝑠𝑜𝑛𝑖 + 0.5970 measure − 0.2268 ContrGrII − 0.4029 Olympian+
0.0063 ContrGrII measure + 0.4119 Olympian measure + 𝑒𝑖𝑗

𝑝𝑒𝑟𝑠𝑜𝑛𝑖 ∼ 𝑁(0, 𝜎2
𝑝 = 0.9862)

𝑒𝑖𝑗 ∼ 𝑁(0, 𝜎2
𝑒 = 0.9970)

We see a clear intraclass correlation of around 0.9862
0.9862+0.9970 = 0.497 so it’s a

good thing we’ve included random effects for person. The expected means at
various time points and for various groups can be made with the use of the
above equation.
It helps interpretation when we look at what linear effects we have for the three
different groups. Filling in the above equation for Control group I (the reference
group), we get:

cortisol𝑖𝑗 = 20.09 + 𝑝𝑒𝑟𝑠𝑜𝑛𝑖 + 0.597 × measure + 𝑒𝑖𝑗

For Control group II we get:

cortisol𝑖𝑗 = 20.09 + 𝑝𝑒𝑟𝑠𝑜𝑛𝑖 + 0.597 measure − 0.2268 + 0.006 measure + 𝑒𝑖𝑗
= 19.8632 + 𝑝𝑒𝑟𝑠𝑜𝑛𝑖 + 0.603 × measure + 𝑒𝑖𝑗
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And for the Olympians we get:

cortisol𝑖𝑗 = 20.09 + 𝑝𝑒𝑟𝑠𝑜𝑛𝑖 + 0.597 measure − 0.4029 + 0.4119 measure + 𝑒𝑖𝑗
= 19.6871 + 𝑝𝑒𝑟𝑠𝑜𝑛𝑖 + 1.0089 × measure + 𝑒𝑖𝑗

In these three equations, all intercepts are close to 20. The slopes are about 0.6
in both Control groups I and II, whereas the slope is around 1 in the group of
Olympian athletes. For illustration, these three implied linear regression lines
are depicted in Figure 13.7.
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Figure 13.7: Cortisol levels over time in three groups with the group-specific
regression lines.

So based on the linear model, we see that in this sample the rise in cortisol levels
is much steeper in Olympians than in the two control groups. But is this true for
all Olympians and the rest of the populations of high performing athletes and
spectators? Note that in the regression table we see two interaction effects: one
for measure:groupControl group II and one for measure:groupOlympian.
Here we’re interested in the rise in cortisol in the three different groups and to
what extent these sample differences extend to the three populations.
A possible answer we find in the 𝐹 -statistic of an ANOVA. When we run an
ANOVA on the results,

datalong %>%
lmer(cortisol ~ measure + group + measure:group + (1|person),

data = .,
contrasts = list(group = contr.sum)) %>%

Anova(type = 3, test.statistic = "F")
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## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: cortisol
## F Df Df.res Pr(>F)
## (Intercept) 49368.4919 1 197.39 <2e-16 ***
## measure 54256.1350 1 2847.00 <2e-16 ***
## group 1.6984 2 197.39 0.1856
## measure:group 1857.2017 2 2847.00 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

we see a significant measure by group interaction effect, 𝐹(2, 2847) =
1857.20, 𝑝 < .001. The null-hypothesis of the same cortisol change in three
different populations can be rejected, and we conclude that Olympian athletes,
non-Olympian athletes and spectators show a different change in cortisol levels
in the weeks preceding the games.
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Chapter 14

Non-parametric alternatives
for linear mixed models

14.1 Checking assumptions

In previous chapters we discussed the assumptions of linear models and linear
mixed models: linearity (in parameters), homoscedasticity (equal variance),
normal distribution of residuals, normal distribution of random effects (relevant
for linear mixed models only), and independence (no clustering unaccounted
for).

The problem of non-linearity can sometimes be solved by introducing quadratic
terms, by replacing a linear model 𝑌 = 𝑏0 + 𝑏1𝑋 + 𝑒 by another linear model
𝑌 = 𝑏0 + 𝑏1𝑋 + 𝑏2𝑋2 + 𝑒.
If we have non-independence, then you can introduce either an extra fixed effect
or a random effect for a clustering variable. For example, if you see that cars
owned by low income families have much more mileage than cars owned by high
income families, you can account for this by adding a fixed effect of an income
variable as predictor. If you see that average mileage is rather similar within
municipality but that average mileage can vary quite a lot across municipalities,
you can introduce a random effect for municipality (if you have data say from
30 different municipalities).

Unequal variance of residuals and non-normal distribution of residuals are
harder to tackle. Non-normality can sometimes be solved by using generalised
linear models (see Chapter 15). A combination of non-normality and unequal
variance can sometimes be easily solved by using a transformation of the
dependent variable, for instance not analysing 𝑌 = 𝑏0 + 𝑏1𝑋 + 𝑒 but analysing
log(𝑌 ) = 𝑏0 + 𝑏1𝑋 + 𝑒 or

√
𝑌 = 𝑏0 + 𝑏1𝑋 + 𝑒. There are also more advanced

options available that will not be discussed here but that make corrections to
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standard errors and 𝑝-values that render inference more robust against model
violations.

If these data transformations or advanced options don’t work (or if you’re
not acquainted with them), and your data show non-equal variance and/or
non-normally distributed residuals, there are non-parametric alternatives. Here
we discuss two: Friedman’s test and Wilcoxon’s signed rank test. We explain
them using an imaginary data set on speed skating.

Suppose we have data on 12 speed skaters that participate on the 10 kilometres
distance in three separate championships in 2017-2018: the European
Championships, the Winter Olympics and the World Championships. Your
friend expects that speed skaters will perform best at the Olympic games,
so there she expects the fastest times. You disagree and decide to test the
null-hypothesis that average times are the same at the three occasions. You
regard the data from 2017-2018 to be a random sample of all seasons in the
past and future. In Figure 14.1 we see a boxplot of the data.
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Figure 14.1: Boxplot of the imaginary speed skating data.

In order to test your null-hypothesis, we run a linear mixed model with
dependent variable time, and independent variable occasion. We use random
effects for the differences in speed across skaters. In Figure 14.2 we see the
residuals. From this plot we clearly see that the assumption of equal variance
(homogeneity of variance) is violated: the variance of the residuals in the
World Championships condition is clearly smaller than the variance of the
European Championships condition. From the histogram of the residuals in
Figure 14.3 we also see that the distribution of the residuals is not bell-shaped:
it is positively skewed (skewed to the right).

Since the assumptions of homogeneity of variance and of normally distributed
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Figure 14.2: Residuals of the speedskating data with a linear mixed model.
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Figure 14.3: Histogram of the residuals of the speedskating data with a linear
mixed model.
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Table 14.1: The speed skating data in wide format.

athlete EuropeanChampionships WorldChampionships Olympics
1 14.35 15.79 16.42
2 17.36 14.26 18.13
3 19.01 18.37 19.95
4 27.90 15.12 17.78
5 17.67 17.17 16.96
6 17.83 15.30 16.15
7 16.30 15.63 19.44
8 28.00 15.69 16.23
9 18.27 15.65 15.76
10 17.00 14.99 16.18
11 17.10 15.83 13.89
12 18.94 14.77 14.83

residuals are violated1, the results from the linear mixed model cannot be
trusted. In order to answer our research question, we therefore have to resort to
another kind of test. Here we discuss Friedman’s test, a non-parametric test, for
testing the null-hypothesis that the medians of the three groups of data are the
same (see Chapter 1). This Friedman test can be used in all situations where
you have at least 2 levels of the within variable. In other words, you can use
this test when you have data from three occasions, but also when you have data
from 10 occasions or only 2. In a later section the Wilcoxon signed ranks test
is discussed. This test is often used in social and behavioural sciences. The
downside of Wilcoxon’s test is that it can only handle data sets with 2 levels
of the within variable. In other words, it can only be used when we have data
from two occasions. Friedman’s test is therefore more generally applicable than
Wilcoxon’s.

14.2 Friedman’s test for 𝑘 measures

Similar to many other non-parametric tests for testing the equality of medians,
Friedman’s test is based on ranks. Table 14.1 shows the speed skating data in
wide format.

We rank all of these time measures by determining the fastest time, then the
next to fastest time, etcetera, until the slowest time. But because the data in

1Remember that assumptions relate to the population, not samples: often-times your data
set is too small to say anything about assumptions at the population level. Residuals for a
data set of 8 persons might show very non-normal residuals, or very different variances for two
subgroups of 4 persons each, but that might just be a coincidence, a random result because
of the small sample size. If in doubt, it is best to use non-parametric methods.
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Table 14.2: Row-wise ranks of the speed skating data.

athlete EuropeanChampionships WorldChampionships Olympics
1 1 2 3
2 2 1 3
3 2 1 3
4 3 1 2
5 3 2 1
6 3 1 2
7 2 1 3
8 3 1 2
9 3 1 2
10 3 1 2
11 3 2 1
12 3 1 2

each row belong together (we compare individuals with themselves), we do the
ranking row-wise. For each athlete separately, we determine the fastest time
(1), the next fastest time (2), and the slowest time (3) and put the ranks in
a new table, see Table 14.2. There we see for example that athlete 1 had the
fastest time at the European Championships (14.35, rank 1) and the slowest at
the Olympics (16.42, rank 3).

Next, we compute the sum of the ranks column-wise: the sum of the ranks for
the European Championships data is 31, for the Olympic data it’s 15 and for
the World Championships data it is 26. We call these sums 𝑆𝑗, where the 𝑗
indicates the column.

From these sums 𝑆𝑗 we can gather that in general, these athletes showed their
best times (many rank 1s) at the World Championships, as the sum of the ranks
is lowest. We also see that in general these athletes showed their worst times
(many rank 2s and 3s) at the European Championships, as the relevant column
showed the highest sum of ranks.

In order to know whether these sums of ranks are significantly different from
each other, we may compute an 𝐹𝑟-value based on the following formula:

𝐹𝑟 = [ 12
𝑛𝑘(𝑘 + 1)Σ𝑘

𝑗=1𝑆2
𝑗 ] − 3𝑛(𝑘 + 1)

In this formula, 𝑛 stands for the number of rows (12 athletes), 𝑘 stands for the
number of columns (3 occasions), and 𝑆2

𝑗 stands for the squared sum of column
𝑗 (312, 152, and 262, respectively). If we fill in these numbers, we get:
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Table 14.3: The raw skating data in random order.

athlete EuropeanChampionships WorldChampionships Olympics
1 15.76 14.26 17.78
2 19.44 17.10 17.83
3 16.18 14.83 15.63
4 15.30 17.00 16.42
5 15.79 16.23 17.36
6 14.77 28.00 15.65
7 14.35 16.15 16.30
8 27.90 15.12 18.94
9 16.96 19.01 19.95
10 15.83 17.17 13.89
11 14.99 18.27 15.69
12 18.37 17.67 18.13

𝐹𝑟 = [ 12
12 × 3(3 + 1) × (312 + 152 + 262)] − 3 × 12(3 + 1)

= [ 12
144 × 1862] − 144 = 11.167

What can we tell from this 𝐹𝑟-statistic? In order to say something about
significance, we have to know what values are to be expected under the null-
hypothesis that there are no differences across the three groups of data. Suppose
we randomly mixed up the data by taking all the speed skating times and
randomly assigning them to the three contests and the twelve athletes, until we
have a newly filled data matrix, for example the one in Table 14.3.

If we then compute 𝐹𝑟 for this data matrix, we get a different value. If we do
this mixing up the data and computing 𝐹𝑟 say 1000 times, we get 1000 values
for 𝐹𝑟, summarised in the histogram in Figure 14.4.

So if the data are just randomly distributed over the three columns (and 12 rows)
in the data matrix, we expect no systematic differences across the three columns
and so the null-hypothesis is true. So now we know what the distribution of 𝐹𝑟
looks like when the null-hypothesis is true: more or less like the one in Figure
14.4. Remember that for the true data that we actually gathered (in the right
order that is!), we found an 𝐹𝑟-value of 11.167 . From the histogram, we see that
only very few values of 11.167 or larger are observed when the null-hypothesis
is true. If we look more closely, we find that only 0.2% of the values are larger
than 11.167 , so we have a two-tailed 𝑝-value of 0.004. The 95th percentile of
these 1000 𝐹𝑟-values is 6.1666667, meaning that of the 1000 values for 𝐹𝑟, 5%
are larger than 6.1666667. So if we use a significance level of 5%, our observed
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Figure 14.4: Histogram of 1000 possible values for 𝐹𝑟 given that the null-
hypothesis is true, for 12 speed skaters.

value of 11.167 is larger than the critical value for 𝐹𝑟, and we conclude that the
null-hypothesis can be rejected.

Now this 𝑝-value of 0.004 and the critical value of 6.1666667 are based on our
own computations2. Actually there are better ways. One is to look up critical
values of 𝐹𝑟 in tables, for instance in Kendall M.G. (1970) Rank correlation
methods. (fourth edition). The 𝑝-value corresponding to this 𝐹𝑟-value depends
on 𝑘, the number of groups of data (here 3 columns) and 𝑛, the number of rows
(12 individuals). If we look up that table, we find that for 𝑘 = 3 and 𝑛 = 12
the critical value of 𝐹𝑟 for a type I error rate of 0.05 equals 6.17. Our observed
𝐹𝑟-value of 11.167 is larger than that, therefore we can reject the null-hypothesis
that the median skating times are the same at the three different championships.
So we have to tell your friend that there are general differences in skating times
at different contests, 𝐹𝑟 = 11.167, 𝑝 < 0.05, but it is not the case that the fastest
times were observed at the Olympics.

A third way to do null-hypothesis testing is to make an approximation of the
distribution of 𝐹𝑟 under the null-hypothesis. Note that the distribution in the
histogram in Figure 14.4 is very strangely shaped. The reason is that the data
set is quite limited. Suppose we have data not on 12 speed skaters, but on 120.
If we then randomly mix up data again and compute 1000 different values for
𝐹𝑟, we get the histogram in Figure 14.5.

2What we have actually done is a very simple form of bootstrapping or permutation testing:
jumbling up the data set many times and in that way determining the distribution of a
test-statistic under the null-hypothesis, in this case the distribution of 𝐹𝑟. For more on
bootstrapping, see Davison, A.C. & Hinkley, D.V. (1997). Bootstrap Methods and their
Application. Cambridge, UK: Cambridge.
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Figure 14.5: Histogram of 1000 possible values for 𝐹𝑟 given that the null-
hypothesis is true, for 120 speed skaters.

The shape becomes more regular. It also starts to resemble another distribution,
that of the 𝜒2 (chi-square). It can be shown that the distribution of the 𝐹𝑟 for
a large number of rows in the data matrix, and at least 6 columns, approaches
the shape of the 𝜒2-distribution with 𝑘 − 1 degrees of freedom. This is shown
in Figure 14.6.

The density of the 𝜒2-distribution with 2 degrees of freedom approaches the
histogram quite well, but not perfectly. In general, for large 𝑛 and 𝑘 > 5, the
approximation is very good. In that way it gets easier to look up 𝑝-values for
certain 𝐹𝑟-values, because the 𝜒2-distribution is well-known3, so we don’t have
to look up critical values for 𝐹𝑟 in old tables. For a significance level of 5%, the
critical value of a 𝜒2 with 2 degrees of freedom is 5.991. We can see that in R
with the following code:

# critical value for chi-square distribution
# with 2 degrees of freedom and alpha = 0.05:
qchisq(p = 0.95, df = 2)

## [1] 5.991465

This is close to the value in the table for 𝐹𝑟 in old books: 6.17. The part of
the 𝜒2-distribution with 2 degrees of freedom that is larger than the observed
11.167 is 0.004, so our approximate 𝑝-value for our null-hypothesis is 0.004.

3The 𝜒2-distribution is based on the normal distribution: the 𝜒2-distribution with 𝑘 degrees
of freedom is the distribution of a sum of the squares of 𝑘 independent standard normal random
variables.
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Figure 14.6: The distribution of 𝐹𝑟 under the null-hypothesis, overlain with a
chi-square distribution with 2 degrees of freedom.

# p-value for statistic of 11.167 based on
# chi-square distribution with 2 degrees of freedom:
pchisq(11.167, df = 2, lower.tail = F)

## [1] 0.003759385

14.3 Comparing Friedman’s test with linear
mixed model on ranks (advanced)

Remember that for many non-parametric tests, they are equivalent to applying
a linear model on ranks. This is not true for this Friedman test. For this data
set, we could ignore potential problems with the data and carry out a linear
mixed model analysis, using the actual finishing times, and predict them with a
fixed effect for the type of championship and a random effect for each individual
skater. If you have doubts about the assumptions, apply a non-parametric test
like the Friedman test.

Alternatively, we could apply ranking on all the finish times, not row-wise as we
do for Friedman’s test but lumping all times together. Next, we apply the same
linear mixed model analysis with a fixed effect for the type of championship and
a random effect the skaters, now using the ranks as dependent variable. The
result would be a perfectly acceptable analysis, however, it is not equivalent to
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Table 14.4: The raw skating data in long data format.

athlete occasion time
1 EuropeanChampionships 14.35
1 Olympics 16.42
1 WorldChampionships 15.79
2 EuropeanChampionships 17.36
2 Olympics 18.13
2 WorldChampionships 14.26

Friedman’s test.4

14.4 How to perform Friedman’s test in R

In order to let R do the calculations for you, you need first of all your data
to be in long format. If your data happen to be in wide format, use the
pivot_longer() function to get the data in long format. Suppose your data is
in wide format, as in Table 14.1. Then the following code turns the data into
long format:

datawide %>%
pivot_longer(cols = -athlete,

names_to = "occasion",
values_to = "time")

This creates the long format data matrix in Table 14.4:

We can then specify that we want Friedman’s test by using the friedman.test()
function and indicating which variables we want to use:

datalong %>%
friedman.test(time ~ occasion | athlete, data = .)

##
## Friedman rank sum test
##
## data: time and occasion and athlete
## Friedman chi-squared = 11.167, df = 2, p-value = 0.00376

4See for instance https://seriousstats.wordpress.com/2012/02/14/friedman/
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This code says, ”use time as dependent variable, occasion as independent
variable, and the data are clustered within athletes (data with the same athlete
ID number belong together)”.

In the output we see a chi-squared statistic, degrees of freedom, and an
asymptotic (approximated) 𝑝-value. Why don’t we see an 𝐹𝑟-statistic?

The reason is, as discussed in the previous section, that for a large number of
measurements (in wide format: columns) and a large number of individuals (in
wide format: rows), the 𝐹𝑟 statistic tends to have the same distribution as a
chi-square, 𝜒2, with 𝑘 − 1 degrees of freedom. So what we are looking at in this
output is really an 𝐹𝑟-value of 11.167 (exactly the same value as we computed
by hand in the previous section). In order to approximate the 𝑝-value, this value
of 11.167 is interpreted as a chi-square (𝜒2), which with 2 degrees of freedom
has a 𝑝-value of 0.004.

This asymptotic (approximated) 𝑝-value is the correct 𝑝-value if you have a lot
of rows (large 𝑛) and at least 6 variables (𝑘 > 5). If you do not have that,
as we have here, this asymptotic 𝑝-value is only what it is: an approximation.
However, this is only a problem when the approximate 𝑝-value is close to the
pre-selected significance level 𝛼. If 𝛼 equals 0.05, an approximate 𝑝-value of
0.002 is much smaller than that, and we do not hesitate to call it significant,
whatever its true value may be. If a 𝑝-value is very close to 𝛼, it might be a
good idea to look up the exact critical values for 𝐹𝑟 in online tables5. If your
𝐹𝑟 is larger than the critical value for a certain combination of 𝑛, 𝑘 and 𝛼, you
may reject the null-hypothesis.

In the above case we can report:

”A Friedman’s test showed that speed skaters have significantly
different median times on the 10 kilometre distance at the three
types of contests, 𝐹𝑟 = 11.167, 𝑝 = .004.”

Linear mixed model version on rank data

Althought it is not equivalent to Friedman’s test, the same data could be
analysed using a linear mixed model on the ranks. We start from the long
data format with the original data and create new variable for the ranks:

datalong <- datalong %>%
mutate(rank = rank(time))

datalong %>% head()

## athlete occasion time rank
## 1 1 EuropeanChampionships 14.35 3

5https://www.jstor.org/stable/3315656?seq=1
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## 2 1 Olympics 16.42 19
## 3 1 WorldChampionships 15.79 13
## 4 2 EuropeanChampionships 17.36 24
## 5 2 Olympics 18.13 28
## 6 2 WorldChampionships 14.26 2

Note that we now have large values for the ranks: the data is ranked across all
skaters and all championships, in contrast to Friedman’s test where the ranking
is done within individual skaters.

Next we apply a linear mixed model and ask for an ANOVA, testing the null-
hypothesis that the three championships show the same average rank in the
population.

library(lmerTest)
library(car)
datalong %>%
lmer(rank ~ occasion + (1|athlete), data = .) %>%
Anova(type = 3, test.statistic = "F")

## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
##
## Response: rank
## F Df Df.res Pr(>F)
## (Intercept) 92.3181 1 32.409 5.246e-11 ***
## occasion 7.6717 2 22.000 0.002967 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can report:

”A linear mixed model on the ranked times showed that
speed skaters have significantly different median times on
the 10 kilometre distance across the three types of contests,
𝐹(2, 22) = 7.67, 𝑝 = .003.”

14.5 Wilcoxon’s signed ranks test for 2 measures

Friedman’s test can be used for 2 measures, 3 measures or even 10 measures. As
stated earlier, the well-known Wilcoxon’s test can only be used for 2 measures.
For completeness, we also discuss that test here. For that test we compare the
measures at the Olympics and at the World Championships.
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Table 14.5: The raw skating data and the computations for Wilcoxon signed
ranks test

athlete WorldChampionships Olympics d rank_d ranksign
1 15.79 16.42 0.63 5 5
2 14.26 18.13 3.87 12 12
3 18.37 19.95 1.58 8 8
4 15.12 17.78 2.66 10 10
5 17.17 16.96 -0.21 3 -3
6 15.30 16.15 0.85 6 6
7 15.63 19.44 3.81 11 11
8 15.69 16.23 0.54 4 4
9 15.65 15.76 0.11 2 2
10 14.99 16.18 1.19 7 7
11 15.83 13.89 -1.94 9 -9
12 14.77 14.83 0.06 1 1

For each athlete, we take the difference in skating times (Olympics -
WorldChampionships) and call it 𝑑, see Table 14.5. Next we rank these
𝑑-values, irrespective of sign, and call these ranks rank_d. From Table 14.5 we
see that athlete 12 shows the smallest difference in skating times (𝑑 = 0.06,
rank = 1) and athlete 2 the largest difference (𝑑 = 3.78, rank = 12).

Next, we indicate for each rank whether it belongs to a positive or a negative
difference 𝑑 and call that variable ranksign.

Under the null-hypothesis, we expect that some of the larger 𝑑-values are
positive and some of them negative, in a fairly equal amount. If we sum the
ranks having plus-signs and sum the ranks having minus-signs, we would expect
that these two sums are about equal, but only if the null-hypothesis is true. If
the sums are very different, then we should reject this null-hypothesis. In order
to see if the difference in sums is too large, we compute them as follows:

𝑇 + = 5 + 12 + 8 + 10 + 6 + 11 + 4 + 2 + 7 + 1 = 66
𝑇 − = 3 + 9 = 12

To know whether 𝑇 + is significantly larger than 𝑇 −, the value of 𝑇 + can be
looked up in a table, for instance in Siegel & Castellan (1988). There we see
that for 𝑇 +, with 12 rows, the probability of obtaining a 𝑇 + of at least 66 is
0.0171. For a two-sided test (if we would have switched the columns of the two
championships, we would have gotten a 𝑇 − of 66 and a 𝑇 + of 12!), we have to
double this probability. So we end up with a 𝑝-value of 2 × 0.0171 = 0.0342.
In the table we find no critical values for large sample size 𝑛, but fortunately,
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similar to the Friedman test, we can use an approximation using a different
distribution, here the normal distribution. It can be shown that for large sample
sizes, the statistic 𝑇 + is approximately normally distributed with mean

𝜇 = 𝑛(𝑛 + 1)
4

and variance:

𝜎2 = 𝑛(𝑛 + 1)(2𝑛 + 1)
24

If we therefore standardise the 𝑇 + by subtracting the 𝜇 and then dividing by
the square root of the variance √(𝜎2) = 𝜎, we get a 𝑧-value with mean 0 and
standard deviation 1. To do that, we use the following formula:

𝑧 = 𝑇 + − 𝜇
𝜎 = 𝑇 + − 𝑛(𝑛 + 1)/4

√𝑛(𝑛 + 1)(2𝑛 + 1)/24

Here 𝑇 + is 66 and 𝑛 equals 12, so if we fill in the formula we get 𝑧 = 2.118. From
the standard normal distribution we know that 5% of the observations lie above
1.96 and below -1.96. So a value for 𝑧 larger than 1.96 or smaller than -1.96
is enough evidence to reject the null-hypothesis. Here our 𝑧-statistic is larger
than 1.96, therefore we reject the null-hypothesis that the median skating times
are the same at the World Championships and the Olympics. The 𝑝-value
associated with a 𝑧-score of 2.118 is 0.034.

The analysis for a Wilcoxon test looks complicated, but is actually equivalent
to a linear mixed model applied to ranked data for moderate to large data sets.6
This will be further discussed at the end of the next section.

14.6 How to perform Wilcoxon’s signed ranks
test in R

If you want R to perform the Wilcoxon test, your data needs to be in wide
format. If your data are in long format, you can transform them with the
function pivot_wider():

datawide <- datalong %>%
pivot_wider(id_cols = athlete, values_from = "time", names_from = "occasion")

6see https://seriousstats.wordpress.com/2012/02/14/friedman/
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Next, you use the wilcox.test() function. You select the two variables
(occasions) that you would like to compare, and indicate that the Olympic and
World Championship data are paired within rows (i.e., the Olympic and World
championship data in one row belong to the same individual).

wilcox.test(datawide$Olympics, datawide$WorldChampionships,
paired = TRUE)

##
## Wilcoxon signed rank exact test
##
## data: datawide$Olympics and datawide$WorldChampionships
## V = 66, p-value = 0.03418
## alternative hypothesis: true location shift is not equal to 0

The output shows a 𝑉 -statistic, which corresponds to our 𝑇 + above. The
standard output yields an approximate 𝑝-value. This 𝑝-value is by default two-
sided. Wilcoxon’s 𝑇 +-statistic (or 𝑉 ) under the null-hypothesis approaches a
normal distribution in case we have a large number of observations (many rows
in wide format). If 𝑛 > 15, the approximation is good enough so that if we
standardise this statistic, it can be interpreted as a 𝑧-score (standardised score
with a normal distribution). That means that a 𝑧-score of 1.96 or larger or -1.96
or smaller can be regarded as significant at the 5% significance level. Since the
standard normal distribution is only an approximation, and we have 𝑛 = 12, it
is safer here to look at the exact significance level. That can be done with the
option exact = TRUE:

wilcox.test(datawide$Olympics, datawide$WorldChampionships,
paired = TRUE,
exact = TRUE)

##
## Wilcoxon signed rank exact test
##
## data: datawide$Olympics and datawide$WorldChampionships
## V = 66, p-value = 0.03418
## alternative hypothesis: true location shift is not equal to 0

In this case we see that the exact 𝑝-value is equal, to the fifth decimal, to the
approximate 𝑝-value. Note that we use a two-sided test, to allow for the fact
that random sampling could lead to a higher median for the Olympic Games or
a higher median for the World Championships. We just want to know whether
the null-hypothesis that the two medians differ can be rejected (in whatever
direction) or not.
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Let’s compare the output with the Friedman test, but then only use the relevant
occasions in your code:

datalong %>%
filter(occasion != "EuropeanChampionships") %>%
mutate(occasion = as.integer(occasion)) %>%
friedman.test(time ~ occasion | athlete,

data = .)

##
## Friedman rank sum test
##
## data: time and occasion and athlete
## Friedman chi-squared = 5.3333, df = 1, p-value = 0.02092

Note that the friedman.test() function does not perform well if some
variables are factors and you make a selection of the levels. Here we have the
factor occasion with originally 3 levels. If the friedman.test() function only
finds two of these in the data it is supposed to analyse, it throws an error.
Therefore we turn factor variable occasion into an integer variable first. The
friedman.test() function then turns this integer variable into a new factor
variable with only 2 levels before the calculations.

In the output we see that the null-hypothesis of equal medians at the World
Championships and the Olympic Games can be rejected, with an approximate
𝑝-value of 0.02.

Note that both the Friedman and Wilcoxon tests come up with very similar
𝑝-values, even though their rationales are different: Friedman’s test is based
on ranks and Wilcoxon’s test is based on the size of positive and negative
differences between measures 1 and 2. Wilcoxon’s test therefore uses more
information than Friedman’s test. Both can be used in the case you have two
measures. Friedman’s test can be used in all situations where you have 2 or
more measures per row, whereas Wilcoxon’s test can only be used if you have
2 measures per row.

In sum, we can report in two ways on our hypothesis regarding similar skating
times at the World Championships and at the Olympics:

1. ”A Friedman test showed a significant difference between the 10km skating
times at the World Championships and at the Olympics, 𝐹𝑟 = 5.33, 𝑝 =
.02.”

458



2. ”A Wilcoxon signed ranks test showed a significant difference between the
10km skating times at the World Championships and at the Olympics,
𝑇 + = 66, 𝑝 = .03.”

How do we know whether the fastest times were at the World Championships
or at the Olympics? If we look at the raw data in Table 14.1, it is not
immediately obvious. We have to inspect the 𝑇 + = 66 and 𝑇 − = 12 and consider
what they represent: there is more positivity than negativity. The positivity
is due to positive ranksigns that are computed based on 𝑑 = 𝑂𝑙𝑦𝑚𝑝𝑖𝑐𝑠 −
𝑊𝑜𝑟𝑙𝑑𝐶ℎ𝑎𝑚𝑝𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠, see Table 14.5. A positive difference 𝑑 means that the
Olympics time was larger than the WorldChampionships time. A large value
for time stands for slower speed. A positive ranksign therefore means that the
Olympics time was larger (slower!) than the WorldChampionships time. A
large rank_d means that the difference between the two times was relatively
large. Therefore, you get a large value of 𝑇 + if the Olympic times are on the
whole slower than the World Championships times, and/or when these positive
differences are relatively large. When we look at the values of ranksign in Table
14.5, we notice that only two values are negative: one relatively large value and
one relatively small value. The rest of the values are positive, both small and
large, and these all contribute to the 𝑇 + value. We can therefore state that the
pattern in the data is that for most athletes, the Olympic times are slower than
the times at the World Championships.

Of course, this is better visualised with a graph, see Figure 14.7. Easy to see
that for 2 skaters, the times were fastest at the Olympics. The rest had their
best time at the World Championships.

Wilcoxon equals linear mixed model applied to ranks

Wilcoxon’s test can also be conceived of as the analog of a linear model on ranks.
If we turn the skating data from the World Championships and the Olympic
Games into ranks, we can apply a linear mixed model with a fixed effect for
occasion and a random effect for the skater. In R we start from the data in long
format:

library(lmerTest)
datalong %>%
filter(occasion != "EuropeanChampionships") %>%
mutate(rank = rank(time)) %>%
lmer(rank ~ occasion + (1|athlete), data = .) %>%
summary()

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: rank ~ occasion + (1 | athlete)
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Figure 14.7: Skating times at the Olympics and the World Championships.
Only two of the skaters show their fastest time at the Olympics.

## Data: .
##
## REML criterion at convergence: 149.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.11878 -0.59704 0.05797 0.78980 1.48883
##
## Random effects:
## Groups Name Variance Std.Dev.
## athlete (Intercept) 8.939 2.99
## Residual 34.576 5.88
## Number of obs: 24, groups: athlete, 12
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 9.667 1.904 21.109 5.076 4.93e-05 ***
## occasionOlympics 5.667 2.401 11.000 2.361 0.0378 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## occsnOlympc -0.630
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From the results we see that the average rank is higher in the Olympics data.
The 𝑝-value is lower than 0.05, so we conclude:

”A linear mixed model on the ranked data (Wilcoxon’s test) showed
a significant difference between the 10km skating times at the World
Championships and at the Olympics, 𝑡 = 2.36, 𝑝 = .04.”

Note that the 𝑝-value is slightly different compared to the Wilcoxon test result
earlier. This is because the data set is relatively small. For moderate to large
sample sizes, the difference will disappear.

14.7 Ties

Many non-parametric tests are based on ranks. For example, if we have the data
sequence 0.1, 0.4, 0.5, 0.2, we give these values the ranks 1, 3, 4, 2, respectively.
But in many data cases, data sequences cannot be ranked unequivocally. Let’s
look at the sequence 0.1, 0.4, 0.4, 0.2. Here we have 2 values that are exactly
the same. We say then that we have ties. If we have ties in our data like the
0.4 in this case, one very often used option is to arbitrarily choose one of the
0.4 values as smaller than the other, and then average the ranks. Thus, we rank
the data into 1, 3, 4, 2 and then average the tied observations: 1, 3.5, 3.5, 2. As
another example, suppose we have the sequence 23, 54, 54, 54, 19, we turn this
into ranks 2, 3, 4, 5, 1 and take the average of the ranks of the tied observations
of 54: 2, 4, 4, 4, 1. These ranks corrected for ties can then be used to compute
the test statistic, for instance Friedman’s 𝐹𝑟 or Wilcoxon’s 𝑧. However, in many
cases, because of these corrections, a slightly different formula is to be used. So
the formulas become a little bit different. This is all done in R automatically.
If you want to know more, see Siegel and Castellan (1988). Non-parametric
Statistics for the Behavioral Sciences. New York: McGraw-Hill.

14.8 Take-away points

• When a distribution of residuals looks very far removed from a normal
distribution and/or shows heterogeneity of variance, consider either a data
transformation or using a non-parametric method of analysis.

• Friedman’s and Wilcoxon’s tests are non-parametric alternatives for linear
mixed modelling with one categorical predictor variable, in a within-
subjects design.

• Wilcoxon’s can be used for an independent variable with only two
categories.
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• Friedman’s test can also be used for an independent variable with more
than two categories.

• Alternatively to Wilcoxon’s test and Friedman’s test, one can apply linear
mixed models to ranked data. Wilcoxon’s test is actually equivalent to a
linear mixed model on ranks, and will yield the same 𝑝-values for large
enough samples.

Key concepts

• Friedman’s test
• Wilcoxon’s signed ranks test
• Ties
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Chapter 15

Generalised linear models:
logistic regression

15.1 Introduction

In previous chapters we were introduced to the linear model, with its basic form

𝑌 = 𝑏0 + 𝑏1𝑋1 + ⋯ + 𝑏𝑛𝑋𝑛 + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2

𝑒)

Two basic assumptions of this model are the additivity in the parameters, and
the normally distributed residual 𝑒. Additivity in the parameters means that
the effects of intercept and the independent variables 𝑋1, 𝑋2, … 𝑋𝑛 are additive:
the assumption is that you can sum these effects to come to a predicted value
for 𝑌 . So that is also true when we include an interaction effect to account for
a moderation,

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋1𝑋2 + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2

𝑒)

or when we use a quadratic term to account for another type of non-linearity in
the data:

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋1𝑋1 + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2

𝑒)

In all these models, the assumption is that the effects of the parameters (𝑏0, 𝑏1,
𝑏2) can be summed.

463



The other major assumption of linear (mixed) models is the normal distribution
of the residuals. As we have seen in for instance Chapter 7, sometimes the
residuals are not normally distributed. Remember that with a normal
distribution 𝑁(𝜇, 𝜎2), in principle all values between −∞ and +∞ are possible,
but they tend to concentrate around the mean 𝜇, in the shape of the bell-curve.

A normal distribution is suitable for continuous dependent variables. Most
measured variables are however not continuous at all. Think for example of
temperature: if a thermometer gives degrees Celsius with a precision of 1
decimal, the actual data will in fact be discrete, showing rounded values like
10.1, 10.2, 10.3, but never any values in between.

Nevertheless, the normal distribution can still be used in many such cases. Take
for instance a data set where the temperature in Amsterdam in summer was
predicted on the basis of a linear model. Fig 15.1 shows the distribution of
the residuals for that model. The temperature measures were discrete with a
precision of one tenth of a degree Celsius, but the distribution of the residuals
seems well approximated by a normal curve.
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Figure 15.1: A histogram of residuals with a normal curve (black line).
Even if measures are in fact discrete, the normal distribution can be a good
approximation of the distribution of the residuals.

But let’s look at an example where the discreteness is more prominent. In
Figure 15.2 we see the residuals of an analysis of test results. Students
had to do an assignment that had to meet four criteria: 1) originality, 2)
language, 3) structure, and 4) literature review. Each criterion was registered
as either fulfilled (1) or not fulfilled (0). The total score for the assignment
was determined on the basis of the number of criteria that were met, so the
scores could be 0, 1, 2, 3 or 4. We call such a variable a count variable. In
an analysis, this score was predicted on the basis of the average test score on
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previous assignments, using a linear model.

0

1

2

3

−1 0 1 2 3
residual

de
ns

ity

Figure 15.2: Count data example where the best fitting normal distribution is
not a good approximation of the distribution of the residuals.

Figure 15.2 shows that the residuals are very discrete, and that a normal
distribution with the same mean and variance is a very bad approximation
of the distribution. We often see this phenomenon when our dependent variable
has only a limited number of possible values.

An even more extreme case we observe when our dependent variable consists of
only two values. For example, suppose our dependent variable is whether or not
students passed the assignment: only those assignments that fulfilled all four
criteria are regarded as sufficient. If we score all students who passed as 1 and
score all students who failed as 0 and we predict this 0/1 score by the average
test score on previous assignments using a linear model, we get the residuals
displayed in Figure 15.3.

Here it is also evident that a normal approximation of the residuals will not
do. When the dependent variable has only two possible values, a linear model
will never work because the residuals can never have a distribution that is even
remotely looking normal.

In this chapter and the next we will discuss how generalised linear models can be
used to analyse data sets where the assumption of normally distributed residuals
is not tenable. First we discuss the case where the dependent variable has only
two possible values (dichotomous dependent variables like yes/no or pass/fail,
heads/tails, 1/0). In Chapter 16, we will discuss the case where the dependent
variable consists of counts (0, 1, 2, 3, 4, 5, …).
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Figure 15.3: Dichotomous data example where the best fitting normal
distribution is not a good approximation of the distribution of the residuals.

15.2 Example data with dichotomous outcome

Imagine that we analyse results on a simple reading test for children in first
grade. These children are usually either 6 or 7 years old, depending on what
month they were born in. The test is every year around February 1st. A
researcher wants to know whether the age of the child can explain why some
children pass the test and others fail. She collects data in a random sample of
first grade pupils. She computes the age of the child in months. Each child that
passes the test gets a score of 1 and all the others get a score of 0. Figure 15.4
plots the data.

She wants to use the following linear model:

score = 𝑏0 + 𝑏1age + 𝑒
𝑒 ∼ 𝑁(0, 𝜎2

𝑒)

Figure 15.5 shows the data with the estimated regression line and Figure 15.6
shows the distribution of the residuals as a function of age.

Clearly, a linear model is not appropriate. The assumption of the linear model
is that the residuals are scattered randomly around 0. This is not the case
here as we see a clear pattern in the residuals. The main problem is that the
dependent variable score has only two possible values: 0 and 1. When we
have a dependent variable that is dichotomous or binary (only two values), we
generally use logistic regression. The basic idea is that instead of assuming the
normal distribution for the residuals, we assume the Bernoulli distribution.
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Figure 15.4: Data example: Test outcome (score) as a function of age, where 1
means pass and 0 means fail.
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Figure 15.5: Example test data with a linear regression line.
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Figure 15.6: Residuals as a function of age, after a linear regression analysis of
the test data.

15.3 Alternative: the Bernoulli distribution

Before we introduce the Bernoulli distribution, we go back to the regular linear
model and rewrite it a bit. First we write the linear equation that gives us the
expected value of the dependent variable, ̂𝑌 .

̂𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 (15.1)

Next, we state that the actual observed value, 𝑌 , depends on the expected or
predicted value ̂𝑌 , and is normally distributed around that expected value, with
a a certain variance 𝜎2:

𝑌 ∼ 𝑁( ̂𝑌 , 𝜎2) (15.2)

In this case, we omit the residual 𝑒, but of course it is still there in the form of
the difference between the observed value 𝑌 and the expected value ̂𝑌 , and this
difference will have a normal distribution. The important thing to note here is
that we split the linear model into two parts: a linear part, consisting of the
linear equation to model ̂𝑌 , and the distribution part, consisting of a normal
distribution for the observed value 𝑌 .

This division into linear equation and distribution is the basic idea of generalised
linear models. These models are all linear in that they all have the same type
of linear equation part, but they differ in what kind of distribution they use.
Here we model 𝑌 has having a normal distribution. Instead, we could use a
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distribution that is more suitable for a 𝑌 variable that only has two outcomes:
the Bernoulli distribution.

A typical example where the Bernoulli distribution is appropriate is the flip of
a coin. For a coin flip there are only two possible outcomes: heads or tails. For
a fair coin, the probability of heads is 50%. That means that if we flip the coin
100 times, we expect to see heads in 50% of the cases. If the coin is not fair, for
example when the probability of heads is 0.4, we can expect that if we flip the
coin 100 times, on average we expect to see 40 times heads and 60 times tails.
Our best bet then is that the outcome is tails. However, if we actually flip the
coin, we might see heads anyway. Even though tails is more likely than heads,
we never know when we will observe heads and when we will observe tails. There
is some randomness. This is the kind of randomness that is modelled with the
Bernoulli distribution. Let 𝑌 be the outcome of a coin flip: heads or tails. We
model a Bernoulli distribution for variable 𝑌 with probability 𝑝 for heads, in
the following way:

𝑌 ∼ 𝐵𝑒𝑟𝑛(𝑝ℎ𝑒𝑎𝑑𝑠)
If we regard 𝑌 to be the outcome of a coin flip, the 𝑝ℎ𝑒𝑎𝑑𝑠 parameter tells us
how often on average we can see heads rather than tails.

The same kind of randomness and unpredictability is true for the normal
distribution in the linear model case: we expect that the observed value of 𝑌
is exactly equal to its predicted value, ̂𝑌 , but we observe a value for 𝑌 that is
usually different from ̂𝑌 . This difference between predicted and observed is the
residual. For a whole group of observations with the same predicted value for
𝑌 , we know that the whole group of data points will show normal distribution
around this predicted value, but we’re completely unsure what the residual will
be for each individual data point.

𝑌 ∼ 𝑁( ̂𝑌 , 𝜎2
𝑒)

In our example of passing the test by the first graders, passing the test or not
could also be conceived as the outcome of a coin flip: pass instead of heads
and fail instead of tails. So would it be an idea to predict the probability of
passing the test on the basis of age? And then for every predicted probability,
we allow for the fact that actually the observed success for each individual child
can differ. Our linear model could then look like this:

𝑝𝑖 = 𝑏0 + 𝑏1age𝑖 (15.3)
score𝑖 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑖) (15.4)

So for each child 𝑖, we predict the probability of passing the test, 𝑝𝑖, on the
basis of their age. Next, the randomness in the data comes from the fact that a

469



probability is only a probability, so that the observed passing or failing of a child
score𝑖, is like a coin toss with probability of 𝑝𝑖 for success. This can account for
the observation that children with the exact same age, can still score differently
on the test.

If we would apply such a model to the data, we end up with the following
equation:

𝑝 = −5.876 + 0.082 × age

This equation means that for a child with an age of 80 months, we have a
probability of passing the test equal to −5.876 + 0.082 × 80 = 0.68. Now let’s
look at the prediction for a child aged 71 months (a month before their sixth
birthday). We then end up with −5.876 + 0.082 × 71 = −0.05. This can’t
however be a probability: a probability is defined to be a number between 0
and 1. A similar problem we get when we do the calculations for a child aged
84 months (shortly after their seventh birthday): −5.876 + 0.082 × 84 = 1.02.
Again, a value that can’t be a probability.

Therefore, in general, a linear equation that yields probabilities directly does
not work. With a linear equation we can always end up with values less than 0
and more than 1, which can’t be probabilities. That means that in addition to a
Bernoulli distribution, we need a trick that ensures we always get a probability
between 0 and 1. The trick that is used is using log-odds.

15.4 Log-odds

To solve the problem with probabilities is that instead of using probabilities
in the linear equation, we use log-odds. Log-odds are defined as the natural
logarithm of the odds. First we briefly explain what odds are, and next we
briefly explain what the logarithm is.

15.4.1 Odds

When talking about probabilities, one often also talks about odds, most often
in the context of sports and gambling. In the context of our example data, the
odds of passing the test is the ratio of the probability passing a test, and the
probability of not passing the test.

odds𝑝𝑎𝑠𝑠 = 𝑝𝑝𝑎𝑠𝑠
𝑝𝑓𝑎𝑖𝑙

(15.5)

In general, we calculate the odds by dividing the probability 𝑝 by its complement:
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odds = 𝑝
1 − 𝑝 (15.6)

More on odds
Odds are an alternative way of expressing the likelihood of a particular event.
They are used a lot in betting and gambling settings. Take for example the
rolling of a dice. The probability of rolling a 6 is equal to 1

6 because there are
6 different types of outcome, and only one of them is “rolling a 6”. We say
the probability is “one out of six”. For probabilities therefore, we calculate the
number of events that lead to success and we divide by the total number of
events.

In contrast, with odds, we count the number of outcomes that lead to success
and we divide that by the number of outcomes that lead to failure. There is one
outcome for success (“6”), and five outcomes for failure (“1, 2, 3, 4, or 5”). The
odds ratio is then “one to five”, which is usually written as 1:5, but is equal to
1
5 .

Instead of counting events you can also use the probability directly to come up
with odds. The probability of a six is 1

6 and the probability of not a six is 5
6 .

The odds can then be computed by taking the ratio of these two probabilities:
1/6
5/6 = 1

5 . In general, the odds of an event is the probability of that event 𝑝
divided by probability of that event not happening, 𝑞 = 1 − 𝑝,

odds = 𝑝
1 − 𝑝 (15.7)

Suppose the probability of winning the lottery is 1%. Then the probability of
losing is 99%. A probability of 1% means that if I play the lottery a total of
100 times, I expect to win 1 time and lose 99 times. That means once in a
total of 100 times: 1

100 . In contrast, the odds are the number of events that are
successful divided by the number of events that are unsuccessful, therefore 1:99,
or 1

99 .

Now that we know how to go from probability statements to statements about
odds, how do we go from odds to probability? If someone says the odds of heads
against tails is 10 to 1, this means that for every 10 heads (success), there will
be 1 tails (failure). In other words, if there were 11 coin tosses in total, 10
would be heads and 1 would be tails. We can therefore transform odds back to
probabilities by noting that 10 out of 11 coin tosses is heads, so 10/11 = 0.91,
and 1 out of 11 is tails, so 1/11 = 0.09.
As a last example, if at the horse races, the odds of Bruno winning against
Sacha are four to five (4:5), this means that for every 4 winnings by Bruno,
there would be 5 winnings by Sacha. So out of a total of 9 winnings, 4 will be
by Bruno and 5 will be by Sacha. The probability of Bruno outrunning Sacha
is then 4

9 = 0.44.
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When transforming odds into probabilities, you can use the following equation:

𝑝 = odds
odds + 1 (15.8)

15.4.2 Natural logarithm

The logarithm is closely related to the concept of the exponent. The exponent
tells us how many times to use a number in a multiplication. In 42 the exponent
“2” says to use 4 twice in a multiplication, so 42 = 4 × 4 = 16. Similarly, 43

means we have to use 4 three times: 43 = 4 × 4 × 4 = 64.

When using the logarithm we go in reverse: How many of one number do we
have to use in a multiplication to make another number. For example, if we
want to know how often we have to use 4 in a multiplication to obtain 16, this is
the same as asking about the logarithm of 16 with base 4, log4(16). We know
that if we multiply 4 × 4, we obtain 16. Therefore,

log4(16) = 2 (15.9)

Instead of base 4, we can also use other numbers. For example, we can use base
2:

log2(16) = 4 (15.10)

because if we multiply 2 four times, we obtain 16: 2 × 2 × 2 × 2 = 24 = 16.

A special case is using the number 𝑒 as the base of our logarithm. The value of
𝑒 is called Euler’s number and is about 2.7. When using 𝑒 as the base we often
write ln instead of log𝑒. For example,

log𝑒(16) = ln(16) ≈ 2.77 (15.11)

because if we raise 𝑒 to the power 2.77, we get 16: 𝑒2.77 ≈ 16. An alternative
way of writing 𝑒2.77 is exp (2.77).

When using 𝑒 as the base of the logarithm, we call it the natural logarithm.
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15.4.3 Transforming probability into log-odds

A probability 𝑝 is always between 0 and 1. If we transform a probability 𝑝
into odds, we always end up with a number somewhere between 0 and infinity.
For example if we use a small probability like 0.1, the corresponding odds is
0.1
0.9 ≈ 0.11. If we use a large probability like 0.9, the corresponding odds is
0.9
0.1 ≈ 9.
If we next take the natural logarithm of the odds, we end up with values that
can be both positive and negative, in fact all values between −∞ and +∞ are
possible. For example, with a probability of 0.1, the odds are 0.11 and the
natural logarithm of 0.11 equals ln(0.11) = −2.2. With a probability of 0.9, the
odds are 9 and the natural logarithm of 9 equals ln(9) = +2.2. The natural
logarithm of the odds is called the log-odds.

The three different scales are illustrated below. A probability close to 0 is
equivalent to a log-odds close to −∞, and a probability close to 1 is equivalent
to a log-odds close to +∞. A probability of 0.5 is equivalent to a log-odds of 0.

probability

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

odds

0 1 2 3 4

∞

log−odds

−4 −3 −2 −1 0 1 2 3 4

∞∞

The transformation of a probability into log-odds, by first calculating odds and
then taking the natural logarithm, is called the so-called logit function:

logit(𝑝) = ln 𝑝
1 − 𝑝

This logit function is plotted in Figure 15.7.
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Figure 15.7: The logit function transforms probabilities into log-ods.

Because log-odds can be any value between −∞ and +∞, they are very useful for
linear equations. It is therefore in logistic regression that instead of probabilities
we have a linear equation for the log-odds.

15.5 Logistic link function

In previous pages we have seen that log-odds have the nice property of having
meaningful values between −∞ and +∞. This makes them suitable for linear
models. In essence, our linear model for our test data in children might then
look like this:

log-odds𝑝𝑎𝑠𝑠 = 𝑏0 + 𝑏1age

𝑌 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑝𝑎𝑠𝑠)

Note the strange relationship between the probability parameter 𝑝𝑝𝑎𝑠𝑠 for
the Bernoulli distribution, and the dependent variable for the linear equation
log-odds. The linear model predicts the log-odds, but for the Bernoulli
distribution, we use the probability.

Note that earlier, we learned how a probability can be transformed into a log-
odds using the logit function log-odds = ln 𝑝

1−𝑝 . We also need a way to translate
the log-odds that we compute using the linear equation back into probabilities.
For that we use the so-called logistic function.
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𝑝 = 𝑒log-odds

1 + 𝑒log-odds

Here we see Euler’s number 𝑒 again. As 𝑒𝑥 can also be written as exp(𝑥), we
can therefore write

𝑝 = exp(log-odds)
1 + exp(log-odds)

The logistic function is plotted in Figure 15.8. Its shape is S-like and resembles
the cumulative normal distribution closely (see Ch. 1).
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Figure 15.8: The relationship between the natural logarithm of the odds and
the probability.
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Overview probabilities, odds and log-odds

From probability 𝑝 to odds, use

odds = 𝑝
1 − 𝑝 (15.12)

From probability to log-odds, use the logit function:

log-odds = logit(𝑝) = ln 𝑝
1 − 𝑝 (15.13)

From log-odds to back to 𝑝, use the logistic function:

𝑝 = exp(log-odds)
1 + exp(log-odds) (15.14)

15.6 Logistic regression applied to example data

So what does it look like, a linear model for log-odds?

In Figure 15.9 we show the linear model for the log-odds of passing the test for
the first-graders. These log-odds are predicted by age using a straight, linear
regression line.

intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46intercept: −35.75, slope: 0.46
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Figure 15.9: Example of a linear model for the log-odds of passing the test.

When we take all these predicted log-odds and convert them back into
probabilities using the logistic function, we obtain the plot in Figure 15.10.
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Figure 15.10: Example with log-odds transformed into probabilties (vertical
axis).

Here we see an S-shape relationship between age and the probability. It has
the same shape as the logistic function in Figure 15.8. We see that our model
predicts probabilities close to 0 for very young ages, and probabilities close to 1
for relatively old ages. There is a clear positive effect of age on the probability
of passing the test. Note that the relationship is not linear on the scale of
the probabilities, see Figure 15.10, but linear on the scale of the logit of the
probabilities (the log-odds), see Figure 15.9.

The curvilinear shape we see in Figure 15.10 is a logistic function of age and
can be described as:

𝑝 = logistic(𝑏0 + 𝑏1age) = exp(𝑏0 + 𝑏1age)
1 + exp(𝑏0 + 𝑏1age) (15.15)

= exp(−35.75 + 0.46 × age)
1 + exp(−35.75 + 0.46 × age) (15.16)

In summary, if we go from log-odds to probabilities, we use the logistic function,
logistic(𝑥) = exp(𝑥)

1+exp(𝑥) . If we go from probabilities to log-odds, we use the logit
function, logit(𝑝) = ln 𝑝

1−𝑝 . The logistic regression model is a generalised linear
model with a logit link function, because the linear equation 𝑏0 + 𝑏1𝑋 predicts
the logit of a probability. It is also often said that we’re dealing with a logistic
link function, because the linear equation gives a value that we have to subject
to the logistic function to get the probability. Both terms, logit link function
and logistic link function are used.

477



If we go back to our data on the first-grade children that either passed or failed
the test, we see that this curve gives a description of our data, see Figure 15.11.
The model predicts that around the age of 78 months, the probability of passing
the test is around 0.50. We indeed see in Figure 15.11 that around this age about
as many children pass the test (score = 1) as children that don’t (score = 0).
We see that for younger ages, say around the age of 72 months, more children
fail the test than pass the test. This fits with a lower probability of passing the
test for such an age. For older children, say around 84 months, we see more
children passing the test than failing the test, again in line with the predicted
high probability.

On the basis of this analysis there seems to be a positive relationship between
age in first-grade children and the probability of passing the test in this sample.
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Figure 15.11: Transformed regression line and raw data points.

What we have done here is a logistic regression of passing the test on age. It is
called logistic because the curve in Figure 15.11 has a logistic shape. Logistic
regression is one specific form of a generalised linear model. Logistic regression
is a generalised linear model with a Bernoulli distribution and a so-called logit
link function: instead of modelling the probability directly, we have modelled
the logit of the probabilities of obtaining a 𝑌 -value of 1 (the log-odds).
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Overview

1) In a regular linear model for continuous outcomes, an equation
gives the predicted 𝑌 -value, and the observed 𝑌 -values are
normally distributed around ̂𝑌 .

2) For dependent variables that have only two possible outcomes,
usually a Bernoulli distribution is used instead of a normal
distribution.

3) The probability cannot be modelled with an equation directly
because probability values need to be between 0 and 1.

4) Instead of the probablity 𝑝, a transformation of the probability
is used: the natural logarithm of the odds, also called the logit
function log-odds = logit(𝑝) = ln 𝑝

1−𝑝 . We then get the equation:

log-odds = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2

5) A link is needed between the log-odds that is predicted by the
equation and the probability 𝑝 for the Bernoulli distribution 𝑌 ∼
𝐵𝑒𝑟𝑛(𝑝). For that we use a logistic transformation:

𝑝 = exp(log-odds)
1 + exp(log-odds) (15.17)

In the next section we will see how logistic regression can be performed in R,
and how we should interpret the output.

The linear model model as a special case
The regular linear model can be seen as a generalised linear model. Any
generalised model has three ingredients:

1) a linear equation to model predictions,
2) a distribution for the actual observed outcome,
3) a link function between what is predicted and the distribution.

For logistic regression we have a linear equation that predicts log-odds, and we
have a Bernoulli distribution with a logit link function between the log-odds
and the 𝑝-parameter of the Bernoulli distribution. For the regular linear model,
we have a linear equation that gives us ̂𝑌 , and we use a normal distribution
𝑁( ̂𝑌 , 𝜎2). Since both the equation and the distribution refer to the same ̂𝑌 , the
link is very simple: the link function is ̂𝑌 = ̂𝑌 . This is referred to as an identity
link function ( ̂𝑌 is identical to ̂𝑌 ). The regular linear models from previous
chapters are therefore special cases of generalised linear models: generalised
linear models with normal distributions and an identity link.
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Table 15.1: Imaginary test results first-graders and their age in months (part of
the data).

result age
pass 80
fail 80
fail 78
fail 77
pass 80
fail 72

Besides the logit link function and the identity link function, there are several
other link functions possible. One of them, the exponential link, we will discuss
in the next chapter on generalised linear models for count data (Ch. 16).
Apart from the Bernoulli distribution and the normal distribution, there are
also alternatives, like the Poisson distribution, also discussed in Chapter 16.

15.7 Logistic regression in R

Let’s analyse the test results from the random sample of first-graders. We see
part of the data in Table 15.1.

The dependent variable is result, and we want to study whether it is related
to age. The dependent variable is dichotomous (two possible outcomes) so we
choose logistic regression. The function that we use in R is the glm() function,
which stands for Generalised Linear Model. We can use the following code:

model.test <- data.test %>%
glm(result ~ age,

data = .,
family = binomial(link = logit))

## Error in eval(family$initialize): y values must be 0 <= y <= 1

We get an error message: R tells us that our dependent variable needs to have
values between 0 and 1. We therefore create a dummy variable score, that is 1
if the child passed the test, and 0 if it did not pass:

data.test <- data.test %>%
mutate(score = ifelse(result == "pass", 1, 0))
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Next we run the logistic regression using the dummy variable as the outcome
variable:

model.test <- data.test %>%
glm(score ~ age,

data = .,
family = binomial(link = logit))

Note in the code that we specify that we want to use the binomial distribution
with a logit link function. But why do we tell R to use a binomial distribution
when actually we want to use a Bernoulli? Well, the Bernoulli distribution (one
coin flip) is a special case of the binomial distribution (the distribution of several
coin flips). So here we use a binomial distribution for one coin flip, which is
equivalent to a Bernoulli distribution. Actually, the code can be a little bit
shorter, because the logit link function is the default option with the binomial
distribution:

model.test <- data.test %>%
glm(score ~ age,

data = .,
family = binomial)

Below, we see the parameter estimates from this generalised linear model run
on the test data.

model.test %>%
tidy()

## # A tibble: 2 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -35.7 7.58 -4.71 0.00000243
## 2 age 0.460 0.0968 4.75 0.00000203

The parameter estimates table from a glm() analysis looks very much like that of
the ordinary linear model and the linear mixed model. An important difference
is that the statistics shown are no longer 𝑡-statistics, but 𝑧-statistics. This is
because with logistic models, the ratio 𝑏1/𝑆𝐸 does not have a 𝑡-distribution. In
ordinary linear models, the ratio 𝑏1/𝑆𝐸 has a 𝑡-distribution because in linear
models, the variance of the residuals, 𝜎2

𝑒 , has to be estimated (as it is unknown).
If the residual variance were known, 𝑏1/𝑆𝐸 would have a standard normal
distribution. In logistic models, there is no 𝜎2

𝑒 that needs to be estimated,
so the ratio 𝑏1/𝑆𝐸 has a standard normal distribution. One could therefore
calculate a 𝑧-statistic 𝑧 = 𝑏1/𝑆𝐸 and see whether that value is smaller than

481



1.96 or larger than 1.96, if you want to test with a Type I error rate of 0.05.

The interpretation of the slope parameters is very similar to other linear models.
Note that we have the following equation for the logistic model:

log-oddspass = 𝑏0 + 𝑏1age

score ∼ 𝐵𝑒𝑟𝑛(𝑝pass)

If we fill in the values from the R output, we get

log-oddspass = −35.7 + 0.46 × age

score ∼ 𝐵𝑒𝑟𝑛(𝑝pass)

We can interpret these results by making some predictions. Imagine a child
with an age of 72 months (on its sixth birthday). Then the predicted log-odds
equals −35.7 + 0.46 × 72 = −2.58. When we transform the log-odds back to a
probability,

exp(-2.58)/(1+ exp(-2.58))

## [1] 0.07043673

we get exp(−2.58)
1+exp(−2.58) = 0.07. Note that the probability as well as the odds refer

to the outcome that is coded as 1. Here we coded pass as “1” and fail as “0”.

To make predictions using this model easier, we can use the predict() function.
In order to get the predicted log-odds we can use

predict(model.test, newdata = data.frame(age = 72))

## 1
## -2.649915

Note that the result −2.649915 is different from our hand-calculated −2.58. The
difference is the result of the rounding in the R model output.

If we want to predict probabilities instead of the log-odds, we can use

predict(model.test, newdata = data.frame(age = 72), type = "response")

## 1
## 0.06599423
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So this model predicts that for children on their sixth birthday, about 7% will
pass the test.

Now imagine a child on its seventh birthday (84 months): what does the model
predict for the test result?

The predicted log-odds equals −35.7 + 0.46 × 84 = 2.94. When we transform
this back to a probability, we get exp(2.94)

1+exp(2.94) = 0.95.
Letting R do the work for us, we get the same probability:

predict(model.test, newdata = data.frame(age = 84), type = "response")

## 1
## 0.9461369

We observe that this model predicts that older children have a higher probability
that they pass the test than younger children. Six year olds have a very low
probability of only 7%, and seven year olds have a high probability of 95%.

A visualisation is often more helpful than a lot of calculations. The relationship
between age and the probability of passing the test an be visualised using
ggplot() and the add_predictions() function from the modelr package:

data.test %>%
add_predictions(model.test, type = "response") %>%
ggplot(aes(x = age, y = pred)) +
geom_line() +
geom_point(aes(y = score)) # show data points
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We found that the probability of passing the test is related to age in this data
set of randomly selected children, but is there also an effect of age in the entire
population of first-graders? The regression table shows us that the effect of age,
+0.46, is statistically significant at an 𝛼 of 5%, 𝑧 = 4.75, 𝑝 = .00000203.

”In a logistic regression with dependent variable passing the test
and independent variable age, the null-hypothesis was tested that
age is not related to passing the test. Results showed that the
null-hypothesis could be rejected, 𝑏𝑎𝑔𝑒 = 0.46, 𝑧 = 4.75, 𝑝 < 0.001.
We conclude that in the population of first graders, a higher age is
associated with a higher probability of passing the test.”

Note that similar to other linear models, the intercept can be interpreted as the
predicted log-odds for children that have values 0 for all other variables in the
model. Therefore, an intercept of −35.7 means in this case that the predicted
log-odds for children with age 0 months equals −35.7. This is equivalent to a
probability of exp(−35.7)

1+exp(−35.7) ≈ 0.

15.8 Take-away points

• Logistic regression is in place when the dependent variable is dichotomous
(yes/no, 1/0, TRUE/FALSE).

• Logistic regression is a form of a generalised linear model.

• Any generalised model has three properties: 1) a linear equation to model
predictions, 2) a distribution for the actual observed outcome, and 3) a
link function between what is predicted and the distribution.

• In a regular linear model for continuous outcomes, an equation gives the
predicted 𝑌 -value, and the observed 𝑌 -values are normally distributed
around ̂𝑌 .

• For dependent variables that have only two possible outcomes, usually a
Bernoulli distribution is used instead of a normal distribution. A Bernoulli
distribution depends on probability 𝑝.

• The probability cannot be modelled with an equation directly because the
values need to be between 0 and 1.

• Instead of the probablity 𝑝, a transformation of the probability is used,
the natural log of the odds: log-odds = ln 𝑝

1−𝑝 . This is called the logit
function. We then get the equation:

log-odds = 𝑏0 + 𝑏1X
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• A link is needed between the log-odds that is predicted by the equation
and the probability 𝑝 for the Bernoulli distribution. We call that the logit
link function. We can transform a log-odds into a probability using the
logistic function:

𝑝 = exp(log-odds)
1 + exp(log-odds)

Key concepts

• Logit
• Bernoulli distribution
• Odds
• Oddsratio
• log-odds
• Logistic link function
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Chapter 16

Generalised linear models
for count data: Poisson
regression

16.1 Poisson regression

Count data are very typical in that they are always positive, and inherently
discrete. Often when using linear models on count data, we see non-normal
distributions of residuals. A better way to handle count data is using the
generalised linear model. In the previous chapter we discussed a generalised
linear model for situations where the dependent variable consists of zeros and
ones (binary or dichotomous data): the logistic regression model. In this
chapter we focus on the Poisson version of the generalised linear model that
is appropriate when the dependent variable is a count variable. To look at some
example data, we go to the movies.

For every weekend, the British Film Institute publishes the box office figures on
the top 15 films released in the UK, all other British releases and newly released
films. Table 16.1 shows part of the data from the last weekend of November,
20231.

The films in Table 16.1 are ranked in such a way that the top film (rank 1) is
the film with the highest weekend gross revenue. The second film (rank 2) is
the film with the second highest weekend gross revenue. See Chapter 8 on a
discussion of ranks.

1Data downloadable from https://www.bfi.org.uk/education-research/film-industry-
statistics-research/weekend-box-office-figures
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Table 16.1: Box office data last weekend of November 2023. The films are
ranked in terms of weekend gross revenue.

Rank Film Country of Origin Number of cinemas Weekend Gross
1 Napoleon UK/USA 716 5235706
2 The Hunger Games: The Ballad

Of Songbirds And Snakes
USA 663 2689643

3 Wish USA 617 2432228
4 Saltburn UK/USA 477 572728
5 The Marvels UK/USA 556 485099
6 Cliff Richard: The Blue Sapphire

Tour 2023 (Concert)
UK 411 329826

Here we model in how many cinemas a film is shown, as a function of the
variable rank. The relationship is shown in Figure 16.1. It seems there is a
relation between how much money a film generates and the number of cinemas
that show it. However, the relationship is clearly not linear: a simple regression
model will not work here.
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Figure 16.1: The number of cinemas showing a film in a particular weekend, as
a function of the film’s rank in terms of gross weekend revenue.

As the dependent variable is a count variable, we choose a Poisson model.

Whereas the normal distribution has two parameters, the mean and the
variance, the Poisson distribution has only one parameter, 𝜆 (Greek letter
‘lambda’). 𝜆 is a parameter that indicates tendency. Figure 16.2 shows a
Poisson distribution with a tendency of 2.

What we see is that the values tend to cluster around the lambda parameter
value of 2 (therefore we call 𝜆 a tendency parameter). We see only discrete
values, and no values below 0. The distribution is not symmetrical, and we
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Figure 16.2: The Poisson probability distribution with lambda = 2.

see a few extreme values such as those higher than 6. If we would take the
mean of the distribution, we would find a value of 2. If we would compute the
variance of the distribution we would also find 2. In general, if we have a Poisson
distribution with a tendency parameter 𝜆, we know from theory that both the
mean and the variance will be equal to 𝜆.
A Poisson model could be suitable for our data: a linear equation could predict
the parameter 𝜆 and then the actual data show a Poisson distribution.

𝜆 = 𝑏0 + 𝑏1𝑋
𝑌 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)

However, because of the additivity assumption, the equation 𝑏0 + 𝑏1𝑋 = 𝜆 can
lead to negative values for 𝜆 if either 𝑏0 or 𝑏1 is negative, and/or if 𝑋 has
negative values. A negative value for 𝜆 is not logical, because we then would
have a tendency to observe values like -2 and -4 in our data, which is contrary
to having count data. A Poisson distribution always shows integers of at least
0, so one way or another we have to make sure that we always have a 𝜆 of at
least 0.
Remember that we saw the reverse problem with logistic regression: there we
wanted to have the possibility of negative values for our dependent variable
logodds ratio, so therefore we used the logarithm. Here we want to always have
positive values for our dependent variable, so we can use the inverse of the
logarithm function: the exponential. Then we have the following model:

𝜆 = exp(𝑏0 + 𝑏1𝑋) = 𝑒𝑏0+𝑏1𝑋

𝑌 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)
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This is a generalised linear model, now with a Poisson distribution and an
exponential link function. The exponential function makes any value positive,
for instance exp(0) = 1 and exp(−10) = 0.00005, so that we always have a
positive 𝜆 parameter.
Let’s analyse the film revenues data with this generalised linear model. Our
dependent variable is Number of cinemas, that is, the number of cinemas
that are running a particular film, and the independent variable is Rank, which
indicates the relative amount of weekend gross revenu for that film (rank 1
meaning the most money). When we run the analysis, the result is as follows:

𝜆 = exp(6.450 − 0.075 × Rank)
N𝑐𝑖𝑛𝑒𝑚𝑎𝑠 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆)

What does it mean? Well, similar to logistic regression, we can understand such
equations by making some predictions for interesting values of the independent
variable. For instance, a value of 1 for Rank means that we are looking at the
film with the largest gross revenu. If we fill in that value, we get the equation
𝜆 = exp(6.450 − 0.075 × 1) = exp(6.375) = 587. Thus, for the top film of the
week, we expect to see that the film runs in 587 cinemas.
Another value of Rank might be 10, representing the film with the 10th largest
gross revenue. If we fill in that value, we get: 𝜆 = exp(6.450 − 0.075 × 10) =
exp(5.70) = 299. Thus, for the film with the 10th largest revenue, we expect to
see that it runs in 299 cinemas.
If we look at the pattern in these expected scores, we see that the number of
cinemas is negatively related to the gross revenue. That is what we find in this
data set. In the next section we will see how to perform the analysis in R.

16.2 Poisson regression in R

Poisson regression is a form of a generalised linear model analysis, similar to
logistic regression, so we can use the glm() function to analyse the cinema
data. Instead of using a Bernoulli distribution, we use a Poisson distribution.
The code is as follows.

model <- bfi %>%
glm(`Number of cinemas` ~ Rank, family = poisson, data = .)

model %>% tidy(conf.int = T)

## # A tibble: 2 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 6.45 0.0173 372. 0 6.41 6.48
## 2 Rank -0.0747 0.00114 -65.7 0 -0.0769 -0.0725
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We see the same values for the intercept and the effect of Rank as in the
previous section. We now also see 95% confidence intervals for these parameter
values.

For interpretation and checking model assumptions, it is a good idea to make a
visualisation of the model. We can let R plot the predicted counts next to the
observed data using the following code:

bfi %>%
add_predictions(model, type = "response") %>%
ggplot(aes(x = Rank, y = `Number of cinemas`)) +
geom_point() +
geom_line(aes(y = pred))

0

200

400

600

0 25 50 75 100
Rank

N
um

be
r 

of
 c

in
em

as

Note that the line with the predicted counts is curvy. The model equation
𝑏0 + 𝑏1Rank is linear, that’s why we call the Poisson model a linear model, but
through the exponential link function, 𝜆 = exp(𝑏0 + 𝑏1Rank), we get a line that
is not straight anymore.

Do we think the model is a good description of the data? It seems overall rather
OK. We only see that for the highest ranked films (the first six films or so), the
predicted numbers are generally too high (on the line or above it), and for the
films that come next (ranks 7 to 25 or so), the predicted numbers are generally
too low (all under the line). With a perfect model, the dots would all be on
the line, or randomly distributed around. Some deviation from randomness is
observed here.
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Going back to the regression table, we see that for Rank, the confidence interval
runs from -0.077 to -0.073. The value 0 is clearly not included in the confidence
interval. We also see a test statistic for Rank, which is a 𝑧-statistic similar
to that seen in logistic regression. Remember that the 𝑧-statistic is computed
by 𝑏/𝑆𝐸. For large enough samples, the 𝑧-statistic follows a standard normal
distribution. From that distribution we know that a 𝑧-value of -65.7 is significant
at the 5% level. The output tells us it has an associated 𝑝-value of less than
0.001.

However, what should we do with this information? Remember that the
statistical test for a null-hypothesis only works if you have a random sample
from population data. The first question that we should ask ourselves is
whether we have a random sample of data here. The second question is, if we
have a random sample of data, from what population was it randomly sampled?

We already get stuck at the first question, since clearly we did not obtain a
random sample of data. All our data came from the last weekend of November
2023. The data can clearly be used to say something about that weekend,
as most of the films were included in the data, but can they be used to say
something about other weekends? Possibly not. Other weekends see different
numbers of visitors and different kinds of visitors. It makes a difference if we
are looking at a dark and gloomy weekend in November, a sunny weekend in
July, or a weekend during the Christmas holidays when whole families go to the
cinema. Some weekends on end there may be a huge blockbuster, that might also
significantly alter the pattern in the data. It is therefore safest, when reporting
this analysis, to stick to a description of the data set itself, and not generalise.

We can write:

”UK cinema data from 24-26 November 2023 were modelled using
a generalised linear model with a Poisson distribution (Poisson
regression), with independent variable rank and dependent variable
the number of cinemas. The numbers of cinemas could reasonably
be described by the equation 𝜆 = exp(6.45 − 0.075 × rank), where
the films were ranked in terms of gross weekend revenu.”

16.3 Overdispersion (advanced)

As we saw, with the Poisson distribution there is only one parameter, 𝜆. That
means that if we model data with a Poisson distribution, the variance of the
residuals should be exactly the same as the expected number.

Let’s look at the cinema data. We saw that a higher rank number was associated
with a lower expected number of cinemas. Since a lower expected number should
go together with a lower variance, according to the Poisson model, we should
see that also in the data, otherwise the model is wrong. But also, the variance
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in numbers should be more or less equal to the average number. Let’s look at
the distribution of the data, by first binning the data. We put the 8-top ranking
films in the first bin (group), the next 8 films in the second bin, etcetera. Then
for every bin we plot the distribution.

bfi %>%
mutate(bin = cut_number(Rank, n = 8, boundary = 1)) %>%
ggplot(aes(x = bin, y = `Number of cinemas`)) +
geom_jitter(width = .1, height = 0, alpha = 0.5) +
geom_boxplot(aes(x = bin), alpha = .3) +
xlab("Bin for Rank")
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We see that the variance is larger when the values are larger, and becomes
smaller when numbers become smaller. However, do the variances actually
resemble the expected numbers? For every bin of 8 films, we compute the mean
and the variance.

bfi %>%
mutate(bin = cut_number(Rank, n = 8, boundary = 1)) %>%
group_by(bin) %>%
summarise(var = var(`Number of cinemas`),

mean = mean(`Number of cinemas`)) %>%
dplyr::select(bin, mean, var)

## # A tibble: 8 x 3
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## bin mean var
## <fct> <dbl> <dbl>
## 1 [1,7.62] 572. 11049.
## 2 (7.62,14.2] 254. 14942.
## 3 (14.2,26.9] 56.5 2421.
## 4 (26.9,36] 30.9 1275.
## 5 (36,58.1] 24 538.
## 6 (58.1,72.8] 21.2 839.
## 7 (72.8,89.1] 5.29 28.6
## 8 (89.1,103] 6.43 119.

For most of the bins, we see an average number that is lower than the
corresponding variance. Clearly the variance does not match the mean. In
statistics this is called overdispersion. There is a test to detect overdispersion
in your data, available in the performance package.

library(performance)
check_overdispersion(model)

## # Overdispersion test
##
## dispersion ratio = 108.223
## Pearson's Chi-Squared = 5627.584
## p-value = < 0.001

Extensive treatment of dispersion is outside the scope of this book. The
interested reader is referred to more specialised resources on generalised linear
models.
But one option to deal with violations of the Poisson model assumptions that
we will mention here is to try out alternative models. A well-known alternative
to the Poisson model is the negative binomial model. The negative binomial
model is similar to the Poisson model but more flexible (the Poisson distribution
is a special case of the more general negative binomial distribution). It can be
estimated with the glm.nb() function from the MASS package.

library(MASS)
model2 <- bfi %>%
glm.nb(`Number of cinemas` ~ Rank, data = .)

check_overdispersion(model2)

## # Overdispersion test
##
## dispersion ratio = 1.321
## Pearson's Chi-Squared = 68.693
## p-value = 0.06

494



The negative-binomial model solves most of the overdispersion problem as the
dispersion ratio drops dramatically. Below we see the expected counts for this
model. Comparing this figure with that for the Poisson model, we see that it
makes different predictions, especially for the top-ranked films. The predictions
seem actually much worse for the top-ranked films, as the model underestimates
the number of cinemas for the top 8 films.

bfi %>% add_predictions(model2, type = "response") %>%
ggplot(aes(x = Rank, y = `Number of cinemas`)) +
geom_point() +
geom_line(aes(y = pred))
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This problem is not easily solved. Instead of the ranks, we could work with
the original data: the actual gross weekend revenue. Because this variable is
extremely skewed (a few very large outliers), it makes sense to work with the
logarithm of that variable and use that in the negative binomial model.

model3 <- bfi %>%
glm.nb(`Number of cinemas` ~ log(`Weekend Gross`),

data = .)

bfi %>%
add_predictions(model3, type = "response") %>%
ggplot(aes(x = log(`Weekend Gross`),

y = `Number of cinemas`)) +
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geom_point() +
geom_line(aes(y = pred))
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The negative binomial model shows a good fit for most of the data. The model
is sadly not able to predict the three top films correctly. This model seems
better than the model that used the ranks, since there the top 8 films were
badly predicted.

16.4 Association between two categorical
variables

Poisson models are used when you count things, and when you are interested in
how two or more variables are associated. Let’s go back to Chapter 1. There we
discussed the situation where we have two categorical variables, and you want
to see how they co-vary. We made a crosstable that showed the counts of each
combination of the levels of the categorical variables.

Imagine we do a study into the gender balance in companies. In one particularly
large, imaginary company, there are about 100,000 employees. For a random
sample of 1000 employees, we know their gender (female or male), and we know
whether they have a position in senior management or not (leadership: yes or
no). It turns out that there are 22 female senior managers, and only 8 male
senior managers. If we would randomly pick a senior manager from this sample,
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Table 16.2: The number of employees in a senior management role (no/yes), as
a function of gender

Leadership
gender no yes Total
female 778 22 800
male 192 8 200
Total 970 30 1000

they would more likely be a woman than a man, right? Can we therefore
conclude that there is a positive gender bias, in that senior managers in this
company are more often female? Think about it carefully, before you read on.
The problem is, you should first know how many men and how many women
there are in the first place. Are there relatively many female leaders, given the
gender distribution in this company? In Table 16.2 you find the crosstable of
the data. From this table we see that there are 800 women in the sample and
200 men.
Thus, we see see more female leaders than male leaders, but we also see many
more women than men working there in the first place.
It is clear that the data in the table are count data. They can therefore be
analysed using Poisson regression. Later in this chapter we will see how we can
do that. But first we have to realise that the counts are a bit different from
the counts we observed in the cinema example where we counted the number
of cinemas than a particular film. The dependent variable there was a count
variable, but it also had a clear meaning: the count reflected the choice of cinema
directors to show a film.
In the example here, we simply count the number of employees in a data set that
fit a set of criteria (i.e. being a woman and being a senior manager). Technically,
both variables are count variables, but conceptually they might feel different for
you.
Therefore, before we dive deeper into Poisson models, we will look at a very
traditional way of analysing count data in crosstables: computing the Pearson
chi-square statistic.

16.5 Cross-tabulation and the Pearson chi-
square statistic

Table 16.2 shows that there were 800 women and 200 men in the data set, and of
these there were in total 30 employees in senior management. Now if 30 people
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out of 1000 are in senior management, it means that a proportion of 30
1000 = 0.03

are in senior management. You might argue that there is only a gender balance
if that same proportion is observed in both men and women.

Let’s look at the proportion of women in senior management. We observe 22
female leaders out of a total of 800 women. That’s equal to a proportion of
22

800 = 0.0275. That is quite close but not equal to 0.03.

Now let’s look at the men. We observe 8 male leaders out of a total of 200 men.
That’s equal to a proportion of 8

200 = 0.04. That is quite close but not equal to
0.03.

Relatively speaking, therefore, there are more men in a senior management role
(4%) than there are women in a senior management role (2.75%). Overall there
are more women leaders in this data set, but taking into account the gender
ratio, there are relatively fewer women than men in the leadership.

Now the question remains whether this difference in leadership across gender
is real. These data come from only one particular month, from only 1000
employees instead of all 100,000. Every month new people get hired, get fired,
or simply leave. With a huge turn-over, the numbers change all the time. The
question is whether we can generalise from these data to the whole company: is
there a general gender bias in this company, or are the results we look at due
to the random sampling?

The Pearson chi-square test is based on comparing that what you expect given
a hypothesis, with what you actually observed. Suppose our hypothesis is that
there is a perfect gender balance: the proportion of leaders among the women
is equal to the proportion of leaders among the men.

Before we continue, we assume that the total numbers of both genders and the
leadership positions are reflective of the actual situation. We therefore assume
the proportion of women is 0.8 and the proportion of men is 0.2. We also assume
the proportion of senior managers is 3% and the proportion of other employees
is 97%.

Assuming gender balance, we expect that a proportion of 0.03 of the women are
in a leadership position, and we also expect a proportion of 0.03 of the men are
in a leadership position. Given there are 800 women in the data set, under the
gender balance assumption we expect 0.03 × 800 = 24 women with a leadership
role. Given there are 200 men, under the gender balance assumption we expect
0.03 × 200 = 6 men with a leadership role.

Now that we have the number of people that we expect based on gender balance,
we can compare them with the actual observed numbers. Let’s calculate the
deviations of what we observed from what we expect.

We observed 22 women in a leadership position, where we expected 24, so that
is a deviation of 22 − 24 = −2 (observed minus expected).
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We observed 8 men in the leadership, where we expected 6, which results in a
deviation of 8 − 6 = +2 (observed minus expected).

We also have the observed counts of the employees not in the leadership. Also for
them we can calculate expected numbers based on gender balance. A proportion
of .97 are not in the leadership. We therefore expect 0.97 × 800 = 776 women.
We observed 778, so then we have a deviation of 778 − 776 = +2.
For the men we expect 0.97 × 200 = 194 to be without a leadership role, which
results in a deviation of 192 − 194 = −2.
If we would add these deviations up, we should be able to say something about
how much the observed numbers deviate from the expected numbers. However,
if we do that, we get a total of 0, since half of the deviations are positive and
half of them are negative. In order to avoid that and get something that is very
large when the deviations are very different from 0, we could instead take the
squares of these differences and then add them up (the idea is similar to that of
computing the variance as an indicator of how much values deviate from each
other). Another reason for taking the squares is that the sign of the deviation
doesn’t really matter; it is only the distance from 0 that is relevant.

If we take the deviations, square them, and add them up, we get:

(−2)2 + 22 + 22 + (−2)2 = 16
However, we should not forget that a deviation of 2 is only a relatively small
deviation when the expected number is large, like 776. Observing 778 instead of
the expected 776 is not such a big deal: it’s only a 0.26% increase. In contrast,
if you expect only 6 people and suddenly you observe 8 people, that is relatively
speaking a large difference (a 33% increase). We should therefore off-set the
observed deviations from what we expected. We then get:

(−2)2

24 + 22

6 + 22

776 + (−2)2

194 = 0.86

What we actually did here was computing a test statistic that helps us to decide
whether we have evidence in this data set that speaks against gender balance.
It is called the Pearson chi-square statistic and it indicates to what extent the
proportions observed in one categorical variable (say leadership membership vs
non-membership) are different for the different categories of another categorical
variable (say males and females). We observed different leadership proportions
for males and females and this test statistic helps us decide if the proportions
were also significantly different.

In formula form, the Pearson chi-square statistic looks like this:

𝑋2 = ∑
𝑖

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
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For every cell 𝑖 in the crosstable, here 4 cells, we compute the difference between
the observed count (O) and expected count (E). We square these difference first,
then divide them by the expected count, and the resulting numbers we add up
(summation). As we saw, we ended up with 𝑋2 = 0.86.
If the null-hypothesis is true, the sampling distribution of 𝑋2 is a chi-square
distribution. The shape of this distribution depends on the degrees of freedom,
similar to the 𝑡-distribution. The degrees of freedom for Pearson’s chi-square
are determined by the number of categories for variable 1, 𝐾1, and the number
of categories for variable 2, 𝐾2: df = (𝐾1 − 1)(𝐾2 − 1). Thus, with a 2 × 2
crosstable there is only one degree of freedom: (2 − 1) × (2 − 1) = 1.
The chi-square distribution with one degree of freedom is plotted in Figure 16.3.
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Figure 16.3: The chi-square distribution with one degree of freedom. Under the
null-hypothesis we observe values larger than 3.84 only 5% of the time, indicated
by the red line. The blue line represents the value based on the data.

The observed value of the test statistic is 0.86 and plotted in blue. The critical
value for the null-hypothesis to be rejected at an alpha of 5% is 3.84 and depicted
in red. The null-hypothesis can clearly not be rejected. There is no evidence
that there is any gender imbalance in this large company of 100,000 employees.

16.6 Pearson chi-square in R

The Pearson chi-square test is based on data from a crosstable. The data that
you have are most often not in such a format, so you have to create that table
first.
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Suppose you have the dataframe with the 1000 employees. We have the variable
ID of the employee, a variable for the gender, and a variable for whether they
are in senior management.
The top rows of the data might look like this:

companydata %>% head(3)

## # A tibble: 3 x 3
## ID gender leader
## <int> <chr> <chr>
## 1 1 male no
## 2 2 male no
## 3 3 male no

As we saw in Chapter 1, we can create a table with the tabyl() function from
the janitor package.

library(janitor)
companytable <- companydata %>%
tabyl(gender, leader)

companytable

## gender no yes
## female 778 22
## male 192 8

Next we plug the crosstable into the function chisq.test().

chisq.test(companytable)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: companytable
## X-squared = 0.48325, df = 1, p-value = 0.487

Two things strike us: the value for the X-squared is not equal to the 0.86 that
we computed by hand. But we also see that R used Yates’ continuity correction.
This continuity correction is important if some of your expected cell counts are
rather low. Here we saw that we expected only 6 men in senior management.
If we don’t let R apply this continuity correction, we obtain our manually
computed statistic of 0.86:
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chisq.test(companytable, correct = FALSE)

##
## Pearson's Chi-squared test
##
## data: companytable
## X-squared = 0.85911, df = 1, p-value = 0.354

Generally you should use the corrected version. We then report:

”Using data on 1000 employees the observed proportion of women in
a leadership role was 0.0275. The observed proportion of men in a
leadership role was 0.04. A Pearson chi-square test with continuity
correction showed that this difference was not significant, 𝑋2(1) =
0.48, 𝑝 = 0.487. The null-hypothesis that the proportions are equal
in the population could not be rejected.”

16.7 Analysing crosstables with Poisson regression
in R

If we want to analyse the same data with a Poisson regression, we need to
create a dataframe with a count variable. We start from the original dataframe
companydata and count the number of men and women with and without a
senior management role.

companydata %>% head(3)

## # A tibble: 3 x 3
## ID gender leader
## <int> <chr> <chr>
## 1 1 male no
## 2 2 male no
## 3 3 male no

companycounts <- companydata %>%
group_by(gender, leader) %>%
summarise(count = n())

companycounts

## # A tibble: 4 x 3
## # Groups: gender [2]
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## gender leader count
## <chr> <chr> <int>
## 1 female no 778
## 2 female yes 22
## 3 male no 192
## 4 male yes 8

We now have a dataframe with the count data in long format, exactly what we
need for the Poisson linear model. We take the count variable as dependent
variable, and let gender and leader be the predictors:

model1 <- companycounts %>%
glm(count ~ gender + leader, family = poisson, data = .)

model1

##
## Call: glm(formula = count ~ gender + leader, family = poisson, data = .)
##
## Coefficients:
## (Intercept) gendermale leaderyes
## 6.654 -1.386 -3.476
##
## Degrees of Freedom: 3 Total (i.e. Null); 1 Residual
## Null Deviance: 1503
## Residual Deviance: 0.8003 AIC: 31.27

In the output we see that the effect of being male is negative, saying that there
are fewer men than women in the data. The leadership effect is also negative:
there are fewer people in a leadership role than people not in that role.

We can look at what the model predicts regarding the counts:

library(modelr)
companycounts %>%
add_predictions(model1, type = "response")

## # A tibble: 4 x 4
## # Groups: gender [2]
## gender leader count pred
## <chr> <chr> <int> <dbl>
## 1 female no 778 776.
## 2 female yes 22 24.0
## 3 male no 192 194.
## 4 male yes 8 6
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You see that the model makes the same predictions as under the assumption
that there is a gender balance. The deviations in the observed compared to the
predicted (expected) are 2 again, similar as we saw when computing the chi-
square test. We want to know however, whether the ratio of leaders is the same
in males and females: in other words whether the effect of leadership on counts
is different for men and women. We therefore check if there is a significant
gender by leader interaction effect.

model2 <- companycounts %>%
glm(count ~ gender + leader + gender:leader,

family = poisson, data = .)
model2 %>% tidy()

## # A tibble: 4 x 5
## term estimate std.error statistic p.value
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 6.66 0.0359 186. 0
## 2 gendermale -1.40 0.0806 -17.4 1.55e-67
## 3 leaderyes -3.57 0.216 -16.5 4.12e-61
## 4 gendermale:leaderyes 0.388 0.421 0.921 3.57e- 1

We see a positive interaction effect: the specific combination of being a male
and a leader, has an extra positive effect of 0.388 on the counts in the data.
The effect is however not significant, since the 𝑝-value is .357.

We see that the 𝑝-value is very similar to the 𝑝-value for the uncorrected Pearson
chi-square test (.354) and different from the corrected one (.487). Every 𝑝-
value with these kinds of analyses is only an approximation. The 𝑝-values are
dissimilar here because the expected number of males in a senior management
role is pretty low. For data sets with higher counts, the differences between
the methods will disappear. Generally, the Pearson chi-square with continuity
correction gives you best results for relatively low expected counts (counts of 5
or less).

If you would like to report the results form this Poisson analysis instead of a
Pearson chi-square test, you could write:

”Using data on 1000 employees the observed proportion of women
in a leadership role was 0.0275. The observed proportion of men
in a leadership role was 0.04. A Poisson regression with number of
employees as the dependent variables and main effects of gender,
leadership and their interaction showed a non-signficant interaction
effect, 𝐵 = 0.388, 𝑆𝐸 = 0.421, 𝑧 = 0.92, 𝑝 = .357. The null-
hypothesis that the proportions are equal in the population could
not be rejected.”
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If the data set is large enough and the numbers are not too close to 0, the same
conclusions will be drawn, whether from a 𝑧-statistic for an interaction effect in
a Poisson regression model, or from a cross-tabulation and computing a Pearson
chi-square. The advantage of the Poisson regression approach is that you can
do much more with them, for instance more than two predictors, and including
also numeric variables as predictors. In the Poisson regression, you also make
it more explicit that when computing the 𝑧-statistic, you take into account the
main effects of the variables (the row and column totals). You do that also for
the Pearson chi-square, but it is less obvious: we did that by first calculating
the proportion of males and females and then calculating the overall proportion
of senior management roles, before calculating the expected numbers. The next
section shows that you can more easily answer advanced research questions with
Poisson regression than with Pearson’s chi-squares and crosstables.

16.8 Going beyond 2 by 2 crosstables (advanced)

If your categorical variables have more than 2 categories you can still do a
Pearson chi-square test. You only run into trouble when you have more than
two categorical variables, and you want to study the relationship between them.
Let’s turn to an example with three categorical variables. Suppose in the
employee data, we have data on gender, leadership role, and also whether people
work either at the head office in central London, or whether they work at one of
the dozens of distribution centres across the world. Do we see a different gender
bias in the head office compared to the distribution centres?

Let’s have a look at the data again. Now we make separate tables, one for the
head office and one for the distribution centres, see Figure 16.4.
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Figure 16.4: The crosstables of gender and leadership, separately for the
distribution centres (left table) and the head office (right table).

Remember that in the complete data set, we observed 4% of leadership in
the men and 2.75% in the women. Now let’s look only at the data from the
distribution centres. Out of 707 women, 1 of them is in senior management,
leading to a proportion of 0.001. Out of 145 men, 4 of them are a senior
manager, leading to a proportion of 0.028. Thus, at the distribution centres
there seems to be a gender bias in that men tend to be more often in senior
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management positions than women, taking into account overall differences in
gender representation.
Contrast this with the situation at the head office in London. There, 21 out of
93 women are in senior management, a proportion of 0.23. For the men, 4 out
of 55 are in senior management, a proportion of 0.07. Thus, at the head office,
senior management positions are relatively speaking more prevalent among the
women than the men. The opposite of what we observed in the distribution
centres.
The next question is then, can we generalise this conclusion to the population
of the entire company: is the gender bias different at the two types of location?
For that we can do a Poisson analysis. First we prepare the data in such a way
that for every combination of gender, leadership and location, we get a count.
We do that in the following way.

companydata_location %>% head(3)

## # A tibble: 3 x 4
## ID gender leader location
## <int> <chr> <chr> <chr>
## 1 182 female yes distribution
## 2 197 female yes headoffice
## 3 231 female yes headoffice

companycounts <- companydata_location %>%
group_by(gender, leader, location) %>%
summarise(count = n()) %>%
arrange(location)

companycounts

## # A tibble: 8 x 4
## # Groups: gender, leader [4]
## gender leader location count
## <chr> <chr> <chr> <int>
## 1 female no distribution 706
## 2 female yes distribution 1
## 3 male no distribution 141
## 4 male yes distribution 4
## 5 female no headoffice 72
## 6 female yes headoffice 21
## 7 male no headoffice 51
## 8 male yes headoffice 4

Next, we apply a Poisson regression model. We predict the counts by taking
the gender totals, the leader totals and the location totals.
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companycounts %>%
glm(count ~ gender + leader + location, family = poisson, data = .)

##
## Call: glm(formula = count ~ gender + leader + location, family = poisson,
## data = .)
##
## Coefficients:
## (Intercept) gendermale leaderyes locationheadoffice
## 6.494 -1.386 -3.476 -1.750
##
## Degrees of Freedom: 7 Total (i.e. Null); 4 Residual
## Null Deviance: 2168
## Residual Deviance: 117.9 AIC: 166.4

Generally, there are fewer males, fewer leaders, and fewer people in the head
office compared to the other categories. In the previous analysis we saw that
a gender bias in leadership was modelled using an interaction effect. Now that
we have data on location, there could in addition be a gender bias in location
(relatively more women in the head office), and a location bias in leadership
(relatively more leaders in the head office). We can therefore add these three
two-way interaction effects. But most importantly, we want to know whether
the gender bias in management (the interaction between gender and leadership)
is moderated by location. This we can test by adding a three-way interaction
effect: gender by leader by location. Putting it all together we get the following
R code:

companycounts %>%
glm(count ~ gender + leader + location +

gender:leader + gender:location + leader:location +
gender:leader:location,

family = poisson, data = .)

The exact same model can be achieved with less typing, by using the * operator:
then you get all main effects, two-way interaction effects and the three-way
interaction effect automatically:

companycounts %>% glm(count ~ gender*leader*location,
family = poisson, data = .) %>%

tidy()

## # A tibble: 8 x 5
## term estimate std.error statistic p.value
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## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) 6.56 0.0376 174. 0
## 2 gendermale -1.61 0.0922 -17.5 2.73e-68
## 3 leaderyes -6.56 1.00 -6.56 5.56e-11
## 4 locationheadoffice -2.28 0.124 -18.5 4.90e-76
## 5 gendermale:leaderyes 3.00 1.12 2.67 7.55e- 3
## 6 gendermale:locationheadoffice 1.27 0.205 6.18 6.53e-10
## 7 leaderyes:locationheadoffice 5.33 1.03 5.17 2.37e- 7
## 8 gendermale:leaderyes:locationheadoffice -4.31 1.26 -3.42 6.29e- 4

The only parameter relevant for our research question is the last one concerning
the gender by leader by location interaction effect. Its value -4.31 is negative,
indicating that the particular combination of being male, being a leader and
working at the head office leads to a relatively lower count. There is thus a
gender by location bias in leadership, in that the males are relatively more
present in leadership positions at the distribution centres than at the head
office. The effect is significant, so we can conclude that the gender bias shows a
different pattern at the head office than at the distribution centres.

We report:

”Using data on 1000 employees the observed proportion of women
in a leadership role was 0.0275. The observed proportion of men
in a leadership role was 0.04. Taking into account differences
across location we saw that women at distribution centres were
relatively less often in senior management position than men (0.1%
vs. 2.8%). At the head office, women were relatively more often in
a senior management position than men (23% vs. 7%). A Poisson
regression with number of employees as the dependent variables and
main effects of gender, leadership, location and all their two-way
and three-way interaction effects showed a significant three-way
interaction effect, 𝐵 = −4.31, 𝑆𝐸 = 1.26, 𝑧 = −3.42, 𝑝 < .001. The
null-hypothesis that the gender bias is equal in the two types of
locations of the company can be rejected.”

16.9 Take-away points

• A Poisson regression model is a form of a generalised linear model.

• Poisson regression is appropriate in situations where the dependent
variable is a count variable (0, 1, 2, 3, …).

• Whereas the normal distribution has two parameters (mean 𝜇 and variance
𝜎2), the Poisson distribution has only one parameter: 𝜆.
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• A Poisson distribution with parameter 𝜆 has mean equal to 𝜆 and variance
equal to 𝜆.

• 𝜆 can take any real value between 0 and ∞.

• Poisson models can be used to analyse crosstable data. This can also be
done using Pearson’s chi-square, but Poisson models allow you to easily
go beyond two categorical variables, and include numerical predictors.

Key concepts

• Poisson regression
• Poisson distribution
• Tendency parameter 𝜆
• Pearson’s chi-square
• 𝜒2-distribution
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Appendix A

Cumulative probabilities for
the standard normal
distribution
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Table A.1: Cumulative proportions 𝑝 for the standard normal
distribution.

z p z p z p z p z p z p
-4.00 0.0000 -1.43 0.0764 -0.71 0.239 0.01 0.504 0.73 0.7673 1.45 0.9265
-3.80 0.0001 -1.42 0.0778 -0.70 0.242 0.02 0.508 0.74 0.7704 1.46 0.9279
-3.60 0.0002 -1.41 0.0793 -0.69 0.245 0.03 0.512 0.75 0.7734 1.47 0.9292
-3.40 0.0003 -1.40 0.0808 -0.68 0.248 0.04 0.516 0.76 0.7764 1.48 0.9306
-3.20 0.0007 -1.39 0.0823 -0.67 0.251 0.05 0.520 0.77 0.7794 1.49 0.9319
-3.00 0.0013 -1.38 0.0838 -0.66 0.255 0.06 0.524 0.78 0.7823 1.50 0.9332
-2.90 0.0019 -1.37 0.0853 -0.65 0.258 0.07 0.528 0.79 0.7852 1.51 0.9345
-2.80 0.0026 -1.36 0.0869 -0.64 0.261 0.08 0.532 0.80 0.7881 1.52 0.9357
-2.70 0.0035 -1.35 0.0885 -0.63 0.264 0.09 0.536 0.81 0.7910 1.53 0.9370
-2.60 0.0047 -1.34 0.0901 -0.62 0.268 0.10 0.540 0.82 0.7939 1.54 0.9382
-2.50 0.0062 -1.33 0.0918 -0.61 0.271 0.11 0.544 0.83 0.7967 1.55 0.9394
-2.40 0.0082 -1.32 0.0934 -0.60 0.274 0.12 0.548 0.84 0.7995 1.56 0.9406
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-2.30 0.0107 -1.31 0.0951 -0.59 0.278 0.13 0.552 0.85 0.8023 1.57 0.9418
-2.20 0.0139 -1.30 0.0968 -0.58 0.281 0.14 0.556 0.86 0.8051 1.58 0.9429
-2.10 0.0179 -1.29 0.0985 -0.57 0.284 0.15 0.560 0.87 0.8078 1.59 0.9441
-2.00 0.0228 -1.28 0.1003 -0.56 0.288 0.16 0.564 0.88 0.8106 1.60 0.9452
-1.99 0.0233 -1.27 0.1020 -0.55 0.291 0.17 0.567 0.89 0.8133 1.61 0.9463
-1.98 0.0239 -1.26 0.1038 -0.54 0.295 0.18 0.571 0.90 0.8159 1.62 0.9474
-1.97 0.0244 -1.25 0.1056 -0.53 0.298 0.19 0.575 0.91 0.8186 1.63 0.9484
-1.96 0.0250 -1.24 0.1075 -0.52 0.302 0.20 0.579 0.92 0.8212 1.64 0.9495
-1.95 0.0256 -1.23 0.1093 -0.51 0.305 0.21 0.583 0.93 0.8238 1.65 0.9505
-1.94 0.0262 -1.22 0.1112 -0.50 0.309 0.22 0.587 0.94 0.8264 1.66 0.9515
-1.93 0.0268 -1.21 0.1131 -0.49 0.312 0.23 0.591 0.95 0.8289 1.67 0.9525
-1.92 0.0274 -1.20 0.1151 -0.48 0.316 0.24 0.595 0.96 0.8315 1.68 0.9535
-1.91 0.0281 -1.19 0.1170 -0.47 0.319 0.25 0.599 0.97 0.8340 1.69 0.9545
-1.90 0.0287 -1.18 0.1190 -0.46 0.323 0.26 0.603 0.98 0.8365 1.70 0.9554
-1.89 0.0294 -1.17 0.1210 -0.45 0.326 0.27 0.606 0.99 0.8389 1.71 0.9564
-1.88 0.0301 -1.16 0.1230 -0.44 0.330 0.28 0.610 1.00 0.8413 1.72 0.9573
-1.87 0.0307 -1.15 0.1251 -0.43 0.334 0.29 0.614 1.01 0.8438 1.73 0.9582
-1.86 0.0314 -1.14 0.1271 -0.42 0.337 0.30 0.618 1.02 0.8461 1.74 0.9591
-1.85 0.0322 -1.13 0.1292 -0.41 0.341 0.31 0.622 1.03 0.8485 1.75 0.9599
-1.84 0.0329 -1.12 0.1314 -0.40 0.345 0.32 0.626 1.04 0.8508 1.76 0.9608
-1.83 0.0336 -1.11 0.1335 -0.39 0.348 0.33 0.629 1.05 0.8531 1.77 0.9616
-1.82 0.0344 -1.10 0.1357 -0.38 0.352 0.34 0.633 1.06 0.8554 1.78 0.9625
-1.81 0.0351 -1.09 0.1379 -0.37 0.356 0.35 0.637 1.07 0.8577 1.79 0.9633
-1.80 0.0359 -1.08 0.1401 -0.36 0.359 0.36 0.641 1.08 0.8599 1.80 0.9641
-1.79 0.0367 -1.07 0.1423 -0.35 0.363 0.37 0.644 1.09 0.8621 1.81 0.9649
-1.78 0.0375 -1.06 0.1446 -0.34 0.367 0.38 0.648 1.10 0.8643 1.82 0.9656
-1.77 0.0384 -1.05 0.1469 -0.33 0.371 0.39 0.652 1.11 0.8665 1.83 0.9664
-1.76 0.0392 -1.04 0.1492 -0.32 0.374 0.40 0.655 1.12 0.8686 1.84 0.9671
-1.75 0.0401 -1.03 0.1515 -0.31 0.378 0.41 0.659 1.13 0.8708 1.85 0.9678
-1.74 0.0409 -1.02 0.1539 -0.30 0.382 0.42 0.663 1.14 0.8729 1.86 0.9686
-1.73 0.0418 -1.01 0.1562 -0.29 0.386 0.43 0.666 1.15 0.8749 1.87 0.9693
-1.72 0.0427 -1.00 0.1587 -0.28 0.390 0.44 0.670 1.16 0.8770 1.88 0.9699
-1.71 0.0436 -0.99 0.1611 -0.27 0.394 0.45 0.674 1.17 0.8790 1.89 0.9706
-1.70 0.0446 -0.98 0.1635 -0.26 0.397 0.46 0.677 1.18 0.8810 1.90 0.9713
-1.69 0.0455 -0.97 0.1660 -0.25 0.401 0.47 0.681 1.19 0.8830 1.91 0.9719
-1.68 0.0465 -0.96 0.1685 -0.24 0.405 0.48 0.684 1.20 0.8849 1.92 0.9726
-1.67 0.0475 -0.95 0.1711 -0.23 0.409 0.49 0.688 1.21 0.8869 1.93 0.9732
-1.66 0.0485 -0.94 0.1736 -0.22 0.413 0.50 0.691 1.22 0.8888 1.94 0.9738
-1.65 0.0495 -0.93 0.1762 -0.21 0.417 0.51 0.695 1.23 0.8907 1.95 0.9744
-1.64 0.0505 -0.92 0.1788 -0.20 0.421 0.52 0.698 1.24 0.8925 1.96 0.9750
-1.63 0.0516 -0.91 0.1814 -0.19 0.425 0.53 0.702 1.25 0.8944 1.97 0.9756
-1.62 0.0526 -0.90 0.1841 -0.18 0.429 0.54 0.705 1.26 0.8962 1.98 0.9761
-1.61 0.0537 -0.89 0.1867 -0.17 0.433 0.55 0.709 1.27 0.8980 1.99 0.9767
-1.60 0.0548 -0.88 0.1894 -0.16 0.436 0.56 0.712 1.28 0.8997 2.00 0.9772
-1.59 0.0559 -0.87 0.1922 -0.15 0.440 0.57 0.716 1.29 0.9015 2.10 0.9821
-1.58 0.0571 -0.86 0.1949 -0.14 0.444 0.58 0.719 1.30 0.9032 2.20 0.9861
-1.57 0.0582 -0.85 0.1977 -0.13 0.448 0.59 0.722 1.31 0.9049 2.30 0.9893
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-1.56 0.0594 -0.84 0.2005 -0.12 0.452 0.60 0.726 1.32 0.9066 2.40 0.9918
-1.55 0.0606 -0.83 0.2033 -0.11 0.456 0.61 0.729 1.33 0.9082 2.50 0.9938
-1.54 0.0618 -0.82 0.2061 -0.10 0.460 0.62 0.732 1.34 0.9099 2.60 0.9953
-1.53 0.0630 -0.81 0.2090 -0.09 0.464 0.63 0.736 1.35 0.9115 2.70 0.9965
-1.52 0.0643 -0.80 0.2119 -0.08 0.468 0.64 0.739 1.36 0.9131 2.80 0.9974
-1.51 0.0655 -0.79 0.2148 -0.07 0.472 0.65 0.742 1.37 0.9147 2.90 0.9981
-1.50 0.0668 -0.78 0.2177 -0.06 0.476 0.66 0.745 1.38 0.9162 3.00 0.9987
-1.49 0.0681 -0.77 0.2206 -0.05 0.480 0.67 0.749 1.39 0.9177 3.20 0.9993
-1.48 0.0694 -0.76 0.2236 -0.04 0.484 0.68 0.752 1.40 0.9192 3.40 0.9997
-1.47 0.0708 -0.75 0.2266 -0.03 0.488 0.69 0.755 1.41 0.9207 3.60 0.9998
-1.46 0.0721 -0.74 0.2296 -0.02 0.492 0.70 0.758 1.42 0.9222 3.80 0.9999
-1.45 0.0735 -0.73 0.2327 -0.01 0.496 0.71 0.761 1.43 0.9236 4.00 1.0000
-1.44 0.0749 -0.72 0.2358 0.00 0.500 0.72 0.764 1.44 0.9251 4.01 1.0000
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Appendix B

Critical values for the
𝑡-distribution
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Table B.1: Critical values for the 𝑡-distribution, given the degrees of freedom
(rows) and tail probability 𝑝 (columns). These can be used for critical values
for a given confidence level.

Confidence level
80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9%

Right-tail probability p
df 0.1 0.05 0.025 0.02 0.01 0.005 0.0025 0.001 0.0005
1 3.078 6.314 12.706 15.895 31.821 63.657 127.321 318.309 636.619
2 1.886 2.920 4.303 4.849 6.965 9.925 14.089 22.327 31.599
3 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.215 12.924
4 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610
5 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869
6 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959
7 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408
8 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041
9 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781
10 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587
11 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437
12 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221
14 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140
15 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073
16 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015
17 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965
18 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.610 3.922
19 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883
20 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850
21 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819
22 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792
23 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485 3.768
24 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745
25 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707
27 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690
28 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674
29 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659
30 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646
40 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551
50 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496
60 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460

120 1.289 1.658 1.980 2.076 2.358 2.617 2.860 3.160 3.373
10000 1.282 1.645 1.960 2.054 2.327 2.576 2.808 3.091 3.291
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Appendix C

Some basic algebra for
linear models

If you want to understand linear models better, some linear algebra (a.k.a.
matrix algebra) comes in handy. For linear algebra, you need to understand
how to work with matrices: how to multiply them (calculating the product of
two matrices), how to invert them (a kind of determining the reciprocal), and
how to transpose them. We briefly explain those operations here, and then show
how these tricks relate to ordinary least squares (OLS) estimation in practice.
We also show how to perform linear algebra in R.

If you want to compute the product of matrix A and matrix B, the order of the
matrices is important. Suppose we have the matrix A

A = [𝑎 𝑏
𝑐 𝑑]

and matrix B

B = [𝑒 𝑓
𝑔 ℎ]

If you want to calculate the product AB, you take each row of A and you take
the sum of the crossproducts with each column of B. That is, if the product of
AB = C, then the first element of C, 𝑐11 (row 1, column 1) equals 𝑎 × 𝑒 + 𝑏 × 𝑔.
In general, if C = AB, and 𝑐𝑖𝑗 is the element in the 𝑖-th row and the 𝑗-th
column, we have

𝑐𝑖𝑗 = 𝐴𝑖1𝐵1𝑗 + 𝐴𝑖2𝐵2𝑗 + ⋯ + 𝐴𝑖𝐽𝐵𝐼𝑗
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where 𝐼 is the number of rows in B and 𝐽 is the number of columns in A.

If we do that for each row of A and each column of B, then we get matrix C:

C = [𝑎 𝑏
𝑐 𝑑] [𝑒 𝑓

𝑔 ℎ] = [𝑎𝑒 + 𝑏𝑔 𝑎𝑓 + 𝑏ℎ
𝑐𝑒 + 𝑑𝑔 𝑐𝑓 + 𝑑ℎ]

Example C.1 (Matrix Multiplication). Let

A = [1 0
1 1]

and

B = [2 4
1 3]

Then the product AB equals

AB = [2 4
3 7]

whereas the product BA equals

BA = [6 4
4 3]

In R, multiplying matrices is done with the operator %*%:

A <- rbind(c(1, 0),
c(1, 1))

B <- rbind(c(2, 4),
c(1, 3))

A%*%B # A x B

## [,1] [,2]
## [1,] 2 4
## [2,] 3 7

B%*%A # B x A

## [,1] [,2]
## [1,] 6 4
## [2,] 4 3
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Let y be a vector containing the values of the dependent variable 𝑌 . Let X be the
design matrix (see Chapter 10), where each row represents a unit of observation,
and each column represents a numeric independent variable (remember that
each categorical variable is always coded into one or more numeric variables,
e.g. dummy variables).

When you do some algebra with matrix X and vector y, you get the parameters
(intercept and slopes) for a linear model:

(X′X)−1X⊺y

where X⊺ is the transpose of X, which means the matrix on its side, where the
first row becomes the first column, the second row becomes the second column,
etcetera. For instance, suppose matrix X is

X =
⎡
⎢⎢
⎣

0 1
1 1
1 1
0 1

⎤
⎥⎥
⎦

then the transpose of X is X⊺

X⊺ = [0 1 1 0
1 1 1 1]

In R, the transpose can be calculated using t():

M <- rbind(c(0, 1, 1, 0),
c(1, 1, 1, 1))

M

## [,1] [,2] [,3] [,4]
## [1,] 0 1 1 0
## [2,] 1 1 1 1

t(M) # the transpose

## [,1] [,2]
## [1,] 0 1
## [2,] 1 1
## [3,] 1 1
## [4,] 0 1
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X−1 is the inverse of matrix X. The inverse of a matrix X is a matrix for which
we know that XX−1 = I, where I is the identity matrix.

I = [1 0
0 1]

that is, a matrix with all 0s except on the diagonal from top-left to bottom-right.

In R, the inverse of a matrix can be calculated using the ginv() function in the
MASS package (Chapter 10). The function ginv() can be used for all matrices
(it actually computes the generalised inverse). If the matrix has as many rows
as it has columns, a matrix is called “square” and then the function solve()
can also be used.

X = rbind(c(1, 1), # a square matrix X
c(0, 1))

X

## [,1] [,2]
## [1,] 1 1
## [2,] 0 1

solve(X) # the inverse of X

## [,1] [,2]
## [1,] 1 -1
## [2,] 0 1

X %*% solve(X) # a product of a square matrix with its inverse is identity matrix

## [,1] [,2]
## [1,] 1 0
## [2,] 0 1

Example C.2 (Obtaining linear model parameters). Suppose we have the data
set in Table C.1, where

Let response vector y contain the observed values of the dependent variable 𝑌 :

y =

⎡
⎢
⎢
⎢
⎢
⎣

1
0
2

−4
−1
1

⎤
⎥
⎥
⎥
⎥
⎦
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Table C.1: Small data example.

y group
1 1
0 1
2 2
-4 2
-1 3
1 3

Table C.2: Small data example with the columns of the design matrix.

y group intercept group2 group3
1 1 1 0 0
0 1 1 0 0
2 2 1 1 0
-4 2 1 1 0
-1 3 1 0 1
1 3 1 0 1

Let design matrix X contain the values for three independent variables (three
columns). The first is by default a vector of 1s. The second and third variables
are dummy variables coding for group. These new variables are given in Table
C.2 to show how they relate to the original data.

X =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0
1 0 0
1 1 0
1 1 0
1 0 1
1 0 1

⎤
⎥
⎥
⎥
⎥
⎦

Then the vector with the OLS parameter values (intercept and slopes) is
obtained by calculating

(X⊺X)−1X⊺y = ⎡⎢
⎣

0.5
−1.5
−.5

⎤⎥
⎦

Let R do the algebra for you:

y <- c(1, 0, 2, -4, -1, 1)
group2 = c(0, 0, 1, 1, 0, 0)
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group3 = c(0, 0, 0, 0, 1, 1)
X <- cbind(intercept = 1,

group2,
group3)

X

## intercept group2 group3
## [1,] 1 0 0
## [2,] 1 0 0
## [3,] 1 1 0
## [4,] 1 1 0
## [5,] 1 0 1
## [6,] 1 0 1

solve(t(X)%*%X) %*% t(X) %*% y

## [,1]
## intercept 0.5
## group2 -1.5
## group3 -0.5

You obtain the same values with the function lm():

tibble(y = c(1, 0, 2, -4, -1, 1), # dependent variable
group = factor(c(1, 1, 2, 2, 3, 3))) %>% # categorical indep variable

lm(y ~ group, data = .) # run a linear model with ordinary least squares

##
## Call:
## lm(formula = y ~ group, data = .)
##
## Coefficients:
## (Intercept) group2 group3
## 0.5 -1.5 -0.5

What the design matrix looks like can be obtained using model.matrix().

tibble(y = c(1, 0, 2, -4, -1, 1), # dependent variable
group = factor(c(1, 1, 2, 2, 3, 3))) %>% # categorical indep variable

lm(y ~ group, data = .) %>% # run a linear model with ordinary least squares %>%
model.matrix() # show design matrix X
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## (Intercept) group2 group3
## 1 1 0 0
## 2 1 0 0
## 3 1 1 0
## 4 1 1 0
## 5 1 0 1
## 6 1 0 1
## attr(,"assign")
## [1] 0 1 1
## attr(,"contrasts")
## attr(,"contrasts")$group
## [1] "contr.treatment"

You see the intercept variable and the two dummy variables that are created by
default for the factor variable group.
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